Introduction to Computer Graphics. Modeling (1) April 13, 2017 Kenshi Takayama

Size: px
Start display at page:

Download "Introduction to Computer Graphics. Modeling (1) April 13, 2017 Kenshi Takayama"

Transcription

1 Introduction to Computer Graphics Modeling (1) April 13, 2017 Kenshi Takayama

2 Parametric curves X & Y coordinates defined by parameter t ( time) Example: Cycloid x t = t sin t y t = 1 cos t Tangent (aka. derivative, gradient) vector: x t, y t Polynomial curve: x t = i a i t i 2

3 Cubic Hermite curves Cubic polynomial curve interpolating derivative constraints at both ends (Hermite interpolation) x 0 = x 0 x 1 = x 1 x (0) = x 0 x 1 = x 1 x 0 1 t 4 constraints 4 DoF needed 4 coefficients cubic x t = a 0 + a 1 t + a 2 t 2 + a 3 t 3 x t = a 1 + 2a 2 t + 3a 3 t 2 Coeffs determined by substituting constrained values & derivatives x 0 = a 0 = x 0 x 1 = a 0 + a 1 + a 2 + a 3 = x 1 x 0 = a 1 = x 0 x 1 = a a a 3 = x 1 a 0 = x 0 a 1 = x 0 a 2 = 3 x x 1 2 x 0 x 1 a 3 = 2 x 0 2 x 1 + x 0 + x 1 3

4 Bezier curves Input: 3 control points P 0, P 1, P 2 Coordinates of points in arbitrary domain (2D, 3D,...) Output: Curve P t satisfying P 0 = P 0 P 1 = P 2 while being pulled by P 1 P 0 t=0 P 1 P t =? Eq. of Bezier curve P 2 t=1 P t = 1 t P 0 + t P 2 Eq. of line segment 4

5 P 1 Bezier curves 1 t t Eq. of line P 12 t P 01 t = 1 t P 0 + t P 1 P 12 t = 1 t P 1 + t P 2 P 01 0 = P 0 P 12 1 = P 2 Eq. of line P 01 t t P 0 t 1 t P 012 t 1 t P 2 Idea: Interpolate the interpolation As t changes 0 1, smoothly transition from P 01 to P 12 P 012 t = 1 t P 01 t + t P 12 t = 1 t 1 t P 0 + t P 1 + t 1 t P 1 + t P 2 = 1 t 2 P 0 + 2t 1 t P 1 + t 2 P 2 Quadratic Bezier curve 5

6 Bezier curves P 1 P 01 t = 1 t P 0 + t P 1 P 12 t = 1 t P 1 + t P 2 P 01 0 = P 0 P 12 1 = P 2 P 0 P 2 Idea: Interpolate the interpolation As t changes 0 1, smoothly transition from P 01 to P 12 P 012 t = 1 t P 01 t + t P 12 t = 1 t 1 t P 0 + t P 1 + t 1 t P 1 + t P 2 = 1 t 2 P 0 + 2t 1 t P 1 + t 2 P 2 Quadratic Bezier curve 6

7 Cubic Bezier curve Quad. Bezier P 123 t P 2 Exact same idea applied to 4 points P 0, P 1, P 2 P 3 : As t changes 0 1, transition from P 012 to P 123 P 012 t P 1 Quad. Bezier t 1 t P 0123 t P 3 P 0123 t = 1 t P 012 t + t P 123 t P 0 = 1 t 1 t 2 P 0 + 2t 1 t P 1 + t 2 P 2 + t 1 t 2 P 1 + 2t 1 t P 2 + t 2 P 3 = 1 t 3 P 0 + 3t 1 t 2 P 1 + 3t 2 1 t P 2 + t 3 P 3 Cubic Bezier curve 7

8 Cubic Bezier curve Exact same idea applied to 4 points P 0, P 1, P 2 P 3 : P 1 P 2 As t changes 0 1, transition from P 012 to P 123 P 0123 t P 3 P 0123 t = 1 t P 012 t + t P 123 t P 0 = 1 t 1 t 2 P 0 + 2t 1 t P 1 + t 2 P 2 + t 1 t 2 P 1 + 2t 1 t P 2 + t 2 P 3 = 1 t 3 P 0 + 3t 1 t 2 P 1 + 3t 2 1 t P 2 + t 3 P 3 Cubic Bezier curve Can easily control tangent at endpoints ubiquitously used in CG 8

9 n-th order Bezier curve Input: n+1 control points P 0,, P n P t = n i=0 nc i t i 1 t n i P i b i n (t) Bernstein basis function 1 t 4 P 0 + Quartic (4 th ) Quintic (5 th ) 4t 1 t 3 P 1 + 6t 2 1 t 2 P 2 + 4t 3 1 t P 3 + t 4 P 4 1 t 5 P 0 + 5t 1 t 4 P t 2 1 t 3 P t 3 1 t 2 P 3 + 5t 4 1 t P 4 + t 5 P 5 9

10 Cubic Bezier curves & cubic Hermite curves Cubic Bezier curve & its derivative: P t = 1 t 3 P 0 + 3t 1 t 2 P 1 + 3t 2 1 t P 2 + t 3 P 3 P (t) = 3 1 t 2 P t 2 2t(1 t) P t 1 t t 2 P 2 + 3t 2 P 3 Derivatives at endpoints: P 0 = 3P 0 + 3P 1 P 1 = P P 0 P 1 = 3P 2 + 3P 3 P 2 = P P 1 P (0) P 2 P 1 P 3 Different ways of looking at cubic curves, essentially the same P 0 P (1) 10

11 Evaluating Bezier curves Method 1: Direct evaluation of polynomials Simple & fast, could be numerically unstable Method 2: de Casteljau s algorithm Directly after the recursive definition of Bezier curves More computation steps, numerically stable Also useful for splitting Bezier curves 11

12 Drawing Bezier curves In the end, everything is drawn as polyline Main question: How to sample paramter t? Method 1: Uniform sampling Simple Potentially insufficient sampling density Method 2: Adaptive sampling If control points deviate too much from straight line, split by de Casteljau s algorithm 12

13 Further control: Rational Bezier curve Another view on Bezier curve: Weighted average of control points w 0 = w 2 = 1 P 012 t = 1 t 2 P 0 + 2t 1 t P 1 + t 2 P 2 = λ 0 t P 0 + λ 1 t P 1 + λ 2 t P 2 Important property: partition of unity λ 0 t + λ 1 t + λ 2 t = 1 t Multiply each λ i t by arbitrary coeff w i : ξ i t = w i λ i (t) Normalize to obtain new weights: λ i t = ξ i t j ξ j t Non-polynomial curve can represent arcs etc. 13

14 Cubic splines x x 0 (t) x 1 (t) x 2 (t) x 3 (t) x 4 (t) Series of connected cubic curves Piecewise-polynomial Share value & derivative at every transition of intervals (C 1 continuity) t 0 t 1 t 2 t 3 t 4 t 5 t Parameter range can be other than [0, 1] Assumption: t k < t k+1 Given values as only input, we want to automatically set derivatives Curve tool in PowerPoint 14

15 Cubic Catmull-Rom spline Cubic function x k (t) for range t k t t k+1 is defined by adjacent constrained values x k 1, x k, x k+1, x k+2 x x k+1 x k 1 x k (t) x k+2 x k t k 1 t k t k+1 t k+2 t 15

16 Cubic Catmull-Rom spline: Step 1 As t k t k+1, interpolate such that x k x k+1 Line l k (t) = 1 t t k t k+1 t k x k + t t k t k+1 t k x k+1 x l k 1 (t) l k (t) l k+1 (t) t k 1 t k t k+1 t k+2 t 16

17 Cubic Catmull-Rom spline: Step 2 As t k 1 t k+1, interpolate such that l k 1 l k Quadratic curve q k (t) = 1 t t k 1 t k+1 t k 1 l k 1 (t) + t t k 1 t k+1 t k 1 l k (t) Passes through 3 points t k 1, x k 1, t k, x k, t k+1, x k+1 x q k (t) q k+1 (t) t k 1 t k t k+1 t k+2 t 17

18 Cubic Catmull-Rom spline: Step 3 As t k t k+1, interpolate such that q k q k+1 Cubic curve x k t = 1 t t k t k+1 t k q k t + t t k t k+1 t k q k+1 (t) x x k (t) Summary: Derivative at each CP is defined by a quadratic curve passing through its adjacent CPs Each interval is a cubic curve satisfying derivative constraints at both ends t k 1 t k t k+1 t k+2 t 18

19 Evaluating cubic Catmull-Rom spline P t 3 = P 3 P t 1 = P 1 P t t 1 t t 2 P t 2 = P 2 P t 0 = P 0 A recursive evaluation algorithm for a class of Catmull-Rom splines [Barry,Colgman,SIGGRAPH88] 19

20 Ways of setting parameter values t k (aka. knot sequence) Assume: t 0 = 0 Uniform t k = t k Chordal t k = t k 1 + P k 1 P k Centripetal t k = t k 1 + P k 1 P k Parameterization of Catmull-Rom Curves [Yuksel,Schaefer,Keyser,CAD11] 20

21 Application of cubic Catmull-Rom spline: Hair modeling Parameterization of Catmull-Rom Curves [Yuksel,Schaefer,Keyser,CAD11] 21

22 B-spline Another way of defining polynomial spline Represent curve as sum of basis functions Cubic basis is the most commonly used Deeply related to subdivision surfaces Next lecture Non-Uniform Rational B-Spline Non-Uniform = varying spacing of knots (t k ) Rational = arbitrary weights for CPs (Complex stuff, not covered) Cool Flash demo: 22

23 Parametric surfaces One parameter Curve P(t) Two parameters Surface P s, t Cubic Bezier surface: Input: 4 4=16 control points P ij P s, t = 3 i=0 3 j=0 b i 3 s b j 3 t P ij Bernstein basis functions b 3 0 t = 1 t 3 b 3 1 t = 3t 1 t 2 b 3 2 t = 3t 2 (1 t) b 3 3 t = t 3 23

24 3D modeling using parametric surface patches Pros Can compactly represent smooth surfaces Can accurately represent spheres, cones, etc Cons Hard to design nice layout of patches Hard to maintain continuity across patches Often used for designing man-made objects consisting of simple parts 24

25 Pointers FypAv29dG4 e 25

Curves. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Taku Komura

Curves. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Taku Komura Curves Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Taku Komura How to create a virtual world? To compose scenes We need to define objects

More information

Arsène Pérard-Gayot (Slides by Piotr Danilewski)

Arsène Pérard-Gayot (Slides by Piotr Danilewski) Computer Graphics - Splines - Arsène Pérard-Gayot (Slides by Piotr Danilewski) CURVES Curves Explicit y = f x f: R R γ = x, f x y = 1 x 2 Implicit F x, y = 0 F: R 2 R γ = x, y : F x, y = 0 x 2 + y 2 =

More information

Bézier Curves and Splines

Bézier Curves and Splines CS-C3100 Computer Graphics Bézier Curves and Splines Majority of slides from Frédo Durand vectorportal.com CS-C3100 Fall 2017 Lehtinen Before We Begin Anything on your mind concerning Assignment 1? CS-C3100

More information

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier Modeling Creating 3D objects How to construct complicated surfaces? Goal Specify objects with few control points Resulting object should be visually

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 2 Today Curves Introduction Polynomial curves Bézier curves Drawing Bézier curves Piecewise curves Modeling Creating 3D objects How to construct

More information

Keyframing. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University

Keyframing. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Keyframing CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Keyframing in traditional animation Master animator draws key frames Apprentice fills in the in-between frames Keyframing

More information

Interpolation and polynomial approximation Interpolation

Interpolation and polynomial approximation Interpolation Outline Interpolation and polynomial approximation Interpolation Lagrange Cubic Splines Approximation B-Splines 1 Outline Approximation B-Splines We still focus on curves for the moment. 2 3 Pierre Bézier

More information

Lecture 20: Bezier Curves & Splines

Lecture 20: Bezier Curves & Splines Lecture 20: Bezier Curves & Splines December 6, 2016 12/6/16 CSU CS410 Bruce Draper & J. Ross Beveridge 1 Review: The Pen Metaphore Think of putting a pen to paper Pen position described by time t Seeing

More information

CSE 167: Lecture 11: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture 11: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture 11: Bézier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #5 due Nov. 9 th at 1:30pm

More information

The Essentials of CAGD

The Essentials of CAGD The Essentials of CAGD Chapter 4: Bézier Curves: Cubic and Beyond Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd c 2000

More information

MAT300/500 Programming Project Spring 2019

MAT300/500 Programming Project Spring 2019 MAT300/500 Programming Project Spring 2019 Please submit all project parts on the Moodle page for MAT300 or MAT500. Due dates are listed on the syllabus and the Moodle site. You should include all neccessary

More information

MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs

MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs David L. Finn December 9th, 2004 We now start considering the basic curve elements to be used throughout this course; polynomial curves and

More information

Bernstein polynomials of degree N are defined by

Bernstein polynomials of degree N are defined by SEC. 5.5 BÉZIER CURVES 309 5.5 Bézier Curves Pierre Bézier at Renault and Paul de Casteljau at Citroën independently developed the Bézier curve for CAD/CAM operations, in the 1970s. These parametrically

More information

On-Line Geometric Modeling Notes

On-Line Geometric Modeling Notes On-Line Geometric Modeling Notes CUBIC BÉZIER CURVES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview The Bézier curve representation

More information

M2R IVR, October 12th Mathematical tools 1 - Session 2

M2R IVR, October 12th Mathematical tools 1 - Session 2 Mathematical tools 1 Session 2 Franck HÉTROY M2R IVR, October 12th 2006 First session reminder Basic definitions Motivation: interpolate or approximate an ordered list of 2D points P i n Definition: spline

More information

Lecture 23: Hermite and Bezier Curves

Lecture 23: Hermite and Bezier Curves Lecture 23: Hermite and Bezier Curves November 16, 2017 11/16/17 CSU CS410 Fall 2017, Ross Beveridge & Bruce Draper 1 Representing Curved Objects So far we ve seen Polygonal objects (triangles) and Spheres

More information

Lagrange Interpolation and Neville s Algorithm. Ron Goldman Department of Computer Science Rice University

Lagrange Interpolation and Neville s Algorithm. Ron Goldman Department of Computer Science Rice University Lagrange Interpolation and Neville s Algorithm Ron Goldman Department of Computer Science Rice University Tension between Mathematics and Engineering 1. How do Mathematicians actually represent curves

More information

Reading. w Foley, Section 11.2 Optional

Reading. w Foley, Section 11.2 Optional Parametric Curves w Foley, Section.2 Optional Reading w Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 987. w Farin. Curves and Surfaces for

More information

Curves, Surfaces and Segments, Patches

Curves, Surfaces and Segments, Patches Curves, Surfaces and Segments, atches The University of Texas at Austin Conics: Curves and Quadrics: Surfaces Implicit form arametric form Rational Bézier Forms and Join Continuity Recursive Subdivision

More information

Approximation of Circular Arcs by Parametric Polynomials

Approximation of Circular Arcs by Parametric Polynomials Approximation of Circular Arcs by Parametric Polynomials Emil Žagar Lecture on Geometric Modelling at Charles University in Prague December 6th 2017 1 / 44 Outline Introduction Standard Reprezentations

More information

Introduction to Curves. Modelling. 3D Models. Points. Lines. Polygons Defined by a sequence of lines Defined by a list of ordered points

Introduction to Curves. Modelling. 3D Models. Points. Lines. Polygons Defined by a sequence of lines Defined by a list of ordered points Introduction to Curves Modelling Points Defined by 2D or 3D coordinates Lines Defined by a set of 2 points Polygons Defined by a sequence of lines Defined by a list of ordered points 3D Models Triangular

More information

CGT 511. Curves. Curves. Curves. What is a curve? 2) A continuous map of a 1D space to an nd space

CGT 511. Curves. Curves. Curves. What is a curve? 2) A continuous map of a 1D space to an nd space Curves CGT 511 Curves Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology What is a curve? Mathematical ldefinition i i is a bit complex 1) The continuous o image of an interval

More information

Cubic Splines; Bézier Curves

Cubic Splines; Bézier Curves Cubic Splines; Bézier Curves 1 Cubic Splines piecewise approximation with cubic polynomials conditions on the coefficients of the splines 2 Bézier Curves computer-aided design and manufacturing MCS 471

More information

Interpolation and polynomial approximation Interpolation

Interpolation and polynomial approximation Interpolation Outline Interpolation and polynomial approximation Interpolation Lagrange Cubic Approximation Bézier curves B- 1 Some vocabulary (again ;) Control point : Geometric point that serves as support to the

More information

Computer Graphics Keyframing and Interpola8on

Computer Graphics Keyframing and Interpola8on Computer Graphics Keyframing and Interpola8on This Lecture Keyframing and Interpola2on two topics you are already familiar with from your Blender modeling and anima2on of a robot arm Interpola2on linear

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

Sample Exam 1 KEY NAME: 1. CS 557 Sample Exam 1 KEY. These are some sample problems taken from exams in previous years. roughly ten questions.

Sample Exam 1 KEY NAME: 1. CS 557 Sample Exam 1 KEY. These are some sample problems taken from exams in previous years. roughly ten questions. Sample Exam 1 KEY NAME: 1 CS 557 Sample Exam 1 KEY These are some sample problems taken from exams in previous years. roughly ten questions. Your exam will have 1. (0 points) Circle T or T T Any curve

More information

Computer Aided Design. B-Splines

Computer Aided Design. B-Splines 1 Three useful references : R. Bartels, J.C. Beatty, B. A. Barsky, An introduction to Splines for use in Computer Graphics and Geometric Modeling, Morgan Kaufmann Publications,1987 JC.Léon, Modélisation

More information

Math 660-Lecture 15: Finite element spaces (I)

Math 660-Lecture 15: Finite element spaces (I) Math 660-Lecture 15: Finite element spaces (I) (Chapter 3, 4.2, 4.3) Before we introduce the concrete spaces, let s first of all introduce the following important lemma. Theorem 1. Let V h consists of

More information

Animation Curves and Splines 1

Animation Curves and Splines 1 Animation Curves and Splines 1 Animation Homework Set up a simple avatar E.g. cube/sphere (or square/circle if 2D) Specify some key frames (positions/orientations) Associate a time with each key frame

More information

1.1. The analytical denition. Denition. The Bernstein polynomials of degree n are dened analytically:

1.1. The analytical denition. Denition. The Bernstein polynomials of degree n are dened analytically: DEGREE REDUCTION OF BÉZIER CURVES DAVE MORGAN Abstract. This paper opens with a description of Bézier curves. Then, techniques for the degree reduction of Bézier curves, along with a discussion of error

More information

Extrapolation Methods for Approximating Arc Length and Surface Area

Extrapolation Methods for Approximating Arc Length and Surface Area Extrapolation Methods for Approximating Arc Length and Surface Area Michael S. Floater, Atgeirr F. Rasmussen and Ulrich Reif March 2, 27 Abstract A well-known method of estimating the length of a parametric

More information

Chapter 1 Numerical approximation of data : interpolation, least squares method

Chapter 1 Numerical approximation of data : interpolation, least squares method Chapter 1 Numerical approximation of data : interpolation, least squares method I. Motivation 1 Approximation of functions Evaluation of a function Which functions (f : R R) can be effectively evaluated

More information

Geometric Lagrange Interpolation by Planar Cubic Pythagorean-hodograph Curves

Geometric Lagrange Interpolation by Planar Cubic Pythagorean-hodograph Curves Geometric Lagrange Interpolation by Planar Cubic Pythagorean-hodograph Curves Gašper Jaklič a,c, Jernej Kozak a,b, Marjeta Krajnc b, Vito Vitrih c, Emil Žagar a,b, a FMF, University of Ljubljana, Jadranska

More information

Q(s, t) = S M = S M [ G 1 (t) G 2 (t) G 3 1(t) G 4 (t) ] T

Q(s, t) = S M = S M [ G 1 (t) G 2 (t) G 3 1(t) G 4 (t) ] T Curves an Surfaces: Parametric Bicubic Surfaces - Intro Surfaces are generalizations of curves Use s in place of t in parametric equation: Q(s) = S M G where S equivalent to T in Q(t) = T M G If G is parameterize

More information

Computational Physics

Computational Physics Interpolation, Extrapolation & Polynomial Approximation Lectures based on course notes by Pablo Laguna and Kostas Kokkotas revamped by Deirdre Shoemaker Spring 2014 Introduction In many cases, a function

More information

Planar interpolation with a pair of rational spirals T. N. T. Goodman 1 and D. S. Meek 2

Planar interpolation with a pair of rational spirals T. N. T. Goodman 1 and D. S. Meek 2 Planar interpolation with a pair of rational spirals T N T Goodman and D S Meek Abstract Spirals are curves of one-signed monotone increasing or decreasing curvature Spiral segments are fair curves with

More information

Visualizing Bezier s curves: some applications of Dynamic System Geogebra

Visualizing Bezier s curves: some applications of Dynamic System Geogebra Visualizing Bezier s curves: some applications of Dynamic System Geogebra Francisco Regis Vieira Alves Instituto Federal de Educação, Ciência e Tecnologia do Estado do Ceará IFCE. Brazil fregis@ifce.edu.br

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Interpolation with quintic Powell-Sabin splines Hendrik Speleers Report TW 583, January 2011 Katholieke Universiteit Leuven Department of Computer Science Celestijnenlaan 200A B-3001 Heverlee (Belgium)

More information

CS 536 Computer Graphics NURBS Drawing Week 4, Lecture 6

CS 536 Computer Graphics NURBS Drawing Week 4, Lecture 6 CS 536 Computer Graphics NURBS Drawing Week 4, Lecture 6 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 Outline Conic Sections via NURBS Knot insertion

More information

Lecture 20: Lagrange Interpolation and Neville s Algorithm. for I will pass through thee, saith the LORD. Amos 5:17

Lecture 20: Lagrange Interpolation and Neville s Algorithm. for I will pass through thee, saith the LORD. Amos 5:17 Lecture 20: Lagrange Interpolation and Neville s Algorithm for I will pass through thee, saith the LORD. Amos 5:17 1. Introduction Perhaps the easiest way to describe a shape is to select some points on

More information

An O(h 2n ) Hermite approximation for conic sections

An O(h 2n ) Hermite approximation for conic sections An O(h 2n ) Hermite approximation for conic sections Michael Floater SINTEF P.O. Box 124, Blindern 0314 Oslo, NORWAY November 1994, Revised March 1996 Abstract. Given a segment of a conic section in the

More information

Curve Fitting: Fertilizer, Fonts, and Ferraris

Curve Fitting: Fertilizer, Fonts, and Ferraris Curve Fitting: Fertilizer, Fonts, and Ferraris Is that polynomial a model or just a pretty curve? 22 nd CMC3-South Annual Conference March 3, 2007 Anaheim, CA Katherine Yoshiwara Bruce Yoshiwara Los Angeles

More information

CONTROL POLYGONS FOR CUBIC CURVES

CONTROL POLYGONS FOR CUBIC CURVES On-Line Geometric Modeling Notes CONTROL POLYGONS FOR CUBIC CURVES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview B-Spline

More information

1 Roots of polynomials

1 Roots of polynomials CS348a: Computer Graphics Handout #18 Geometric Modeling Original Handout #13 Stanford University Tuesday, 9 November 1993 Original Lecture #5: 14th October 1993 Topics: Polynomials Scribe: Mark P Kust

More information

MA 323 Geometric Modelling Course Notes: Day 12 de Casteljau s Algorithm and Subdivision

MA 323 Geometric Modelling Course Notes: Day 12 de Casteljau s Algorithm and Subdivision MA 323 Geometric Modelling Course Notes: Day 12 de Casteljau s Algorithm and Subdivision David L. Finn Yesterday, we introduced barycentric coordinates and de Casteljau s algorithm. Today, we want to go

More information

Smooth Path Generation Based on Bézier Curves for Autonomous Vehicles

Smooth Path Generation Based on Bézier Curves for Autonomous Vehicles Smooth Path Generation Based on Bézier Curves for Autonomous Vehicles Ji-wung Choi, Renwick E. Curry, Gabriel Hugh Elkaim Abstract In this paper we present two path planning algorithms based on Bézier

More information

G-code and PH curves in CNC Manufacturing

G-code and PH curves in CNC Manufacturing G-code and PH curves in CNC Manufacturing Zbyněk Šír Institute of Applied Geometry, JKU Linz The research was supported through grant P17387-N12 of the Austrian Science Fund (FWF). Talk overview Motivation

More information

MA 323 Geometric Modelling Course Notes: Day 20 Curvature and G 2 Bezier splines

MA 323 Geometric Modelling Course Notes: Day 20 Curvature and G 2 Bezier splines MA 323 Geometric Modelling Course Notes: Day 20 Curvature and G 2 Bezier splines David L. Finn Yesterday, we introduced the notion of curvature and how it plays a role formally in the description of curves,

More information

Hermite Interpolation with Euclidean Pythagorean Hodograph Curves

Hermite Interpolation with Euclidean Pythagorean Hodograph Curves Hermite Interpolation with Euclidean Pythagorean Hodograph Curves Zbyněk Šír Faculty of Mathematics and Physics, Charles University in Prague Sokolovská 83, 86 75 Praha 8 zbynek.sir@mff.cuni.cz Abstract.

More information

Lecture 10 Polynomial interpolation

Lecture 10 Polynomial interpolation Lecture 10 Polynomial interpolation Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information

Section September 6, If n = 3, 4, 5,..., the polynomial is called a cubic, quartic, quintic, etc.

Section September 6, If n = 3, 4, 5,..., the polynomial is called a cubic, quartic, quintic, etc. Section 2.1-2.2 September 6, 2017 1 Polynomials Definition. A polynomial is an expression of the form a n x n + a n 1 x n 1 + + a 1 x + a 0 where each a 0, a 1,, a n are real numbers, a n 0, and n is a

More information

SPLINE INTERPOLATION

SPLINE INTERPOLATION Spline Background SPLINE INTERPOLATION Problem: high degree interpolating polynomials often have extra oscillations. Example: Runge function f(x = 1 1+4x 2, x [ 1, 1]. 1 1/(1+4x 2 and P 8 (x and P 16 (x

More information

Scientific Computing

Scientific Computing 2301678 Scientific Computing Chapter 2 Interpolation and Approximation Paisan Nakmahachalasint Paisan.N@chula.ac.th Chapter 2 Interpolation and Approximation p. 1/66 Contents 1. Polynomial interpolation

More information

Geometric meanings of the parameters on rational conic segments

Geometric meanings of the parameters on rational conic segments Science in China Ser. A Mathematics 005 Vol.48 No.9 09 09 Geometric meanings of the parameters on rational conic segments HU Qianqian & WANG Guojin Department of Mathematics, Zhejiang University, Hangzhou

More information

Curve Fitting. 1 Interpolation. 2 Composite Fitting. 1.1 Fitting f(x) 1.2 Hermite interpolation. 2.1 Parabolic and Cubic Splines

Curve Fitting. 1 Interpolation. 2 Composite Fitting. 1.1 Fitting f(x) 1.2 Hermite interpolation. 2.1 Parabolic and Cubic Splines Curve Fitting Why do we want to curve fit? In general, we fit data points to produce a smooth representation of the system whose response generated the data points We do this for a variety of reasons 1

More information

Subdivision Matrices and Iterated Function Systems for Parametric Interval Bezier Curves

Subdivision Matrices and Iterated Function Systems for Parametric Interval Bezier Curves International Journal of Video&Image Processing Network Security IJVIPNS-IJENS Vol:7 No:0 Subdivision Matrices Iterated Function Systems for Parametric Interval Bezier Curves O. Ismail, Senior Member,

More information

Pythagorean-hodograph curves

Pythagorean-hodograph curves 1 / 24 Pythagorean-hodograph curves V. Vitrih Raziskovalni matematični seminar 20. 2. 2012 2 / 24 1 2 3 4 5 3 / 24 Let r : [a, b] R 2 be a planar polynomial parametric curve ( ) x(t) r(t) =, y(t) where

More information

Geometric Interpolation by Planar Cubic Polynomials

Geometric Interpolation by Planar Cubic Polynomials 1 / 20 Geometric Interpolation by Planar Cubic Polynomials Jernej Kozak, Marjeta Krajnc Faculty of Mathematics and Physics University of Ljubljana Institute of Mathematics, Physics and Mechanics Avignon,

More information

Curve Fitting and Interpolation

Curve Fitting and Interpolation Chapter 5 Curve Fitting and Interpolation 5.1 Basic Concepts Consider a set of (x, y) data pairs (points) collected during an experiment, Curve fitting: is a procedure to develop or evaluate mathematical

More information

polynomial function polynomial function of degree n leading coefficient leading-term test quartic function turning point

polynomial function polynomial function of degree n leading coefficient leading-term test quartic function turning point polynomial function polynomial function of degree n leading coefficient leading-term test quartic function turning point quadratic form repeated zero multiplicity Graph Transformations of Monomial Functions

More information

There is a unique function s(x) that has the required properties. It turns out to also satisfy

There is a unique function s(x) that has the required properties. It turns out to also satisfy Numerical Analysis Grinshpan Natural Cubic Spline Let,, n be given nodes (strictly increasing) and let y,, y n be given values (arbitrary) Our goal is to produce a function s() with the following properties:

More information

Continuous Curvature Path Generation Based on Bézier Curves for Autonomous Vehicles

Continuous Curvature Path Generation Based on Bézier Curves for Autonomous Vehicles Continuous Curvature Path Generation Based on Bézier Curves for Autonomous Vehicles Ji-wung Choi, Renwick E. Curry, Gabriel Hugh Elkaim Abstract In this paper we present two path planning algorithms based

More information

G 1 Hermite Interpolation by Minkowski Pythagorean Hodograph Cubics

G 1 Hermite Interpolation by Minkowski Pythagorean Hodograph Cubics G 1 Hermite Interpolation by Minkowski Pythagorean Hodograph Cubics Jiří Kosinka and Bert Jüttler Johannes Kepler University, Institute of Applied Geometry, Altenberger Str. 69, A 4040 Linz, Austria Abstract

More information

Isogeometric Analysis with Geometrically Continuous Functions on Two-Patch Geometries

Isogeometric Analysis with Geometrically Continuous Functions on Two-Patch Geometries Isogeometric Analysis with Geometrically Continuous Functions on Two-Patch Geometries Mario Kapl a Vito Vitrih b Bert Jüttler a Katharina Birner a a Institute of Applied Geometry Johannes Kepler University

More information

1 Review of Interpolation using Cubic Splines

1 Review of Interpolation using Cubic Splines cs412: introduction to numerical analysis 10/10/06 Lecture 12: Instructor: Professor Amos Ron Cubic Hermite Spline Interpolation Scribes: Yunpeng Li, Mark Cowlishaw 1 Review of Interpolation using Cubic

More information

Interpolation Theory

Interpolation Theory Numerical Analysis Massoud Malek Interpolation Theory The concept of interpolation is to select a function P (x) from a given class of functions in such a way that the graph of y P (x) passes through the

More information

Spiral spline interpolation to a planar spiral

Spiral spline interpolation to a planar spiral Spiral spline interpolation to a planar spiral Zulfiqar Habib Department of Mathematics and Computer Science, Graduate School of Science and Engineering, Kagoshima University Manabu Sakai Department of

More information

CHAPTER 4. Interpolation

CHAPTER 4. Interpolation CHAPTER 4 Interpolation 4.1. Introduction We will cover sections 4.1 through 4.12 in the book. Read section 4.1 in the book on your own. The basic problem of one-dimensional interpolation is this: Given

More information

November 20, Interpolation, Extrapolation & Polynomial Approximation

November 20, Interpolation, Extrapolation & Polynomial Approximation Interpolation, Extrapolation & Polynomial Approximation November 20, 2016 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic

More information

Threshold Autoregressions and NonLinear Autoregressions

Threshold Autoregressions and NonLinear Autoregressions Threshold Autoregressions and NonLinear Autoregressions Original Presentation: Central Bank of Chile October 29-31, 2013 Bruce Hansen (University of Wisconsin) Threshold Regression 1 / 47 Threshold Models

More information

EXPLICIT ERROR BOUND FOR QUADRATIC SPLINE APPROXIMATION OF CUBIC SPLINE

EXPLICIT ERROR BOUND FOR QUADRATIC SPLINE APPROXIMATION OF CUBIC SPLINE J. KSIAM Vol.13, No.4, 257 265, 2009 EXPLICIT ERROR BOUND FOR QUADRATIC SPLINE APPROXIMATION OF CUBIC SPLINE YEON SOO KIM 1 AND YOUNG JOON AHN 2 1 DEPT OF MATHEMATICS, AJOU UNIVERSITY, SUWON, 442 749,

More information

Interpolation and Deformations A short cookbook

Interpolation and Deformations A short cookbook Interpolation and Deformations A short cookbook 600.445 Fall 2000; Updated: 29 September 205 Linear Interpolation p ρ 2 2 = [ 40 30 20] = 20 T p ρ = [ 0 5 20] = 5 p 3 = ρ3 =? 0?? T [ 20 20 20] T 2 600.445

More information

A Variational Model for Data Fitting on Manifolds by Minimizing the Acceleration of a Bézier Curve

A Variational Model for Data Fitting on Manifolds by Minimizing the Acceleration of a Bézier Curve A Variational Model for Data Fitting on Manifolds by Minimizing the Acceleration of a Bézier Curve Ronny Bergmann a Technische Universität Chemnitz Kolloquium, Department Mathematik, FAU Erlangen-Nürnberg,

More information

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines Cubic Splines MATH 375 J. Robert Buchanan Department of Mathematics Fall 2006 Introduction Given data {(x 0, f(x 0 )), (x 1, f(x 1 )),...,(x n, f(x n ))} which we wish to interpolate using a polynomial...

More information

Polynomial approximation and Splines

Polynomial approximation and Splines Polnomial approimation and Splines 1. Weierstrass approimation theorem The basic question we ll look at toda is how to approimate a complicated function f() with a simpler function P () f() P () for eample,

More information

Curvature variation minimizing cubic Hermite interpolants

Curvature variation minimizing cubic Hermite interpolants Curvature variation minimizing cubic Hermite interpolants Gašper Jaklič a,b, Emil Žagar,a a FMF and IMFM, University of Ljubljana, Jadranska 19, Ljubljana, Slovenia b PINT, University of Primorska, Muzejski

More information

Applied Math 205. Full office hour schedule:

Applied Math 205. Full office hour schedule: Applied Math 205 Full office hour schedule: Rui: Monday 3pm 4:30pm in the IACS lounge Martin: Monday 4:30pm 6pm in the IACS lounge Chris: Tuesday 1pm 3pm in Pierce Hall, Room 305 Nao: Tuesday 3pm 4:30pm

More information

Engineering 7: Introduction to computer programming for scientists and engineers

Engineering 7: Introduction to computer programming for scientists and engineers Engineering 7: Introduction to computer programming for scientists and engineers Interpolation Recap Polynomial interpolation Spline interpolation Regression and Interpolation: learning functions from

More information

G 2 Curve Design with Generalised Cornu Spiral

G 2 Curve Design with Generalised Cornu Spiral Menemui Matematik (Discovering Mathematics) Vol. 33, No. 1: 43 48 (11) G Curve Design with Generalised Cornu Spiral 1 Chan Chiu Ling, Jamaludin Md Ali School of Mathematical Science, Universiti Sains Malaysia,

More information

Input: A set (x i -yy i ) data. Output: Function value at arbitrary point x. What for x = 1.2?

Input: A set (x i -yy i ) data. Output: Function value at arbitrary point x. What for x = 1.2? Applied Numerical Analysis Interpolation Lecturer: Emad Fatemizadeh Interpolation Input: A set (x i -yy i ) data. Output: Function value at arbitrary point x. 0 1 4 1-3 3 9 What for x = 1.? Interpolation

More information

Interpolation and Deformations A short cookbook

Interpolation and Deformations A short cookbook Interpolation and Deformations A short cookbook 600.445 Fall 2000; Updated: 0 October 2002 Linear Interpolation p ρ 2 2 = [ 40 30 20] = 20 T p ρ = [ 0 5 20] = 5 p 3 = ρ3 =? 0?? T [ 20 20 20] T 2 600.445

More information

Lösning: Tenta Numerical Analysis för D, L. FMN011,

Lösning: Tenta Numerical Analysis för D, L. FMN011, Lösning: Tenta Numerical Analysis för D, L. FMN011, 090527 This exam starts at 8:00 and ends at 12:00. To get a passing grade for the course you need 35 points in this exam and an accumulated total (this

More information

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2.

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2. INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 = 0, x 1 = π/4, x

More information

Outline. 1 Interpolation. 2 Polynomial Interpolation. 3 Piecewise Polynomial Interpolation

Outline. 1 Interpolation. 2 Polynomial Interpolation. 3 Piecewise Polynomial Interpolation Outline Interpolation 1 Interpolation 2 3 Michael T. Heath Scientific Computing 2 / 56 Interpolation Motivation Choosing Interpolant Existence and Uniqueness Basic interpolation problem: for given data

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 7 Interpolation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

MTH301 Calculus II Glossary For Final Term Exam Preparation

MTH301 Calculus II Glossary For Final Term Exam Preparation MTH301 Calculus II Glossary For Final Term Exam Preparation Glossary Absolute maximum : The output value of the highest point on a graph over a given input interval or over all possible input values. An

More information

3.1 Interpolation and the Lagrange Polynomial

3.1 Interpolation and the Lagrange Polynomial MATH 4073 Chapter 3 Interpolation and Polynomial Approximation Fall 2003 1 Consider a sample x x 0 x 1 x n y y 0 y 1 y n. Can we get a function out of discrete data above that gives a reasonable estimate

More information

2 The De Casteljau algorithm revisited

2 The De Casteljau algorithm revisited A new geometric algorithm to generate spline curves Rui C. Rodrigues Departamento de Física e Matemática Instituto Superior de Engenharia 3030-199 Coimbra, Portugal ruicr@isec.pt F. Silva Leite Departamento

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

A Relationship Between Minimum Bending Energy and Degree Elevation for Bézier Curves

A Relationship Between Minimum Bending Energy and Degree Elevation for Bézier Curves A Relationship Between Minimum Bending Energy and Degree Elevation for Bézier Curves David Eberly, Geometric Tools, Redmond WA 9852 https://www.geometrictools.com/ This work is licensed under the Creative

More information

Home Page. Title Page. Contents. Bezier Curves. Milind Sohoni sohoni. Page 1 of 27. Go Back. Full Screen. Close.

Home Page. Title Page. Contents. Bezier Curves. Milind Sohoni  sohoni. Page 1 of 27. Go Back. Full Screen. Close. Bezier Curves Page 1 of 27 Milind Sohoni http://www.cse.iitb.ac.in/ sohoni Recall Lets recall a few things: 1. f : [0, 1] R is a function. 2. f 0,..., f i,..., f n are observations of f with f i = f( i

More information

+ 2gx + 2fy + c = 0 if S

+ 2gx + 2fy + c = 0 if S CIRCLE DEFINITIONS A circle is the locus of a point which moves in such a way that its distance from a fixed point, called the centre, is always a constant. The distance r from the centre is called the

More information

COS 424: Interacting with Data

COS 424: Interacting with Data COS 424: Interacting with Data Lecturer: Rob Schapire Lecture #14 Scribe: Zia Khan April 3, 2007 Recall from previous lecture that in regression we are trying to predict a real value given our data. Specically,

More information

Empirical Models Interpolation Polynomial Models

Empirical Models Interpolation Polynomial Models Mathematical Modeling Lia Vas Empirical Models Interpolation Polynomial Models Lagrange Polynomial. Recall that two points (x 1, y 1 ) and (x 2, y 2 ) determine a unique line y = ax + b passing them (obtained

More information

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Interpolation and Polynomial Approximation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 10, 2015 2 Contents 1.1 Introduction................................ 3 1.1.1

More information

We consider the problem of finding a polynomial that interpolates a given set of values:

We consider the problem of finding a polynomial that interpolates a given set of values: Chapter 5 Interpolation 5. Polynomial Interpolation We consider the problem of finding a polynomial that interpolates a given set of values: x x 0 x... x n y y 0 y... y n where the x i are all distinct.

More information

Automatic Control Motion planning

Automatic Control Motion planning Automatic Control Motion planning (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Motivations 2 Electric motors are used in many different applications,

More information

Q( t) = T C T =! " t 3,t 2,t,1# Q( t) T = C T T T. Announcements. Bezier Curves and Splines. Review: Third Order Curves. Review: Cubic Examples

Q( t) = T C T =!  t 3,t 2,t,1# Q( t) T = C T T T. Announcements. Bezier Curves and Splines. Review: Third Order Curves. Review: Cubic Examples Bezier Curves an Splines December 1, 2015 Announcements PA4 ue one week from toay Submit your most fun test cases, too! Infinitely thin planes with parallel sies μ oesn t matter Term Paper ue one week

More information