Curves. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Taku Komura

Size: px
Start display at page:

Download "Curves. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Taku Komura"

Transcription

1 Curves Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Taku Komura

2 How to create a virtual world? To compose scenes We need to define objects - Characters - Terrains - Objects (trees, furniture, buildings etc)

3 Geometric representations Meshes Triangle, quadrilateral, polygon Implicit surfaces Blobs, metaballs Parametric surfaces / curves Polynomials Bezier curves, B-splines

4 [scene360.com] Motivation Smoothness Many applications require smooth surfaces Can produce smooth surfaces with less parameters Easier to design Can efficiently preserve complex structures

5 Original Spline

6 From draftsmanship to CG Control user specified control points analogy: ducks Smoothness smooth functions usually low order polynomials analogy: physical constraints, optimization

7 What is a curve? A set of points that the pen traces over an interval of time What is the dimensionality? Implicit form: f x, y = x 2 + y 2 1 = 0 Find the points that satisfy the equation Parametric form: x, y = f t = cost, sint, t [0,2π) Easier to draw

8 f t is a parametric curve What is a spline curve? in this context piecewise polynomial function that switches between different functions for different t intervals Example: t 3, if 0 t < 1 f t = 1 t 1 3, if 1 t < 2 0, otherwise

9 Defining spline curves Discontinuities at the integers [t=k] Each spline piece is defined over [k,k+1] (e.g. a cubic spline) f t = at 3 + bt 2 + ct + d Different coefficients for every interval Control of spline curves Interpolate Approximate

10 Today Spline segments Linear Quadratic Hermite Bezier Chaining splines Notation vectors bold and lowercase v points as column vector p = p x p y matrices bold and uppercase M

11 Spline segments Linear Segment A line segment connecting point p o to p 1 p 1 Such that f 0 = p 0 and f 1 = p 1 f x t = 1 t x o + tx 1 f y t = 1 t y o + ty 1 Vector formulation f t = 1 t p o + tp 1 Matrix formulation f t = t 1???? f t = t p 0 p 1 p 0 p 1 p 0 1 t t 1 t p o + tp 1

12 Matrix form of spline f t = t p 0 p 1 Blending functions b t specify how to blend the values of the control point vector f t = b 0 t p 0 + b 1 t p 1 b 0 t = 1 t b 1 t = t b 0 t b 1 t

13 Beyond line segment Quadratic A quadratic (f t = a 0 + a 1 t + a 2 t 2 ) passes through p 0, p 1, p 2 s.t. p 0 = f 0 = a a a 2 p 1 = f 0.5 = a a a 2 p 2 = f 1 = a a a 2 Points can be written in terms of constraint matrix C p 0 p a 0 a 0 p 1 = Ca p 1 = a 1 a 1 p 2 p a 2 a 2 = C 1 f t can be written in terms of basis matrix B = C 1 and points p p 0 f t = tbp = tc 1 p = t 2 t p p 2 p 0 p 1 p 2

14 Matrix form of spline Blending functions f t = t 2 t p 0 p 1 p 2 Blending functions b t specify how to blend the values of the control point vector f t = b 0 t p 0 + b 1 t p 1 + b 2 t p 2 b 0 t = 2t 2 3t + 1 b 1 t = 4t 2 4t b 2 t = 2t 2 1

15 Hermite spline Piecewise cubic (f t = a 0 + a 1 t + a 2 t 2 + a 3 t 3 ) Additional constraint on tangents (derivatives) f t = a 0 + a 1 t + a 2 t 2 + a 3 t 3 f t = a 1 + 2a 2 t + 3a 3 t 2 p 0 = f 0 = a 0 p 1 = f 1 = a 0 + a 1 + a 2 + a 3 v 1 = f (0) = a 1 p 0 v 0 p 1 v 2 = f 1 = a 1 + 2a 2 + 3a 3 Simpler matrix form f t = t 3 t 2 t p 0 p 1 v 1 v 2 v 1

16 Hermite to Bézier q 1 q 2 Specify tangents as points p 0 = q 0, p 1 = q 3, v 0 = 3 q 1 q 0, v 1 = 3 q 3 q 2 p q 0 p q 1 v = q 2 v q 3 Update Hermite eq. (from previous slide) f t = t 3 t 2 t v 0 q 0 p q 0 q 1 q 2 q 3 v 1 p 1 q 3 v 1

17 Bézier matrix f t = t 3 t 2 t q 0 q 1 q 2 q 3 f t = σd n=0 b n,3 q n Blending functions b t has a special name in this case: Bernstein polynomials b n,k = n k tk 1 t n k and that defines Bézier curves for any degree

18 Bézier blending functions The functions sum to 1 at any point along the curve. Endpoints have full weight q 0 q 3 q 1 q 2 10/10/2008

19 Another view to Bézier segments de Casteljau algorithm Blend each linear spline with α and β = 1 α p 1 p 1 α β αp 0 + βp 1 β α p 0 α α 2 p 0 + 2αβp 1 + β 2 p 1 β p 0 p 2

20 Review

21 Today Spline segments Linear Quadratic Hermite Bezier Chaining splines Continuity and local control Hermite curves Bezier curves Catmull-Rom curves B-splines

22 Putting segments together Limited degree of freedom with a single polynomial Will it be smooth enough?

23 Measuring smoothness Continuity Smoothness as degree of continuity zero-order (C 0 ): position match first-order (C 1 ): tangent match second-order (C 2 ): curvature match C N vs G N

24 Putting segments together Limited degree of freedom with a single polynomial Will it be smooth enough? Local control

25 Local control How many knots for m segments with 2 control points each?

26 Local control?

27 Local control changing control point only affects a limited part of spline without this, splines are very difficult to use overshooting fixed computation many likely formulations lack this natural spline polynomial fits (matlab demo)

28 Putting segments together Piecewise linear Blending functions for a linear segment (0<t<1) p 1 p 0 p 1 f t p 0 f t = 1 t p 0 + tp 1

29 Putting segments together Piecewise linear p 1 p 0 p 1 p 1 p 2 f 1 t f 0 t p 2 p 0 f 0 t = 1 t p 0 + tp 1 (0 < t < 1) f 1 t =? p 1 +? p 2 (1 < t < 2) f 1 t = 2 t p 1 + t 1 p 2 (1 < t < 2)

30 Putting segments together How can we chain these segments to a longer curve? Use first segment between t=0 to t=1 Use second segment between t=1 to t=2 f t = f i t i for i t i + 1 Shift blending functions f 0 t = b 0 t p 0 + b 1 t p 1 f 1 t = b 0 t 1 p 1 + b 1 t 1 p 2 Match derivatives at end points to avoid discontinuity

31 Hermite basis How many segments for n control points? (n-2)/2 Continuity? C 1 Slide credit: S. Marschner

32 Chaining Bézier Splines Can we add blending functions as in Hermite? If p 3 p 2 is collinear with p 4 p 3, it is G 1 continuous p 3 p 2 = k(p 4 p 3 ), k > 0 If tangents match, it is C 1 continuous p 3 p 2 = k(p 4 p 3 ), k = 1 p 0 p 1 p 2 p 3

33 Chaining segments Hermite curves are convenient because they can be made long easily Bézier curves are convenient because their controls are all points but it is fussy to maintain continuity constraints and they interpolate every 3rd point, which is a little odd We derived Bézier from Hermite by defining tangents from control points a similar construction leads to the interpolating Catmull-Rom spline

34 Catmull-Rom Would like to define tangents automatically use adjacent control points q 1 q 2 q 0 q 3

35 Hermite to Catmull-Rom p 0 = f 0 p 0 = q 1 p 1 = f 1 p 1 = q 2 v 1 = f (0) v 2 = f 1 v 0 = 1 (q 2 2 q 0 ) v 1 = 1 (q 2 3 q 1 ) f t = t 3 t 2 t p 0 p 1 v 0 v 1 f t = t 3 t 2 t q 0 q 1 q 2 q 3

36 Catmull-Rom Interpolating curve Like Bézier, equivalent to Hermite Continuity? Local control? Add tension p 0 = q 1 p 1 = q 2 v 0 = 1 (1 t)(q 2 2 q 0 ) v 1 = 1 (1 t)(q 2 3 q 1 )

37 B-splines We may want more continuity than C 1 f t = σ n i=1 p i b i (t) parameterized by k control points made of polynomials of degree k-1 is C (k 2) B-splines are a clean, flexible way of making long splines with arbitrary order of continuity Various ways to think of construction a simple one is convolution relationship to sampling and reconstruction

38 Quadratic B-spline b i,3 t = 1 2 u2, if i t < i + 1, u = t i u 2 + u + 1, if i + 1 t < i + 1, u = t (i + 1) (1 u)2, if i + 2 t < i + 3, u = t (i + 2) 1 2 u2, otherwise.

39 B-Spline Smoothing effect

40 Summary Spline segments Linear Quadratic Hermite Bezier Chaining splines Catmull Rom curve and B-splines Suggested reading: B1 Chapter 15

Introduction to Computer Graphics. Modeling (1) April 13, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (1) April 13, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (1) April 13, 2017 Kenshi Takayama Parametric curves X & Y coordinates defined by parameter t ( time) Example: Cycloid x t = t sin t y t = 1 cos t Tangent (aka.

More information

Arsène Pérard-Gayot (Slides by Piotr Danilewski)

Arsène Pérard-Gayot (Slides by Piotr Danilewski) Computer Graphics - Splines - Arsène Pérard-Gayot (Slides by Piotr Danilewski) CURVES Curves Explicit y = f x f: R R γ = x, f x y = 1 x 2 Implicit F x, y = 0 F: R 2 R γ = x, y : F x, y = 0 x 2 + y 2 =

More information

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier Modeling Creating 3D objects How to construct complicated surfaces? Goal Specify objects with few control points Resulting object should be visually

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 2 Today Curves Introduction Polynomial curves Bézier curves Drawing Bézier curves Piecewise curves Modeling Creating 3D objects How to construct

More information

Computer Graphics Keyframing and Interpola8on

Computer Graphics Keyframing and Interpola8on Computer Graphics Keyframing and Interpola8on This Lecture Keyframing and Interpola2on two topics you are already familiar with from your Blender modeling and anima2on of a robot arm Interpola2on linear

More information

Bézier Curves and Splines

Bézier Curves and Splines CS-C3100 Computer Graphics Bézier Curves and Splines Majority of slides from Frédo Durand vectorportal.com CS-C3100 Fall 2017 Lehtinen Before We Begin Anything on your mind concerning Assignment 1? CS-C3100

More information

CSE 167: Lecture 11: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture 11: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture 11: Bézier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #5 due Nov. 9 th at 1:30pm

More information

On-Line Geometric Modeling Notes

On-Line Geometric Modeling Notes On-Line Geometric Modeling Notes CUBIC BÉZIER CURVES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview The Bézier curve representation

More information

Lecture 20: Bezier Curves & Splines

Lecture 20: Bezier Curves & Splines Lecture 20: Bezier Curves & Splines December 6, 2016 12/6/16 CSU CS410 Bruce Draper & J. Ross Beveridge 1 Review: The Pen Metaphore Think of putting a pen to paper Pen position described by time t Seeing

More information

CGT 511. Curves. Curves. Curves. What is a curve? 2) A continuous map of a 1D space to an nd space

CGT 511. Curves. Curves. Curves. What is a curve? 2) A continuous map of a 1D space to an nd space Curves CGT 511 Curves Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology What is a curve? Mathematical ldefinition i i is a bit complex 1) The continuous o image of an interval

More information

Animation Curves and Splines 1

Animation Curves and Splines 1 Animation Curves and Splines 1 Animation Homework Set up a simple avatar E.g. cube/sphere (or square/circle if 2D) Specify some key frames (positions/orientations) Associate a time with each key frame

More information

MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs

MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs David L. Finn December 9th, 2004 We now start considering the basic curve elements to be used throughout this course; polynomial curves and

More information

M2R IVR, October 12th Mathematical tools 1 - Session 2

M2R IVR, October 12th Mathematical tools 1 - Session 2 Mathematical tools 1 Session 2 Franck HÉTROY M2R IVR, October 12th 2006 First session reminder Basic definitions Motivation: interpolate or approximate an ordered list of 2D points P i n Definition: spline

More information

Lecture 23: Hermite and Bezier Curves

Lecture 23: Hermite and Bezier Curves Lecture 23: Hermite and Bezier Curves November 16, 2017 11/16/17 CSU CS410 Fall 2017, Ross Beveridge & Bruce Draper 1 Representing Curved Objects So far we ve seen Polygonal objects (triangles) and Spheres

More information

Interpolation and polynomial approximation Interpolation

Interpolation and polynomial approximation Interpolation Outline Interpolation and polynomial approximation Interpolation Lagrange Cubic Splines Approximation B-Splines 1 Outline Approximation B-Splines We still focus on curves for the moment. 2 3 Pierre Bézier

More information

Reading. w Foley, Section 11.2 Optional

Reading. w Foley, Section 11.2 Optional Parametric Curves w Foley, Section.2 Optional Reading w Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 987. w Farin. Curves and Surfaces for

More information

Bernstein polynomials of degree N are defined by

Bernstein polynomials of degree N are defined by SEC. 5.5 BÉZIER CURVES 309 5.5 Bézier Curves Pierre Bézier at Renault and Paul de Casteljau at Citroën independently developed the Bézier curve for CAD/CAM operations, in the 1970s. These parametrically

More information

Curves, Surfaces and Segments, Patches

Curves, Surfaces and Segments, Patches Curves, Surfaces and Segments, atches The University of Texas at Austin Conics: Curves and Quadrics: Surfaces Implicit form arametric form Rational Bézier Forms and Join Continuity Recursive Subdivision

More information

Sample Exam 1 KEY NAME: 1. CS 557 Sample Exam 1 KEY. These are some sample problems taken from exams in previous years. roughly ten questions.

Sample Exam 1 KEY NAME: 1. CS 557 Sample Exam 1 KEY. These are some sample problems taken from exams in previous years. roughly ten questions. Sample Exam 1 KEY NAME: 1 CS 557 Sample Exam 1 KEY These are some sample problems taken from exams in previous years. roughly ten questions. Your exam will have 1. (0 points) Circle T or T T Any curve

More information

MAT300/500 Programming Project Spring 2019

MAT300/500 Programming Project Spring 2019 MAT300/500 Programming Project Spring 2019 Please submit all project parts on the Moodle page for MAT300 or MAT500. Due dates are listed on the syllabus and the Moodle site. You should include all neccessary

More information

Introduction to Curves. Modelling. 3D Models. Points. Lines. Polygons Defined by a sequence of lines Defined by a list of ordered points

Introduction to Curves. Modelling. 3D Models. Points. Lines. Polygons Defined by a sequence of lines Defined by a list of ordered points Introduction to Curves Modelling Points Defined by 2D or 3D coordinates Lines Defined by a set of 2 points Polygons Defined by a sequence of lines Defined by a list of ordered points 3D Models Triangular

More information

MA 323 Geometric Modelling Course Notes: Day 20 Curvature and G 2 Bezier splines

MA 323 Geometric Modelling Course Notes: Day 20 Curvature and G 2 Bezier splines MA 323 Geometric Modelling Course Notes: Day 20 Curvature and G 2 Bezier splines David L. Finn Yesterday, we introduced the notion of curvature and how it plays a role formally in the description of curves,

More information

Keyframing. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University

Keyframing. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Keyframing CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Keyframing in traditional animation Master animator draws key frames Apprentice fills in the in-between frames Keyframing

More information

Cubic Splines; Bézier Curves

Cubic Splines; Bézier Curves Cubic Splines; Bézier Curves 1 Cubic Splines piecewise approximation with cubic polynomials conditions on the coefficients of the splines 2 Bézier Curves computer-aided design and manufacturing MCS 471

More information

CONTROL POLYGONS FOR CUBIC CURVES

CONTROL POLYGONS FOR CUBIC CURVES On-Line Geometric Modeling Notes CONTROL POLYGONS FOR CUBIC CURVES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview B-Spline

More information

The Essentials of CAGD

The Essentials of CAGD The Essentials of CAGD Chapter 4: Bézier Curves: Cubic and Beyond Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd c 2000

More information

SPLINE INTERPOLATION

SPLINE INTERPOLATION Spline Background SPLINE INTERPOLATION Problem: high degree interpolating polynomials often have extra oscillations. Example: Runge function f(x = 1 1+4x 2, x [ 1, 1]. 1 1/(1+4x 2 and P 8 (x and P 16 (x

More information

MA 323 Geometric Modelling Course Notes: Day 11 Barycentric Coordinates and de Casteljau s algorithm

MA 323 Geometric Modelling Course Notes: Day 11 Barycentric Coordinates and de Casteljau s algorithm MA 323 Geometric Modelling Course Notes: Day 11 Barycentric Coordinates and de Casteljau s algorithm David L. Finn December 16th, 2004 Today, we introduce barycentric coordinates as an alternate to using

More information

Approximation of Circular Arcs by Parametric Polynomials

Approximation of Circular Arcs by Parametric Polynomials Approximation of Circular Arcs by Parametric Polynomials Emil Žagar Lecture on Geometric Modelling at Charles University in Prague December 6th 2017 1 / 44 Outline Introduction Standard Reprezentations

More information

Lagrange Interpolation and Neville s Algorithm. Ron Goldman Department of Computer Science Rice University

Lagrange Interpolation and Neville s Algorithm. Ron Goldman Department of Computer Science Rice University Lagrange Interpolation and Neville s Algorithm Ron Goldman Department of Computer Science Rice University Tension between Mathematics and Engineering 1. How do Mathematicians actually represent curves

More information

G-code and PH curves in CNC Manufacturing

G-code and PH curves in CNC Manufacturing G-code and PH curves in CNC Manufacturing Zbyněk Šír Institute of Applied Geometry, JKU Linz The research was supported through grant P17387-N12 of the Austrian Science Fund (FWF). Talk overview Motivation

More information

Interpolation and polynomial approximation Interpolation

Interpolation and polynomial approximation Interpolation Outline Interpolation and polynomial approximation Interpolation Lagrange Cubic Approximation Bézier curves B- 1 Some vocabulary (again ;) Control point : Geometric point that serves as support to the

More information

1.1. The analytical denition. Denition. The Bernstein polynomials of degree n are dened analytically:

1.1. The analytical denition. Denition. The Bernstein polynomials of degree n are dened analytically: DEGREE REDUCTION OF BÉZIER CURVES DAVE MORGAN Abstract. This paper opens with a description of Bézier curves. Then, techniques for the degree reduction of Bézier curves, along with a discussion of error

More information

Visualizing Bezier s curves: some applications of Dynamic System Geogebra

Visualizing Bezier s curves: some applications of Dynamic System Geogebra Visualizing Bezier s curves: some applications of Dynamic System Geogebra Francisco Regis Vieira Alves Instituto Federal de Educação, Ciência e Tecnologia do Estado do Ceará IFCE. Brazil fregis@ifce.edu.br

More information

GEOMETRIC MODELLING WITH BETA-FUNCTION B-SPLINES, I: PARAMETRIC CURVES

GEOMETRIC MODELLING WITH BETA-FUNCTION B-SPLINES, I: PARAMETRIC CURVES International Journal of Pure and Applied Mathematics Volume 65 No. 3 2010, 339-360 GEOMETRIC MODELLING WITH BETA-FUNCTION B-SPLINES, I: PARAMETRIC CURVES Arne Lakså 1, Børre Bang 2, Lubomir T. Dechevsky

More information

Interpolation Theory

Interpolation Theory Numerical Analysis Massoud Malek Interpolation Theory The concept of interpolation is to select a function P (x) from a given class of functions in such a way that the graph of y P (x) passes through the

More information

Curve Fitting: Fertilizer, Fonts, and Ferraris

Curve Fitting: Fertilizer, Fonts, and Ferraris Curve Fitting: Fertilizer, Fonts, and Ferraris Is that polynomial a model or just a pretty curve? 22 nd CMC3-South Annual Conference March 3, 2007 Anaheim, CA Katherine Yoshiwara Bruce Yoshiwara Los Angeles

More information

Outline. 1 Interpolation. 2 Polynomial Interpolation. 3 Piecewise Polynomial Interpolation

Outline. 1 Interpolation. 2 Polynomial Interpolation. 3 Piecewise Polynomial Interpolation Outline Interpolation 1 Interpolation 2 3 Michael T. Heath Scientific Computing 2 / 56 Interpolation Motivation Choosing Interpolant Existence and Uniqueness Basic interpolation problem: for given data

More information

Empirical Models Interpolation Polynomial Models

Empirical Models Interpolation Polynomial Models Mathematical Modeling Lia Vas Empirical Models Interpolation Polynomial Models Lagrange Polynomial. Recall that two points (x 1, y 1 ) and (x 2, y 2 ) determine a unique line y = ax + b passing them (obtained

More information

Curvature variation minimizing cubic Hermite interpolants

Curvature variation minimizing cubic Hermite interpolants Curvature variation minimizing cubic Hermite interpolants Gašper Jaklič a,b, Emil Žagar,a a FMF and IMFM, University of Ljubljana, Jadranska 19, Ljubljana, Slovenia b PINT, University of Primorska, Muzejski

More information

Geometric Interpolation by Planar Cubic Polynomials

Geometric Interpolation by Planar Cubic Polynomials 1 / 20 Geometric Interpolation by Planar Cubic Polynomials Jernej Kozak, Marjeta Krajnc Faculty of Mathematics and Physics University of Ljubljana Institute of Mathematics, Physics and Mechanics Avignon,

More information

MA 323 Geometric Modelling Course Notes: Day 12 de Casteljau s Algorithm and Subdivision

MA 323 Geometric Modelling Course Notes: Day 12 de Casteljau s Algorithm and Subdivision MA 323 Geometric Modelling Course Notes: Day 12 de Casteljau s Algorithm and Subdivision David L. Finn Yesterday, we introduced barycentric coordinates and de Casteljau s algorithm. Today, we want to go

More information

Function Approximation

Function Approximation 1 Function Approximation This is page i Printer: Opaque this 1.1 Introduction In this chapter we discuss approximating functional forms. Both in econometric and in numerical problems, the need for an approximating

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 7 Interpolation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Hermite Interpolation with Euclidean Pythagorean Hodograph Curves

Hermite Interpolation with Euclidean Pythagorean Hodograph Curves Hermite Interpolation with Euclidean Pythagorean Hodograph Curves Zbyněk Šír Faculty of Mathematics and Physics, Charles University in Prague Sokolovská 83, 86 75 Praha 8 zbynek.sir@mff.cuni.cz Abstract.

More information

Geometric meanings of the parameters on rational conic segments

Geometric meanings of the parameters on rational conic segments Science in China Ser. A Mathematics 005 Vol.48 No.9 09 09 Geometric meanings of the parameters on rational conic segments HU Qianqian & WANG Guojin Department of Mathematics, Zhejiang University, Hangzhou

More information

Simulation in Computer Graphics Elastic Solids. Matthias Teschner

Simulation in Computer Graphics Elastic Solids. Matthias Teschner Simulation in Computer Graphics Elastic Solids Matthias Teschner Outline Introduction Elastic forces Miscellaneous Collision handling Visualization University of Freiburg Computer Science Department 2

More information

Chapter 1 Numerical approximation of data : interpolation, least squares method

Chapter 1 Numerical approximation of data : interpolation, least squares method Chapter 1 Numerical approximation of data : interpolation, least squares method I. Motivation 1 Approximation of functions Evaluation of a function Which functions (f : R R) can be effectively evaluated

More information

1 Piecewise Cubic Interpolation

1 Piecewise Cubic Interpolation Piecewise Cubic Interpolation Typically the problem with piecewise linear interpolation is the interpolant is not differentiable as the interpolation points (it has a kinks at every interpolation point)

More information

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20 Exam 2 Average: 85.6 Median: 87.0 Maximum: 100.0 Minimum: 55.0 Standard Deviation: 10.42 Fall 2011 1 Today s class Multiple Variable Linear Regression Polynomial Interpolation Lagrange Interpolation Newton

More information

Interpolation and Deformations A short cookbook

Interpolation and Deformations A short cookbook Interpolation and Deformations A short cookbook 600.445 Fall 2000; Updated: 29 September 205 Linear Interpolation p ρ 2 2 = [ 40 30 20] = 20 T p ρ = [ 0 5 20] = 5 p 3 = ρ3 =? 0?? T [ 20 20 20] T 2 600.445

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Find parametric equations for the tangent line of the graph of r(t) = (t, t + 1, /t) when t = 1. Solution: A point on this line is r(1) = (1,,

More information

Subdivision Matrices and Iterated Function Systems for Parametric Interval Bezier Curves

Subdivision Matrices and Iterated Function Systems for Parametric Interval Bezier Curves International Journal of Video&Image Processing Network Security IJVIPNS-IJENS Vol:7 No:0 Subdivision Matrices Iterated Function Systems for Parametric Interval Bezier Curves O. Ismail, Senior Member,

More information

Pythagorean-hodograph curves

Pythagorean-hodograph curves 1 / 24 Pythagorean-hodograph curves V. Vitrih Raziskovalni matematični seminar 20. 2. 2012 2 / 24 1 2 3 4 5 3 / 24 Let r : [a, b] R 2 be a planar polynomial parametric curve ( ) x(t) r(t) =, y(t) where

More information

Interpolation and Deformations A short cookbook

Interpolation and Deformations A short cookbook Interpolation and Deformations A short cookbook 600.445 Fall 2000; Updated: 0 October 2002 Linear Interpolation p ρ 2 2 = [ 40 30 20] = 20 T p ρ = [ 0 5 20] = 5 p 3 = ρ3 =? 0?? T [ 20 20 20] T 2 600.445

More information

Smooth Path Generation Based on Bézier Curves for Autonomous Vehicles

Smooth Path Generation Based on Bézier Curves for Autonomous Vehicles Smooth Path Generation Based on Bézier Curves for Autonomous Vehicles Ji-wung Choi, Renwick E. Curry, Gabriel Hugh Elkaim Abstract In this paper we present two path planning algorithms based on Bézier

More information

Planar interpolation with a pair of rational spirals T. N. T. Goodman 1 and D. S. Meek 2

Planar interpolation with a pair of rational spirals T. N. T. Goodman 1 and D. S. Meek 2 Planar interpolation with a pair of rational spirals T N T Goodman and D S Meek Abstract Spirals are curves of one-signed monotone increasing or decreasing curvature Spiral segments are fair curves with

More information

Data Analysis-I. Interpolation. Soon-Hyung Yook. December 4, Soon-Hyung Yook Data Analysis-I December 4, / 1

Data Analysis-I. Interpolation. Soon-Hyung Yook. December 4, Soon-Hyung Yook Data Analysis-I December 4, / 1 Data Analysis-I Interpolation Soon-Hyung Yook December 4, 2015 Soon-Hyung Yook Data Analysis-I December 4, 2015 1 / 1 Table of Contents Soon-Hyung Yook Data Analysis-I December 4, 2015 2 / 1 Introduction

More information

II. Unit Speed Curves

II. Unit Speed Curves The Geometry of Curves, Part I Rob Donnelly From Murray State University s Calculus III, Fall 2001 note: This material supplements Sections 13.3 and 13.4 of the text Calculus with Early Transcendentals,

More information

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces Graphics 2008/2009, period 1 Lecture 2 Vectors, curves, and surfaces Computer graphics example: Pixar (source: http://www.pixar.com) Computer graphics example: Pixar (source: http://www.pixar.com) Computer

More information

Some notes on Chapter 8: Polynomial and Piecewise-polynomial Interpolation

Some notes on Chapter 8: Polynomial and Piecewise-polynomial Interpolation Some notes on Chapter 8: Polynomial and Piecewise-polynomial Interpolation See your notes. 1. Lagrange Interpolation (8.2) 1 2. Newton Interpolation (8.3) different form of the same polynomial as Lagrange

More information

Automatic Control Motion planning

Automatic Control Motion planning Automatic Control Motion planning (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Motivations 2 Electric motors are used in many different applications,

More information

1 Roots of polynomials

1 Roots of polynomials CS348a: Computer Graphics Handout #18 Geometric Modeling Original Handout #13 Stanford University Tuesday, 9 November 1993 Original Lecture #5: 14th October 1993 Topics: Polynomials Scribe: Mark P Kust

More information

Piecewise Polynomial Interpolation

Piecewise Polynomial Interpolation Piecewise Polynomial Interpolation 1 Piecewise linear interpolation Suppose we have data point (x k,y k ), k =0, 1,...N. A piecewise linear polynomial that interpolates these points is given by p(x) =p

More information

Curve Fitting. 1 Interpolation. 2 Composite Fitting. 1.1 Fitting f(x) 1.2 Hermite interpolation. 2.1 Parabolic and Cubic Splines

Curve Fitting. 1 Interpolation. 2 Composite Fitting. 1.1 Fitting f(x) 1.2 Hermite interpolation. 2.1 Parabolic and Cubic Splines Curve Fitting Why do we want to curve fit? In general, we fit data points to produce a smooth representation of the system whose response generated the data points We do this for a variety of reasons 1

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J Olver 3 Approximation and Interpolation We will now apply our minimization results to the interpolation and least squares fitting of data and functions 3 Least

More information

Math 365 Homework 5 Due April 6, 2018 Grady Wright

Math 365 Homework 5 Due April 6, 2018 Grady Wright Math 365 Homework 5 Due April 6, 018 Grady Wright 1. (Polynomial interpolation, 10pts) Consider the following three samples of some function f(x): x f(x) -1/ -1 1 1 1/ (a) Determine the unique second degree

More information

Geometric Lagrange Interpolation by Planar Cubic Pythagorean-hodograph Curves

Geometric Lagrange Interpolation by Planar Cubic Pythagorean-hodograph Curves Geometric Lagrange Interpolation by Planar Cubic Pythagorean-hodograph Curves Gašper Jaklič a,c, Jernej Kozak a,b, Marjeta Krajnc b, Vito Vitrih c, Emil Žagar a,b, a FMF, University of Ljubljana, Jadranska

More information

Self-Influencing Interpolation in Groundwater Flow

Self-Influencing Interpolation in Groundwater Flow Self-Influencing Interpolation in Groundwater Flow Carolyn Atwood Whitman College Walla Walla, WA Robert Hildebrand University of Puget Sound Tacoma, WA Andrew Homan Ohio Northern University Ada, OH July

More information

2.1 Differential Equations and Solutions. Blerina Xhabli

2.1 Differential Equations and Solutions. Blerina Xhabli 2.1 Math 3331 Differential Equations 2.1 Differential Equations and Solutions Blerina Xhabli Department of Mathematics, University of Houston blerina@math.uh.edu math.uh.edu/ blerina/teaching.html Blerina

More information

Lecture 20: Lagrange Interpolation and Neville s Algorithm. for I will pass through thee, saith the LORD. Amos 5:17

Lecture 20: Lagrange Interpolation and Neville s Algorithm. for I will pass through thee, saith the LORD. Amos 5:17 Lecture 20: Lagrange Interpolation and Neville s Algorithm for I will pass through thee, saith the LORD. Amos 5:17 1. Introduction Perhaps the easiest way to describe a shape is to select some points on

More information

Global polynomial interpolants suffer from the Runge Phenomenon if the data sites (nodes) are not chosen correctly.

Global polynomial interpolants suffer from the Runge Phenomenon if the data sites (nodes) are not chosen correctly. Piecewise polynomial interpolation Global polynomial interpolants suffer from the Runge Phenomenon if the data sites (nodes) are not chosen correctly. In many applications, one does not have the freedom

More information

A Relationship Between Minimum Bending Energy and Degree Elevation for Bézier Curves

A Relationship Between Minimum Bending Energy and Degree Elevation for Bézier Curves A Relationship Between Minimum Bending Energy and Degree Elevation for Bézier Curves David Eberly, Geometric Tools, Redmond WA 9852 https://www.geometrictools.com/ This work is licensed under the Creative

More information

Curves - Foundation of Free-form Surfaces

Curves - Foundation of Free-form Surfaces Crves - Fondation of Free-form Srfaces Why Not Simply Use a Point Matrix to Represent a Crve? Storage isse and limited resoltion Comptation and transformation Difficlties in calclating the intersections

More information

Region 16 Board of Education. Precalculus Curriculum

Region 16 Board of Education. Precalculus Curriculum Region 16 Board of Education Precalculus Curriculum 2008 1 Course Description This course offers students an opportunity to explore a variety of concepts designed to prepare them to go on to study calculus.

More information

Isogeometric Analysis with Geometrically Continuous Functions on Two-Patch Geometries

Isogeometric Analysis with Geometrically Continuous Functions on Two-Patch Geometries Isogeometric Analysis with Geometrically Continuous Functions on Two-Patch Geometries Mario Kapl a Vito Vitrih b Bert Jüttler a Katharina Birner a a Institute of Applied Geometry Johannes Kepler University

More information

Q( t) = T C T =! " t 3,t 2,t,1# Q( t) T = C T T T. Announcements. Bezier Curves and Splines. Review: Third Order Curves. Review: Cubic Examples

Q( t) = T C T =!  t 3,t 2,t,1# Q( t) T = C T T T. Announcements. Bezier Curves and Splines. Review: Third Order Curves. Review: Cubic Examples Bezier Curves an Splines December 1, 2015 Announcements PA4 ue one week from toay Submit your most fun test cases, too! Infinitely thin planes with parallel sies μ oesn t matter Term Paper ue one week

More information

Fitting a Natural Spline to Samples of the Form (t, f(t))

Fitting a Natural Spline to Samples of the Form (t, f(t)) Fitting a Natural Spline to Samples of the Form (t, f(t)) David Eberly, Geometric Tools, Redmond WA 9852 https://wwwgeometrictoolscom/ This work is licensed under the Creative Commons Attribution 4 International

More information

Geometric Hermite curves with minimum strain energy

Geometric Hermite curves with minimum strain energy R Available online at www.sciencedirect.com Computer Aided Geometric Design 21 (2004) 281 301 www.elsevier.com/locate/cagd Geometric Hermite curves with minimum strain energy Jun-Hai Yong, Fuhua (Frank)

More information

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines Cubic Splines MATH 375 J. Robert Buchanan Department of Mathematics Fall 2006 Introduction Given data {(x 0, f(x 0 )), (x 1, f(x 1 )),...,(x n, f(x n ))} which we wish to interpolate using a polynomial...

More information

Chordal cubic spline interpolation is fourth order accurate

Chordal cubic spline interpolation is fourth order accurate Chordal cubic spline interpolation is fourth order accurate Michael S. Floater Abstract: It is well known that complete cubic spline interpolation of functions with four continuous derivatives is fourth

More information

Curve Fitting. Objectives

Curve Fitting. Objectives Curve Fitting Objectives Understanding the difference between regression and interpolation. Knowing how to fit curve of discrete with least-squares regression. Knowing how to compute and understand the

More information

Directional Field. Xiao-Ming Fu

Directional Field. Xiao-Ming Fu Directional Field Xiao-Ming Fu Outlines Introduction Discretization Representation Objectives and Constraints Outlines Introduction Discretization Representation Objectives and Constraints Definition Spatially-varying

More information

Spline Methods Draft. Tom Lyche and Knut Mørken

Spline Methods Draft. Tom Lyche and Knut Mørken Spline Methods Draft Tom Lyche and Knut Mørken 25th April 2003 2 Contents 1 Splines and B-splines an Introduction 3 1.1 Convex combinations and convex hulls..................... 3 1.1.1 Stable computations...........................

More information

Characterization of Planar Cubic Alternative curve. Perak, M sia. M sia. Penang, M sia.

Characterization of Planar Cubic Alternative curve. Perak, M sia. M sia. Penang, M sia. Characterization of Planar Cubic Alternative curve. Azhar Ahmad α, R.Gobithasan γ, Jamaluddin Md.Ali β, α Dept. of Mathematics, Sultan Idris University of Education, 59 Tanjung Malim, Perak, M sia. γ Dept

More information

THINKING IN PYRAMIDS

THINKING IN PYRAMIDS ECS 178 Course Notes THINKING IN PYRAMIDS Kenneth I. Joy Institute for Data Anaysis and Visuaization Department of Computer Science University of Caifornia, Davis Overview It is frequenty usefu to think

More information

polynomial function polynomial function of degree n leading coefficient leading-term test quartic function turning point

polynomial function polynomial function of degree n leading coefficient leading-term test quartic function turning point polynomial function polynomial function of degree n leading coefficient leading-term test quartic function turning point quadratic form repeated zero multiplicity Graph Transformations of Monomial Functions

More information

Introductory Mathematics

Introductory Mathematics Introductory Mathematics 1998 2003 1.01 Identify subsets of the real number system. 1.02 Estimate and compute with rational Grade 7: 1.02 numbers. 1.03 Compare, order, and convert among Grade 6: 1.03 fractions,

More information

Nonstationary Subdivision Schemes and Totally Positive Refinable Functions

Nonstationary Subdivision Schemes and Totally Positive Refinable Functions Nonstationary Subdivision Schemes and Totally Positive Refinable Functions Laura Gori and Francesca Pitolli December, 2007 Abstract In this paper we construct a class of totally positive refinable functions,

More information

(b)complete the table to show where the function is positive (above the x axis) or negative (below the x axis) for each interval.

(b)complete the table to show where the function is positive (above the x axis) or negative (below the x axis) for each interval. Lesson 3.4 Graph and Equation of Polynomial Functions Part A: Graph of a Polynomial Function the x intercepts of the graph the zeros of the function the roots of the equation Multiplicity (of a zero) A

More information

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2.

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2. INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 = 0, x 1 = π/4, x

More information

Numerical integration and differentiation. Unit IV. Numerical Integration and Differentiation. Plan of attack. Numerical integration.

Numerical integration and differentiation. Unit IV. Numerical Integration and Differentiation. Plan of attack. Numerical integration. Unit IV Numerical Integration and Differentiation Numerical integration and differentiation quadrature classical formulas for equally spaced nodes improper integrals Gaussian quadrature and orthogonal

More information

A matrix Method for Interval Hermite Curve Segmentation O. Ismail, Senior Member, IEEE

A matrix Method for Interval Hermite Curve Segmentation O. Ismail, Senior Member, IEEE International Journal of Video&Image Processing Network Security IJVIPNS-IJENS Vol:15 No:03 7 A matrix Method for Interal Hermite Cure Segmentation O. Ismail, Senior Member, IEEE Abstract Since the use

More information

Continuous Curvature Path Generation Based on Bézier Curves for Autonomous Vehicles

Continuous Curvature Path Generation Based on Bézier Curves for Autonomous Vehicles Continuous Curvature Path Generation Based on Bézier Curves for Autonomous Vehicles Ji-wung Choi, Renwick E. Curry, Gabriel Hugh Elkaim Abstract In this paper we present two path planning algorithms based

More information

3.1 Interpolation and the Lagrange Polynomial

3.1 Interpolation and the Lagrange Polynomial MATH 4073 Chapter 3 Interpolation and Polynomial Approximation Fall 2003 1 Consider a sample x x 0 x 1 x n y y 0 y 1 y n. Can we get a function out of discrete data above that gives a reasonable estimate

More information

A technique for DDA seed shifting and scaling

A technique for DDA seed shifting and scaling A technique for DDA seed shifting and scaling John Kerl Feb 8, 2001 Abstract This paper describes a simple, unified technique for DDA seed shifting and scaling. As well, the terms DDA, seed, shifting and

More information

2. Polynomial interpolation

2. Polynomial interpolation 2. Polynomial interpolation Contents 2. POLYNOMIAL INTERPOLATION... 1 2.1 TYPES OF INTERPOLATION... 1 2.2 LAGRANGE ONE-DIMENSIONAL INTERPOLATION... 2 2.3 NATURAL COORDINATES*... 15 2.4 HERMITE ONE-DIMENSIONAL

More information

MTH301 Calculus II Glossary For Final Term Exam Preparation

MTH301 Calculus II Glossary For Final Term Exam Preparation MTH301 Calculus II Glossary For Final Term Exam Preparation Glossary Absolute maximum : The output value of the highest point on a graph over a given input interval or over all possible input values. An

More information

Homework 5: Sampling and Geometry

Homework 5: Sampling and Geometry Homework 5: Sampling and Geometry Introduction to Computer Graphics and Imaging (Summer 2012), Stanford University Due Monday, August 6, 11:59pm You ll notice that this problem set is a few more pages

More information

Robotics I. June 6, 2017

Robotics I. June 6, 2017 Robotics I June 6, 217 Exercise 1 Consider the planar PRPR manipulator in Fig. 1. The joint variables defined therein are those used by the manufacturer and do not correspond necessarily to a Denavit-Hartenberg

More information