Bézier Curves and Splines

Size: px
Start display at page:

Download "Bézier Curves and Splines"

Transcription

1 CS-C3100 Computer Graphics Bézier Curves and Splines Majority of slides from Frédo Durand vectorportal.com CS-C3100 Fall 2017 Lehtinen

2 Before We Begin Anything on your mind concerning Assignment 1? CS-C3100 Fall 2017 Lehtinen 2

3 Today Curves in 2D Useful in their own right Provides basis for surface modeling (this Thursday) CS-C3100 Fall 2017 Lehtinen Guilherme Marconi

4 Modeling Curves in 2D How? CS-C3100 Fall 2017 Lehtinen 4

5 Modeling Curves in 2D Polylines Sequence of vertices connected by straight line segments Useful, but not for smooth curves Very easy! This is the representation that usually gets drawn in the end (smooth curves converted into these) Smooth curves How do we specify them? A little harder (but not too much) CS-C3100 Fall 2017 Lehtinen 5

6 Splines A type of smooth curve in the plane or in 3D Many uses 2D Illustration (e.g. Adobe Illustrator) Fonts 3D Modeling Animation: Trajectories In general: Interpolation and approximation ACM 1987 Principles of traditional animation applied CS-C3100 Fall 2017 Lehtinen to 3D computer animation 6

7 How Many Dimensions? CS-C3100 Fall 2017 Lehtinen 7

8 How Many Dimensions? This curve lies on the 2D plane, but is itself 1D. CS-C3100 Fall 2017 Lehtinen 8

9 How Many Dimensions? This curve lies on the 2D plane, but is itself 1D. CS-C3100 Fall 2017 Lehtinen You can just as well define 1D curves in 3D space. 9

10 Two Definitions of a Curve 1.A continuous 1D point set on the plane or space 2.A mapping from an interval S onto the plane That is, P(t) is the point of the curve at parameter t P : R S R 2, P(t) = x(t) y(t) Big differences It s easy to generate points on the curve from the 2nd The second definition can describe trajectories, the speed at which we move on the curve CS-C3100 Fall 2017 Lehtinen 10

11 Example of the First Definition? A continuous 1D point set on the plane or space A mapping from an interval S onto the plane That is, P(t) is the point of the curve at parameter t P : R S R 2, P(t) = x(t) y(t) CS-C3100 Fall 2017 Lehtinen 11

12 Example of the First Definition? A continuous 1D point set on the plane or space A mapping from an interval S onto the plane That is, P(t) is the point of the curve at parameter t P : R S R 2, P(t) = x(t) y(t) An algebraic curve, e.g. intersection of x 2 + y 2 + z 2 =1 and z =0 It s a circle on the xy plane :) CS-C3100 Fall 2017 Lehtinen 12

13 General Principle for Modeling User specifies control points We ll interpolate the control points by a smooth curve The curve is completely determined by the control points. I.e., we need an unambiguous rule that gives us the curve points given the control points. CS-C3100 Fall 2017 Lehtinen 13

14 Physical Splines See CS-C3100 Fall 2017 Lehtinen 14

15 Two Points of View Approximation/interpolation We have data points, how can we interpolate? Important in lots of applications, both graphics and non-graphics User interface/modeling What is an easy way to specify a smooth curve? Our main perspective today. celshader.com vectorportal.com CS-C3100 Fall 2017 Lehtinen 15

16 Splines Specified by a few control points Good for UI Good for storage Results in a smooth parametric curve P(t) Just means that we specify x(t) and y(t) In practice low-order polynomials chained together Convenient for animation, where t is time Convenient for tessellation because we can discretize t and approximate the curve with a polyline CS-C3100 Fall 2017 Lehtinen 16

17 Tessellation tn t1 t2 t0 CS-C3100 Fall 2017 Lehtinen 17

18 Tessellation tn t1 t2 t0 It s clear that adding more points will get us closer to the curve. CS-C3100 Fall 2017 Lehtinen 18

19 Interpolation vs. Approximation Interpolation Goes through all specified points Sounds more logical Approximation Does not go through all points Interpolation Approximation CS-C3100 Fall 2017 Lehtinen 19

20 Interpolation vs. Approximation Interpolation Goes through all specified points Sounds more logical But can be more unstable, ringing Approximation Does not go through all points Turns out to be convenient Interpolation In practice, we ll do something in between. Approximation CS-C3100 Fall 2017 Lehtinen 20

21 Questions? CS-C3100 Fall 2017 Lehtinen 21

22 Cubic Bézier Curve User specifies 4 control points P1... P4 Curve goes through (interpolates) the ends P1, P4 Approximates the two other ones Cubic polynomial CS-C3100 Fall 2017 Lehtinen 22

23 Cubic Bézier Curve P(t) = (1-t) 3 P 1 + 3t(1-t) 2 P 2 + 3t 2 (1-t) P 3 + t 3 P 4 That is, x(t) = (1 t) 3 x 1 + 3t(1 t) 2 x 2 + 3t 2 (1 t) x 3 + t 3 x 4 y(t) = (1 t) 3 y 1 + 3t(1 t) 2 y 2 + 3t 2 (1 t) y 3 + t 3 y 4 CS-C3100 Fall 2017 Lehtinen 23

24 Cubic Bézier Curve P(t) = (1-t) 3 P 1 + 3t(1-t) 2 P 2 + 3t 2 (1-t) P 3 + t 3 P 4 Scalar polynomials That is, Vectors with coordinates of control points x(t) = (1 t) 3 x 1 + 3t(1 t) 2 x 2 + 3t 2 (1 t) x 3 + t 3 x 4 y(t) = (1 t) 3 y 1 + 3t(1 t) 2 y 2 + 3t 2 (1 t) y 3 + t 3 y 4 CS-C3100 Fall 2017 Lehtinen 24

25 Cubic Bézier Curve P(t) = (1-t) 3 P 1 + 3t(1-t) 2 P 2 + 3t 2 (1-t) P 3 + t 3 P 4 Verify what happens for t=0 and t=1 CS-C3100 Fall 2017 Lehtinen 25

26 Cubic Bézier Curve 4 control points Curve passes through first & last control point Curve is tangent at P 1 to (P 1 -P 2 ) and at P 4 to (P 4 -P 3 ) A Bézier curve is bounded by the convex hull of its control points. CS-C3100 Fall 2017 Lehtinen 26

27 Cubic Bézier Curve 4 control points Curve passes through first & last control point Curve is tangent at P 1 to (P 1 -P 2 ) and at P 4 to (P 4 -P 3 ) A Bézier curve is bounded by the convex hull of its control points. CS-C3100 Fall 2017 Lehtinen 27

28 Bernstein Polynomials For cubic: B 1 (t)=(1-t) 3 B 2 (t)=3t(1-t) 2 B 3 (t)=3t 2 (1-t) B 4 (t)=t 3 (careful with indices, many authors start at 0) But defined for any degree CS-C3100 Fall 2017 Lehtinen 28

29 Properties of Bernstein polynomials 0 for all 0 t 1 Sum to 1 for every t called partition of unity (These two together are the reason why Bézier curves lie within convex hull) Only B 1 is non-zero at 0 B 1 + B 2 + B 3 + B 4 Bezier interpolates P 1 Same for B 4 and P 4 for t=1 CS-C3100 Fall 2017 Lehtinen 29

30 Bézier Curves P(t) = P 1 B 1 (t) + P 2 B 2 (t) + P 3 B 3 (t) + P 4 B 4 (t) P i are 2D control points (xi, yi) For each t, the point P(t) on a Bézier curve is a linear combination of the control points with weights given by the Bernstein polynomials at t CS-C3100 Fall 2017 Lehtinen 30

31 Interpretation as Influence Each B i specifies the influence of P i First, P 1 is the most influential point, then P 2, P 3, and P 4 P 2 and P 3 never have full influence Not interpolated! CS-C3100 Fall 2017 Lehtinen 31

32 Questions? CS-C3100 Fall 2017 Lehtinen 32

33 What s with the Formula? Explanation 1: Magic! Explanation 2: It s a linear combination of basis polynomials Let s study this in 1D using curves y=f(t) CS-C3100 Fall 2017 Lehtinen 33

34 Usual Vector Spaces In 3D, each vector has three components x, y, z But geometrically, each vector is actually the sum v = x i + y j + z k i, j, k are basis vectors j k i Vector addition: just add components Scalar multiplication: just multiply components CS-C3100 Fall 2017 Lehtinen 34

35 Polynomials as a Vector Space Polynomials Can be added: just add the coefficients y(t) =a 0 + a 1 t + a 2 t a n t n (y + z)(t) =(a 0 + b 0 )+(a 1 + b 1 )t + (a 2 + b 2 )t (a n + b n )t n Can be multiplied by a scalar: multiply the coefficients s y(t) = (s a 0 )+(s a 1 )t +(s a 2 )t (s a n )t n CS-C3100 Fall 2017 Lehtinen 35

36 Polynomials as a Vector Space In 3D, each vector has three components x, y, z But geometrically, each vector is actually the sum v = x i + y j + z k i, j, k are basis vectors j k i In the polynomial vector space, {1, t,..., t n } are the basis vectors, a0, a1,..., an are the components y(t) =a 0 + a 1 t + a 2 t a n t n CS-C3100 Fall 2017 Lehtinen 36

37 Polynomials as a Vector Space Polynomials are like vectors; you can add them and scale them, and the result is still a polynomial. Connections The flavor of math that is concerned with such things is called functional analysis. Many familiar concepts, such as orthogonality, carry over from ordinary n-d vectors to functions! Trivializes many difficult things like Fourier series by giving geometric analogue. Many other uses in graphics, e.g. finite element global illumination algorithms such as radiosity. THEVERYMANY CS-C3100 Fall 2017 Lehtinen 37

38 Questions? CS-C3100 Fall 2017 Lehtinen 38

39 Subset of Polynomials: Cubic y(t) =a 0 + a 1 t + a 2 t 2 + a 3 t 3 Closed under addition & scalar multiplication Means the result is still a cubic polynomial (verify!) Not under general multiplication: t 3 * t 3 = t 6! This means it is also a vector space, a 4D subspace of the full space of polynomials How many dimensions does the full space have? The x and y coordinates of cubic Bézier curves belong to this subspace as functions of t. CS-C3100 Fall 2017 Lehtinen 39

40 Basis for Cubic Polynomials More precisely: What s a basis? v = x i + y j + z k In 3D A set of atomic vectors Called basis vectors Linear combinations of basis vectors span the space Linearly independent Means that no basis vector can be obtained from the others by linear combination Example: i, j, i+j is not a basis (missing k direction!) j k i CS-C3100 Fall 2017 Lehtinen 40

41 Canonical Basis for Cubics 1 {1, t, t 2,t 3 } Any cubic polynomial is a linear combination of these: 1 t t 2 t a 0 + a 1 t + a 2 t 2 + a 3 t 3 = a 0 * 1+ a 1 * t + a 2 * t 2 + a 3 * t 3 They are linearly independent Means you can t write any of the four monomials as a a linear combination of the others. (You can try.) CS-C3100 Fall 2017 Lehtinen 41

42 Different basis 2D examples For example: {1, 1+t, 1+t+t 2, 1+t-t 2 +t 3 } {t 3, t 3 +t 2, t 3 +t, t 3 +1} These can all be obtained from 1, t, t 2,t 3 by linear combination Just like all bases for Euclidean space can be obtained by linear combinations of the canonical i, j, Infinite number of possibilities, just like you have an infinite number of bases to span R 2 CS-C3100 Fall 2017 Lehtinen 42

43 Why we bother: CS-C3100 Fall 2017 Lehtinen 43

44 Matrix-Vector Notation For Polynomials For example: 1, 1+t, 1+t+t 2, 1+t-t 2 +t 3 t 3, t 3 +t 2, t 3 +t, t 3 +1 These relationships hold for each value of t = t t t 3 t 3 t 3 + t 2 t 3 + t = t t 2 t t t 1+t + t 2 1+t t 2 + t 3 Change-of-basis matrix Canonical monomial basis CS-C3100 Fall 2017 Lehtinen 44

45 Matrix-Vector Notation For Polynomials For example: 1, 1+t, 1+t+t 2, 1+t-t 2 +t 3 t 3, t 3 +t 2, t 3 +t, t 3 +1 Not any matrix will do! If it s singular, the basis set will be linearly dependent, i.e., redundant. = t t t 3 t 3 t 3 + t 2 t 3 + t = t t 2 t t t 1+t + t 2 1+t t 2 + t 3 Change-of-basis matrix Canonical monomial basis CS-C3100 Fall 2017 Lehtinen 45

46 Matrix Form of Bernstein Cubic Bernstein: B 1 (t)=(1-t) 3 B 2 (t)=3t(1-t) 2 B 3 (t)=3t 2 (1-t) B 4 (t)=t 3 B 1 (t) B 2 (t) B 3 (t) B 4 (t) = Expand these out and collect powers of t. The coefficients are the entries in the matrix B! B CS-C3100 Fall 2017 Lehtinen 46 1 t t 2 t 3

47 More Matrix-Vector Notation Remember: P(t) = P 1 B 1 (t) + P 2 B 2 (t) + P 3 B 3 (t) + P 4 B 4 (t) is a linear combination of control points or, in matrix-vector notation P (t) = x(t) y(t) point on curve (2x1 vector) = x 1 x 2 x 3 x 4 y 1 y 2 y 3 y 4 matrix of control points (2 x 4) CS-C3100 Fall 2017 Lehtinen Bernstein polynomials (4x1 vector) B 1 (t) B 2 (t) B 3 (t) B 4 (t) 47

48 More Matrix-Vector Notation Remember: B 1 (t) B 2 (t) B 3 (t) B 4 (t) P (t) = P (t) = = x(t) y(t) point on curve (2x1 vector) B t t i=1 3 P i B i (t) t 2 = matrix of control points (2 x 4) CS-C3100 Fall 2017 Lehtinen 4 <= Flasback from two xi slides ago, B y i (t) let s combine i with below: i=1 = x 1 x 2 x 3 x 4 y 1 y 2 y 3 y 4 Bernstein polynomials (4x1 vector) B 1 (t) B 2 (t) B 3 (t) B 4 (t) 48

49 Phase 3: Profit Combined, we get cubic Bézier in matrix notation point on curve (2x1 vector) P(t) = x(t) y(t) x 1 x 2 x 3 x 4 y 1 y 2 y 3 y 4 Geometry matrix of control points P1..P4 (2 x 4) = Spline matrix (Bernstein) CS-C3100 Fall 2017 Lehtinen Canonical monomial basis 1 t t 2 t 3 49

50 General Spline Formulation Geometry: control points coordinates assembled into a matrix (P 1, P 2,, P n+1 ) Spline matrix: defines the type of spline Bernstein for Bézier Power basis: the monomials (1, t,..., t n ) Advantage of general formulation Compact expression Easy to convert between types of splines Dimensionality (plane or space) doesn t really matter CS-C3100 Fall 2017 Lehtinen 50

51 What can we do with this? Cubic polynomials form a vector space. Bernstein basis defines Bézier curves. Can do other bases as well: Catmull-Rom splines interpolate all the control points, for instance B CR = B A CS-C3100 Fall 2017 Lehtinen 51

52 3D Spline has 3D control points The 2D control points can be replaced by 3D points this yields space curves. All the above math stays the same except with the addition of 3rd row to control point matrix (z coords) In fact, can do homogeneous coordinates as well! CS-C3100 Fall 2017 Lehtinen 52

53 Easy Brain Teaser Can you derive formulas for conversion between two different cubic spline matrices, say Bézier and Catmull-Rom? Both are cubics, so you can represent the other curve exactly with new control points G2 G 1 B 1 T(t) G 2 B 2 T(t) G 2 =??? CS-C3100 Fall 2017 Lehtinen 53

54 Change of Basis, Other Direction Given B1...B4, how to get back to canonical 1, t, t 2, t 3? B 1 (t) B 2 (t) B 3 (t) B 4 (t) = B t t 2 t 3 CS-C3100 Fall 2017 Lehtinen 54

55 Change of Basis, Other Direction That s right, with the inverse matrix! Given B1...B4, how to get back to canonical 1, t, t 2, t 3? 1 t t 2 t 3 = B /3 2/ / B 1 (t) B 2 (t) B 3 (t) B 4 (t) CS-C3100 Fall 2017 Lehtinen 55

56 Recap Cubic polynomials form a vector space. Bernstein basis is canonical for Bézier. Can be seen as influence function of data points Or data points are coordinates of the curve in the Bernstein basis We can change between basis with matrices. CS-C3100 Fall 2017 Lehtinen 56

57 Questions? CS-C3100 Fall 2017 Lehtinen 57

58 A Cubic Only Gets You So Far What if you want more control? CS-C3100 Fall 2017 Lehtinen 58

59 CS-C3100 Fall 2017 Lehtinen 59 Higher-Order Bézier Curves > 4 control points Bernstein Polynomials as the basis functions For polynomial of order n, the i th basis function is Every control point affects the entire curve Not simply a local effect More difficult to control for modeling You will not need this in this class

60 Subdivision of a Bézier curve Can we split a Bezier curve into two in the middle, using two new Bézier curves? Would be useful for adding detail, as a single cubic doesn t get you very far, and higher-order curves are nasty.? CS-C3100 Fall 2017 Lehtinen 60

61 Subdivision of a Bezier curve Can we split a Bezier curve into two in the middle, using two new Bézier curves? The resulting curves are again a cubic (Why?)? CS-C3100 Fall 2017 Lehtinen

62 Subdivision of a Bezier curve Can we split a Bezier curve into two in the middle, using two new Bézier curves? The resulting curves are again a cubic (Why? A cubic in t is also a cubic in 2t) (Why? a 0 (2t) 3 =8a 0 t 3, etc.) Hence it must be representable using the Bernstein t1=2t t2=2t-1 basis. So yes, we can!? cubic t=0 t=0.5 t=1 CS-C3100 Fall 2017 Lehtinen 62

63 Subdivision of a Bezier curve Can we split a Bezier curve into two in the middle, using two new Bézier curves? The resulting curves are again a cubic (Why? A cubic in t is also a cubic in 2t) Hence it must be representable using the Bernstein basis. So yes, we can!? t1=2t t2=2t-1 cubic t=0 t=0.5 t=1 CS-C3100 Fall 2017 Lehtinen 63

64 De Casteljau Construction Take the middle point of each of the 3 segments Construct the two segments joining them Take the middle of those two new segments Join them Take the middle point P P 2 P 1 P 2 P 1 P P 3 CS-C3100 Fall 2017 Lehtinen 64

65 Result of Split in Middle The two new curves are defined by P1, P 1, P 1, and P P, P 2, P 3, and P4 Together they exactly replicate the original curve! Originally 4 control points, now 7 (more control) P 2 P 1 P 2 P 1 P P 3 P4 P1 CS-C3100 Fall 2017 Lehtinen 65

66 Sanity Check Do we get the middle point? B 1 (t)=(1-t) 3 B 2 (t)=3t(1-t) 2 B 3 (t)=3t 2 (1-t) B 4 (t)=t 3 P 1 P 1 P 2 P 2 P P 3 P 1 =0.5(P 1 + P 2 ) P 2 =0.5(P 2 + P 3 ) P 3 =0.5(P 3 + P 4 ) P 1 =0.5(P 1 + P 2 ) P 2 =0.5(P 2 + P 3 ) P =0.5(P 1 + P 2 ) =0.5 (0.5(P 1 + P 2 )+0.5(P 2 + P 3 )) =0.5 (0.5 [0.5(P 1 + P 2 )+0.5(P 2 + P 3 )] [0.5(P 2 + P 3 )+0.5(P 3 + P 4 )] =1/8P 1 +3/8P 2 +3/8P 3 +1/8P 4 CS-C3100 Fall 2017 Lehtinen 66

67 De Casteljau Construction Actually works to construct a point at any t, not just 0.5 Just subdivide the segments with ratio (1-t), t (not in the middle) t t t t t t CS-C3100 Fall 2017 Lehtinen 67

68 De Casteljau Construction Actually works to construct a point at any t, not just 0.5 Just subdivide the segments with ratio (1-t), t (not in the middle) 1-t t t t t 1-t t t 1-t CS-C3100 Fall 2017 Lehtinen 68

69 Questions? CS-C3100 Fall 2017 Lehtinen 69

70 Aside: Extra Credit Suggestion TrueType font glyphs (the images of the characters) consist of quadratic Bézier curves chained together. Why don t you write code that loads the glyphs using the Win32 API, and either Convert them to cubic Bézier and display them using the drawing code you already wrote Or write code for drawing quadratic curves directly. See this MSDN documentation page for a starting point! CS-C3100 Fall 2017 Lehtinen 70

71 Linear Transformations & Cubics What if we want to transform each point on the curve with a linear transformation M? P (t)= M CS-C3100 Fall 2017 Lehtinen 71

72 Linear Transformations & Cubics What if we want to transform each point on the curve with a linear transformation M? Because everything is linear, it s the same as transforming the only the control points P (t)= M = M CS-C3100 Fall 2017 Lehtinen 72

73 Linear Transformations & Cubics Homogeneous coordinates also work Means you can translate, rotate, shear, etc. Also, changing w gives a tension parameter Note though that you need to normalize P by 1/w P (t)= M = M CS-C3100 Fall 2017 Lehtinen 73

74 Differential properties of curves Motivation Compute normal for surfaces Compute velocity for animation Analyze smoothness CS-C3100 Fall 2017 Lehtinen 74

75 Velocity First derivative w.r.t. t Can you compute this for Bezier curves? P(t) = (1-t) 3 P 1 + 3t(1-t) 2 P 2 + 3t 2 (1-t) P 3 + t 3 P 4 You know how to differentiate polynomials... CS-C3100 Fall 2017 Lehtinen 75

76 Velocity First derivative w.r.t. t Can you compute this for Bezier curves? P(t) = (1-t) 3 P 1 + 3t(1-t) 2 P 2 + 3t 2 (1-t) P 3 + t 3 P 4 P (t) = -3(1-t) 2 P1 + [3(1-t) 2-6t(1-t)] P2 + [6t(1-t)-3t 2 ] P3 + 3t 2 P4 CS-C3100 Fall 2017 Lehtinen Sanity check: t=0; t=1 Can also write this using a matrix B try it out! 76

77 Tangent The tangent to the curve P(t) can be defined as T(t)=P (t)/ P (t) normalized velocity, T(t) = 1 This provides us with one orientation for swept surfaces in a little while CS-C3100 Fall 2017 Lehtinen 77

78 Questions? CS-C3100 Fall 2017 Lehtinen 78

79 Curvature Derivative of unit tangent K(t)=T (t) Magnitude K(t) is constant for a circle Zero for a straight line Always orthogonal to tangent, ie. Can you prove this? (Hints: T(t) =1, (x(t)y(t)) =?) T(t) Low curvature K T =0 T(t) T(t) K(t) K(t) K(t) High curvature CS-C3100 Fall 2017 Lehtinen 79

80 Geometric Interpretation K is zero for a line, constant for circle What constant? 1/r 1/ K(t) is the radius of the circle that touches P(t) at t and has the same curvature as the curve T(t) r=1/k T(t) r=1/k K(t) K(t) CS-C3100 Fall 2017 Lehtinen 80

81 Curve Normal Normalized curvature: T (t)/ T (t) N(t) Low curvature N(t) N(t) High curvature CS-C3100 Fall 2017 Lehtinen 45 81

82 Questions? CS-C3100 Fall 2017 Lehtinen 82

83 Orders of Continuity C 0 = continuous The seam can be a sharp kink G 1 = geometric continuity Tangents point to the same direction at the seam C 1 = parametric continuity Tangents are the same at the seam, implies G 1 C 2 = curvature continuity Tangents and their derivatives are the same CS-C3100 Fall 2017 Lehtinen C 0 G 1 C 1 83

84 Connecting Cubic Bézier Curves How can we guarantee C 0 continuity? How can we guarantee G 1 continuity? How can we guarantee C 1 continuity? C 2 and above gets difficult CS-C3100 Fall 2017 Lehtinen 84

85 Connecting Cubic Bézier Curves Where is this curve C 0 continuous? G 1 continuous? C 1 continuous? What s the relationship between: the # of control points, and the # of cubic Bézier subcurves? CS-C3100 Fall 2017 Lehtinen 85

86 Questions? CS-C3100 Fall 2017 Lehtinen 86

87 Cubic B-Splines 4 control points Locally cubic Cubics chained together, again. CS-C3100 Fall 2017 Lehtinen 87

88 Cubic B-Splines 4 control points Locally cubic Cubics chained together, again.. BUT with a sliding window of 4 control points! CS-C3100 Fall 2017 Lehtinen 88

89 Cubic B-Splines 4 control points Locally cubic Cubics chained together, again. BUT with a sliding window of 4 control points! CS-C3100 Fall 2017 Lehtinen 89

90 Cubic B-Splines 4 control points Locally cubic Cubics chained together, again. BUT with a sliding window of 4 control points! CS-C3100 Fall 2017 Lehtinen 90

91 Cubic B-Splines 4 control points Locally cubic Cubics chained together, again. Curve is not constrained to pass through any control points A BSpline curve is also bounded by the convex hull of its control points. CS-C3100 Fall 2017 Lehtinen 91

92 Cubic B-Splines: Basis These sum to 1, too! B2 B3 B1 B4 B 1 (t) = 1 6 (1 t)3 B 2 (t) = 1 6 (3t3 6t 2 + 4) B 3 (t) = 1 6 ( 3t3 +3t 2 +3t + 1) B 4 (t) = 1 6 t3 CS-C3100 Fall 2017 Lehtinen 92

93 Cubic B-Splines: Basis CS-C3100 Fall 2017 Lehtinen 93

94 Cubic B-Splines Local control (windowing) Automatically C 2, and no need to match tangents! CS-C3100 Fall 2017 Lehtinen 94

95 B-Spline Curve Control Points Default BSpline BSpline with derivative discontinuity Repeat interior control point BSpline which passes through end points Repeat end points CS-C3100 Fall 2017 Lehtinen 95

96 Bézier B-Spline Bézier BSpline But both are cubics, so one can be converted into the other! CS-C3100 Fall 2017 Lehtinen 96

97 Easy Brain Teaser Can you derive formulas for conversion between two different cubic spline matrices, say Bézier and Catmull-Rom? Both are cubics, so you can represent the other curve exactly with new control points G2 G 1 B 1 T(t) G 2 B 2 T(t) G 2 =??? CS-C3100 Fall 2017 Lehtinen 97

98 Solution G 1 B 1 T(t) G 2 B 2 T(t) (This must hold for all t!) CS-C3100 Fall 2017 Lehtinen

99 Solution G 1 B 1 T(t) G 2 B 2 T(t) (This must hold for all t!) CS-C3100 Fall 2017 Lehtinen

100 Converting between Bézier & BSpline Simple with the basis matrices! Note that this only works for a single segment of 4 control points P(t) = G B1 T(t) = G B1 (B2-1 B2) T(t)= (G B1 B2-1 ) B2 T(t) G B1 B2-1 are the control points for the segment in new basis CS-C3100 Fall 2017 Lehtinen 100

101 Converting between Bézier & BSpline original control points as Bézier new BSpline control points to match Bézier new Bézier control points to match BSpline original control points as BSpline CS-C3100 Fall 2017 Lehtinen 101

102 Why Bother with B-Splines? Automatic C 2 is nice! Also, B-Splines can be split into segments of nonuniform length without affecting the global parametrization. Non-uniform B-Splines We ll not do this, but just so you know. CS-C3100 Fall 2017 Lehtinen 102

103 NURBS (Generalized B-Splines) Rational cubics Use homogeneous coordinates, just add w! Provides a tension parameter to control points NURBS: Non-Uniform Rational B-Spline non-uniform = different spacing between the blending functions, a.k.a. knots rational = ratio of cubic polynomials (instead of just cubic) implemented by adding the homogeneous coordinate w into the control points. CS-C3100 Fall 2017 Lehtinen 103

104 Questions? CS-C3100 Fall 2017 Lehtinen 104

105 That s All for Today, Folks Fun stuff to know about function/vector spaces Inkscape is an open source vector drawing program for Mac/Windows. Try it out! vectorportal.com CS-C3100 Fall 2017 Lehtinen 105

Introduction to Computer Graphics. Modeling (1) April 13, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (1) April 13, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (1) April 13, 2017 Kenshi Takayama Parametric curves X & Y coordinates defined by parameter t ( time) Example: Cycloid x t = t sin t y t = 1 cos t Tangent (aka.

More information

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier Modeling Creating 3D objects How to construct complicated surfaces? Goal Specify objects with few control points Resulting object should be visually

More information

Lecture 20: Bezier Curves & Splines

Lecture 20: Bezier Curves & Splines Lecture 20: Bezier Curves & Splines December 6, 2016 12/6/16 CSU CS410 Bruce Draper & J. Ross Beveridge 1 Review: The Pen Metaphore Think of putting a pen to paper Pen position described by time t Seeing

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 2 Today Curves Introduction Polynomial curves Bézier curves Drawing Bézier curves Piecewise curves Modeling Creating 3D objects How to construct

More information

Sample Exam 1 KEY NAME: 1. CS 557 Sample Exam 1 KEY. These are some sample problems taken from exams in previous years. roughly ten questions.

Sample Exam 1 KEY NAME: 1. CS 557 Sample Exam 1 KEY. These are some sample problems taken from exams in previous years. roughly ten questions. Sample Exam 1 KEY NAME: 1 CS 557 Sample Exam 1 KEY These are some sample problems taken from exams in previous years. roughly ten questions. Your exam will have 1. (0 points) Circle T or T T Any curve

More information

CSE 167: Lecture 11: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture 11: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture 11: Bézier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #5 due Nov. 9 th at 1:30pm

More information

Interpolation and polynomial approximation Interpolation

Interpolation and polynomial approximation Interpolation Outline Interpolation and polynomial approximation Interpolation Lagrange Cubic Splines Approximation B-Splines 1 Outline Approximation B-Splines We still focus on curves for the moment. 2 3 Pierre Bézier

More information

The Essentials of CAGD

The Essentials of CAGD The Essentials of CAGD Chapter 4: Bézier Curves: Cubic and Beyond Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd c 2000

More information

Lecture 23: Hermite and Bezier Curves

Lecture 23: Hermite and Bezier Curves Lecture 23: Hermite and Bezier Curves November 16, 2017 11/16/17 CSU CS410 Fall 2017, Ross Beveridge & Bruce Draper 1 Representing Curved Objects So far we ve seen Polygonal objects (triangles) and Spheres

More information

Curves. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Taku Komura

Curves. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Taku Komura Curves Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Taku Komura How to create a virtual world? To compose scenes We need to define objects

More information

M2R IVR, October 12th Mathematical tools 1 - Session 2

M2R IVR, October 12th Mathematical tools 1 - Session 2 Mathematical tools 1 Session 2 Franck HÉTROY M2R IVR, October 12th 2006 First session reminder Basic definitions Motivation: interpolate or approximate an ordered list of 2D points P i n Definition: spline

More information

Arsène Pérard-Gayot (Slides by Piotr Danilewski)

Arsène Pérard-Gayot (Slides by Piotr Danilewski) Computer Graphics - Splines - Arsène Pérard-Gayot (Slides by Piotr Danilewski) CURVES Curves Explicit y = f x f: R R γ = x, f x y = 1 x 2 Implicit F x, y = 0 F: R 2 R γ = x, y : F x, y = 0 x 2 + y 2 =

More information

Getting Started with Communications Engineering

Getting Started with Communications Engineering 1 Linear algebra is the algebra of linear equations: the term linear being used in the same sense as in linear functions, such as: which is the equation of a straight line. y ax c (0.1) Of course, if we

More information

TIEA311 Tietokonegrafiikan perusteet kevät 2018

TIEA311 Tietokonegrafiikan perusteet kevät 2018 TIEA311 Tietokonegrafiikan perusteet kevät 2018 ( Principles of Computer Graphics Spring 2018) Copyright and Fair Use Notice: The lecture videos of this course are made available for registered students

More information

Reading. w Foley, Section 11.2 Optional

Reading. w Foley, Section 11.2 Optional Parametric Curves w Foley, Section.2 Optional Reading w Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 987. w Farin. Curves and Surfaces for

More information

Bernstein polynomials of degree N are defined by

Bernstein polynomials of degree N are defined by SEC. 5.5 BÉZIER CURVES 309 5.5 Bézier Curves Pierre Bézier at Renault and Paul de Casteljau at Citroën independently developed the Bézier curve for CAD/CAM operations, in the 1970s. These parametrically

More information

Math (P)Review Part I:

Math (P)Review Part I: Lecture 1: Math (P)Review Part I: Linear Algebra Computer Graphics CMU 15-462/15-662, Fall 2017 Homework 0.0 (Due Monday!) Exercises will be a bit harder / more rigorous than what you will do for the rest

More information

Dot Products, Transposes, and Orthogonal Projections

Dot Products, Transposes, and Orthogonal Projections Dot Products, Transposes, and Orthogonal Projections David Jekel November 13, 2015 Properties of Dot Products Recall that the dot product or standard inner product on R n is given by x y = x 1 y 1 + +

More information

Interpolation and polynomial approximation Interpolation

Interpolation and polynomial approximation Interpolation Outline Interpolation and polynomial approximation Interpolation Lagrange Cubic Approximation Bézier curves B- 1 Some vocabulary (again ;) Control point : Geometric point that serves as support to the

More information

Keyframing. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University

Keyframing. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Keyframing CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Keyframing in traditional animation Master animator draws key frames Apprentice fills in the in-between frames Keyframing

More information

Introduction to Curves. Modelling. 3D Models. Points. Lines. Polygons Defined by a sequence of lines Defined by a list of ordered points

Introduction to Curves. Modelling. 3D Models. Points. Lines. Polygons Defined by a sequence of lines Defined by a list of ordered points Introduction to Curves Modelling Points Defined by 2D or 3D coordinates Lines Defined by a set of 2 points Polygons Defined by a sequence of lines Defined by a list of ordered points 3D Models Triangular

More information

CGT 511. Curves. Curves. Curves. What is a curve? 2) A continuous map of a 1D space to an nd space

CGT 511. Curves. Curves. Curves. What is a curve? 2) A continuous map of a 1D space to an nd space Curves CGT 511 Curves Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology What is a curve? Mathematical ldefinition i i is a bit complex 1) The continuous o image of an interval

More information

MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs

MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs David L. Finn December 9th, 2004 We now start considering the basic curve elements to be used throughout this course; polynomial curves and

More information

Curves, Surfaces and Segments, Patches

Curves, Surfaces and Segments, Patches Curves, Surfaces and Segments, atches The University of Texas at Austin Conics: Curves and Quadrics: Surfaces Implicit form arametric form Rational Bézier Forms and Join Continuity Recursive Subdivision

More information

MAT300/500 Programming Project Spring 2019

MAT300/500 Programming Project Spring 2019 MAT300/500 Programming Project Spring 2019 Please submit all project parts on the Moodle page for MAT300 or MAT500. Due dates are listed on the syllabus and the Moodle site. You should include all neccessary

More information

Q( t) = T C T =! " t 3,t 2,t,1# Q( t) T = C T T T. Announcements. Bezier Curves and Splines. Review: Third Order Curves. Review: Cubic Examples

Q( t) = T C T =!  t 3,t 2,t,1# Q( t) T = C T T T. Announcements. Bezier Curves and Splines. Review: Third Order Curves. Review: Cubic Examples Bezier Curves an Splines December 1, 2015 Announcements PA4 ue one week from toay Submit your most fun test cases, too! Infinitely thin planes with parallel sies μ oesn t matter Term Paper ue one week

More information

Section 1.5. Solution Sets of Linear Systems

Section 1.5. Solution Sets of Linear Systems Section 1.5 Solution Sets of Linear Systems Plan For Today Today we will learn to describe and draw the solution set of an arbitrary system of linear equations Ax = b, using spans. Ax = b Recall: the solution

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

Linear Algebra, Summer 2011, pt. 2

Linear Algebra, Summer 2011, pt. 2 Linear Algebra, Summer 2, pt. 2 June 8, 2 Contents Inverses. 2 Vector Spaces. 3 2. Examples of vector spaces..................... 3 2.2 The column space......................... 6 2.3 The null space...........................

More information

Chapter 4 & 5: Vector Spaces & Linear Transformations

Chapter 4 & 5: Vector Spaces & Linear Transformations Chapter 4 & 5: Vector Spaces & Linear Transformations Philip Gressman University of Pennsylvania Philip Gressman Math 240 002 2014C: Chapters 4 & 5 1 / 40 Objective The purpose of Chapter 4 is to think

More information

Physics 331 Introduction to Numerical Techniques in Physics

Physics 331 Introduction to Numerical Techniques in Physics Physics 331 Introduction to Numerical Techniques in Physics Instructor: Joaquín Drut Lecture 12 Last time: Polynomial interpolation: basics; Lagrange interpolation. Today: Quick review. Formal properties.

More information

Smooth Path Generation Based on Bézier Curves for Autonomous Vehicles

Smooth Path Generation Based on Bézier Curves for Autonomous Vehicles Smooth Path Generation Based on Bézier Curves for Autonomous Vehicles Ji-wung Choi, Renwick E. Curry, Gabriel Hugh Elkaim Abstract In this paper we present two path planning algorithms based on Bézier

More information

Approximation of Circular Arcs by Parametric Polynomials

Approximation of Circular Arcs by Parametric Polynomials Approximation of Circular Arcs by Parametric Polynomials Emil Žagar Lecture on Geometric Modelling at Charles University in Prague December 6th 2017 1 / 44 Outline Introduction Standard Reprezentations

More information

ABSTRACT VECTOR SPACES AND THE CONCEPT OF ISOMORPHISM. Executive summary

ABSTRACT VECTOR SPACES AND THE CONCEPT OF ISOMORPHISM. Executive summary ABSTRACT VECTOR SPACES AND THE CONCEPT OF ISOMORPHISM MATH 196, SECTION 57 (VIPUL NAIK) Corresponding material in the book: Sections 4.1 and 4.2. General stuff... Executive summary (1) There is an abstract

More information

On-Line Geometric Modeling Notes

On-Line Geometric Modeling Notes On-Line Geometric Modeling Notes CUBIC BÉZIER CURVES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview The Bézier curve representation

More information

MATH240: Linear Algebra Review for exam #1 6/10/2015 Page 1

MATH240: Linear Algebra Review for exam #1 6/10/2015 Page 1 MATH24: Linear Algebra Review for exam # 6//25 Page No review sheet can cover everything that is potentially fair game for an exam, but I tried to hit on all of the topics with these questions, as well

More information

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2 Final Review Sheet The final will cover Sections Chapters 1,2,3 and 4, as well as sections 5.1-5.4, 6.1-6.2 and 7.1-7.3 from chapters 5,6 and 7. This is essentially all material covered this term. Watch

More information

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N. Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class

More information

Review Solutions for Exam 1

Review Solutions for Exam 1 Definitions Basic Theorems. Finish the definition: Review Solutions for Exam (a) A linear combination of vectors {v,..., v n } is: any vector of the form c v + c v + + c n v n (b) A set of vectors {v,...,

More information

MATH Max-min Theory Fall 2016

MATH Max-min Theory Fall 2016 MATH 20550 Max-min Theory Fall 2016 1. Definitions and main theorems Max-min theory starts with a function f of a vector variable x and a subset D of the domain of f. So far when we have worked with functions

More information

Modern Algebra Prof. Manindra Agrawal Department of Computer Science and Engineering Indian Institute of Technology, Kanpur

Modern Algebra Prof. Manindra Agrawal Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Modern Algebra Prof. Manindra Agrawal Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Lecture 02 Groups: Subgroups and homomorphism (Refer Slide Time: 00:13) We looked

More information

Spanning, linear dependence, dimension

Spanning, linear dependence, dimension Spanning, linear dependence, dimension In the crudest possible measure of these things, the real line R and the plane R have the same size (and so does 3-space, R 3 ) That is, there is a function between

More information

NAME MATH 304 Examination 2 Page 1

NAME MATH 304 Examination 2 Page 1 NAME MATH 4 Examination 2 Page. [8 points (a) Find the following determinant. However, use only properties of determinants, without calculating directly (that is without expanding along a column or row

More information

Section 1.8/1.9. Linear Transformations

Section 1.8/1.9. Linear Transformations Section 1.8/1.9 Linear Transformations Motivation Let A be a matrix, and consider the matrix equation b = Ax. If we vary x, we can think of this as a function of x. Many functions in real life the linear

More information

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true. Math 210-101 Test #1 Sept. 16 th, 2016 Name: Answer Key Be sure to show your work! 1. (20 points) Vector Basics: Let v = 1, 2,, w = 1, 2, 2, and u = 2, 1, 1. (a) Find the area of a parallelogram spanned

More information

Exam 2 Solutions. (a) Is W closed under addition? Why or why not? W is not closed under addition. For example,

Exam 2 Solutions. (a) Is W closed under addition? Why or why not? W is not closed under addition. For example, Exam 2 Solutions. Let V be the set of pairs of real numbers (x, y). Define the following operations on V : (x, y) (x, y ) = (x + x, xx + yy ) r (x, y) = (rx, y) Check if V together with and satisfy properties

More information

Solutions to Math 51 First Exam October 13, 2015

Solutions to Math 51 First Exam October 13, 2015 Solutions to Math First Exam October 3, 2. (8 points) (a) Find an equation for the plane in R 3 that contains both the x-axis and the point (,, 2). The equation should be of the form ax + by + cz = d.

More information

Abstract & Applied Linear Algebra (Chapters 1-2) James A. Bernhard University of Puget Sound

Abstract & Applied Linear Algebra (Chapters 1-2) James A. Bernhard University of Puget Sound Abstract & Applied Linear Algebra (Chapters 1-2) James A. Bernhard University of Puget Sound Copyright 2018 by James A. Bernhard Contents 1 Vector spaces 3 1.1 Definitions and basic properties.................

More information

(II.B) Basis and dimension

(II.B) Basis and dimension (II.B) Basis and dimension How would you explain that a plane has two dimensions? Well, you can go in two independent directions, and no more. To make this idea precise, we formulate the DEFINITION 1.

More information

The Gram-Schmidt Process

The Gram-Schmidt Process The Gram-Schmidt Process How and Why it Works This is intended as a complement to 5.4 in our textbook. I assume you have read that section, so I will not repeat the definitions it gives. Our goal is to

More information

Math 3108: Linear Algebra

Math 3108: Linear Algebra Math 3108: Linear Algebra Instructor: Jason Murphy Department of Mathematics and Statistics Missouri University of Science and Technology 1 / 323 Contents. Chapter 1. Slides 3 70 Chapter 2. Slides 71 118

More information

Math 416, Spring 2010 More on Algebraic and Geometric Properties January 21, 2010 MORE ON ALGEBRAIC AND GEOMETRIC PROPERTIES

Math 416, Spring 2010 More on Algebraic and Geometric Properties January 21, 2010 MORE ON ALGEBRAIC AND GEOMETRIC PROPERTIES Math 46, Spring 2 More on Algebraic and Geometric Properties January 2, 2 MORE ON ALGEBRAIC AND GEOMETRIC PROPERTIES Algebraic properties Algebraic properties of matrix/vector multiplication Last time

More information

An Intuitive Introduction to Motivic Homotopy Theory Vladimir Voevodsky

An Intuitive Introduction to Motivic Homotopy Theory Vladimir Voevodsky What follows is Vladimir Voevodsky s snapshot of his Fields Medal work on motivic homotopy, plus a little philosophy and from my point of view the main fun of doing mathematics Voevodsky (2002). Voevodsky

More information

The degree of the polynomial function is n. We call the term the leading term, and is called the leading coefficient. 0 =

The degree of the polynomial function is n. We call the term the leading term, and is called the leading coefficient. 0 = Math 1310 A polynomial function is a function of the form = + + +...+ + where 0,,,, are real numbers and n is a whole number. The degree of the polynomial function is n. We call the term the leading term,

More information

1 Dirac Notation for Vector Spaces

1 Dirac Notation for Vector Spaces Theoretical Physics Notes 2: Dirac Notation This installment of the notes covers Dirac notation, which proves to be very useful in many ways. For example, it gives a convenient way of expressing amplitudes

More information

Fitting functions to data

Fitting functions to data 1 Fitting functions to data 1.1 Exact fitting 1.1.1 Introduction Suppose we have a set of real-number data pairs x i, y i, i = 1, 2,, N. These can be considered to be a set of points in the xy-plane. They

More information

From Data To Functions Howdowegofrom. Basis Expansions From multiple linear regression: The Monomial Basis. The Monomial Basis

From Data To Functions Howdowegofrom. Basis Expansions From multiple linear regression: The Monomial Basis. The Monomial Basis From Data To Functions Howdowegofrom Basis Expansions From multiple linear regression: data to functions? Or if there is curvature: y i = β 0 + x 1i β 1 + x 2i β 2 + + ɛ i y i = β 0 + x i β 1 + xi 2 β

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date April 29, 23 2 Contents Motivation for the course 5 2 Euclidean n dimensional Space 7 2. Definition of n Dimensional Euclidean Space...........

More information

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 Jesús De Loera, UC Davis February 1, 2012 General Linear Systems of Equations (2.2). Given a system of m equations and n unknowns. Now m n is OK! Apply elementary

More information

SOLUTIONS TO SECOND PRACTICE EXAM Math 21a, Spring 2003

SOLUTIONS TO SECOND PRACTICE EXAM Math 21a, Spring 2003 SOLUTIONS TO SECOND PRACTICE EXAM Math a, Spring 3 Problem ) ( points) Circle for each of the questions the correct letter. No justifications are needed. Your score will be C W where C is the number of

More information

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!!

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!! MATH Exam -Solutions pts Write your answers on separate paper. You do not need to copy the questions. Show your work!!!. ( pts) Find the reduced row echelon form of the matrix Solution : 4 4 6 4 4 R R

More information

Vector Spaces. 9.1 Opening Remarks. Week Solvable or not solvable, that s the question. View at edx. Consider the picture

Vector Spaces. 9.1 Opening Remarks. Week Solvable or not solvable, that s the question. View at edx. Consider the picture Week9 Vector Spaces 9. Opening Remarks 9.. Solvable or not solvable, that s the question Consider the picture (,) (,) p(χ) = γ + γ χ + γ χ (, ) depicting three points in R and a quadratic polynomial (polynomial

More information

ARE211, Fall2012. Contents. 2. Linear Algebra (cont) Vector Spaces Spanning, Dimension, Basis Matrices and Rank 8

ARE211, Fall2012. Contents. 2. Linear Algebra (cont) Vector Spaces Spanning, Dimension, Basis Matrices and Rank 8 ARE211, Fall2012 LINALGEBRA2: TUE, SEP 18, 2012 PRINTED: SEPTEMBER 27, 2012 (LEC# 8) Contents 2. Linear Algebra (cont) 1 2.6. Vector Spaces 1 2.7. Spanning, Dimension, Basis 3 2.8. Matrices and Rank 8

More information

Linear algebra and differential equations (Math 54): Lecture 10

Linear algebra and differential equations (Math 54): Lecture 10 Linear algebra and differential equations (Math 54): Lecture 10 Vivek Shende February 24, 2016 Hello and welcome to class! As you may have observed, your usual professor isn t here today. He ll be back

More information

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2.

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2. Midterm 1 Review Comments about the midterm The midterm will consist of five questions and will test on material from the first seven lectures the material given below. No calculus either single variable

More information

0. Introduction 1 0. INTRODUCTION

0. Introduction 1 0. INTRODUCTION 0. Introduction 1 0. INTRODUCTION In a very rough sketch we explain what algebraic geometry is about and what it can be used for. We stress the many correlations with other fields of research, such as

More information

Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur

Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 01 Introduction to Optimization Today, we will start the constrained

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

Math 21b: Linear Algebra Spring 2018

Math 21b: Linear Algebra Spring 2018 Math b: Linear Algebra Spring 08 Homework 8: Basis This homework is due on Wednesday, February 4, respectively on Thursday, February 5, 08. Which of the following sets are linear spaces? Check in each

More information

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.] Math 43 Review Notes [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty Dot Product If v (v, v, v 3 and w (w, w, w 3, then the

More information

WHY POLYNOMIALS? PART 1

WHY POLYNOMIALS? PART 1 WHY POLYNOMIALS? PART 1 The proofs of finite field Kakeya and joints and short and clean, but they also seem strange to me. They seem a little like magic tricks. In particular, what is the role of polynomials

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date May 9, 29 2 Contents 1 Motivation for the course 5 2 Euclidean n dimensional Space 7 2.1 Definition of n Dimensional Euclidean Space...........

More information

Review 1 Math 321: Linear Algebra Spring 2010

Review 1 Math 321: Linear Algebra Spring 2010 Department of Mathematics and Statistics University of New Mexico Review 1 Math 321: Linear Algebra Spring 2010 This is a review for Midterm 1 that will be on Thursday March 11th, 2010. The main topics

More information

6: Polynomials and Polynomial Functions

6: Polynomials and Polynomial Functions 6: Polynomials and Polynomial Functions 6-1: Polynomial Functions Okay you know what a variable is A term is a product of constants and powers of variables (for example: x ; 5xy ) For now, let's restrict

More information

Exercises Chapter II.

Exercises Chapter II. Page 64 Exercises Chapter II. 5. Let A = (1, 2) and B = ( 2, 6). Sketch vectors of the form X = c 1 A + c 2 B for various values of c 1 and c 2. Which vectors in R 2 can be written in this manner? B y

More information

Course Notes Math 275 Boise State University. Shari Ultman

Course Notes Math 275 Boise State University. Shari Ultman Course Notes Math 275 Boise State University Shari Ultman Fall 2017 Contents 1 Vectors 1 1.1 Introduction to 3-Space & Vectors.............. 3 1.2 Working With Vectors.................... 7 1.3 Introduction

More information

The Symmetric Space for SL n (R)

The Symmetric Space for SL n (R) The Symmetric Space for SL n (R) Rich Schwartz November 27, 2013 The purpose of these notes is to discuss the symmetric space X on which SL n (R) acts. Here, as usual, SL n (R) denotes the group of n n

More information

Home Page. Title Page. Contents. Bezier Curves. Milind Sohoni sohoni. Page 1 of 27. Go Back. Full Screen. Close.

Home Page. Title Page. Contents. Bezier Curves. Milind Sohoni  sohoni. Page 1 of 27. Go Back. Full Screen. Close. Bezier Curves Page 1 of 27 Milind Sohoni http://www.cse.iitb.ac.in/ sohoni Recall Lets recall a few things: 1. f : [0, 1] R is a function. 2. f 0,..., f i,..., f n are observations of f with f i = f( i

More information

Lecture 1: Systems of linear equations and their solutions

Lecture 1: Systems of linear equations and their solutions Lecture 1: Systems of linear equations and their solutions Course overview Topics to be covered this semester: Systems of linear equations and Gaussian elimination: Solving linear equations and applications

More information

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit.

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit. Name: MATH 3195 :: Fall 2011 :: Exam 2 No document, no calculator, 1h00. Explanations and justifications are expected for full credit. 1. ( 4 pts) Say which matrix is in row echelon form and which is not.

More information

Math Computation Test 1 September 26 th, 2016 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge!

Math Computation Test 1 September 26 th, 2016 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge! Math 5- Computation Test September 6 th, 6 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge! Name: Answer Key: Making Math Great Again Be sure to show your work!. (8 points) Consider the following

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Vector Spaces, Orthogonality, and Linear Least Squares

Vector Spaces, Orthogonality, and Linear Least Squares Week Vector Spaces, Orthogonality, and Linear Least Squares. Opening Remarks.. Visualizing Planes, Lines, and Solutions Consider the following system of linear equations from the opener for Week 9: χ χ

More information

v = ( 2)

v = ( 2) Chapter : Introduction to Vectors.. Vectors and linear combinations Let s begin by saying what vectors are: They are lists of numbers. If there are numbers in the list, there is a natural correspondence

More information

Review Solutions, Exam 2, Operations Research

Review Solutions, Exam 2, Operations Research Review Solutions, Exam 2, Operations Research 1. Prove the weak duality theorem: For any x feasible for the primal and y feasible for the dual, then... HINT: Consider the quantity y T Ax. SOLUTION: To

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

How to Use Calculus Like a Physicist

How to Use Calculus Like a Physicist How to Use Calculus Like a Physicist Physics A300 Fall 2004 The purpose of these notes is to make contact between the abstract descriptions you may have seen in your calculus classes and the applications

More information

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance.

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance. 4.2. Linear Combinations and Linear Independence If we know that the vectors v 1, v 2,..., v k are are in a subspace W, then the Subspace Test gives us more vectors which must also be in W ; for instance,

More information

Coordinates for Projective Planes

Coordinates for Projective Planes Chapter 8 Coordinates for Projective Planes Math 4520, Fall 2017 8.1 The Affine plane We now have several eamples of fields, the reals, the comple numbers, the quaternions, and the finite fields. Given

More information

MATH 310, REVIEW SHEET 2

MATH 310, REVIEW SHEET 2 MATH 310, REVIEW SHEET 2 These notes are a very short summary of the key topics in the book (and follow the book pretty closely). You should be familiar with everything on here, but it s not comprehensive,

More information

Math 110, Spring 2015: Midterm Solutions

Math 110, Spring 2015: Midterm Solutions Math 11, Spring 215: Midterm Solutions These are not intended as model answers ; in many cases far more explanation is provided than would be necessary to receive full credit. The goal here is to make

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

Differential Equations

Differential Equations This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

Functions of Several Variables: Limits and Continuity

Functions of Several Variables: Limits and Continuity Functions of Several Variables: Limits and Continuity Philippe B. Laval KSU Today Philippe B. Laval (KSU) Limits and Continuity Today 1 / 24 Introduction We extend the notion of its studied in Calculus

More information

Lecture 2: Linear regression

Lecture 2: Linear regression Lecture 2: Linear regression Roger Grosse 1 Introduction Let s ump right in and look at our first machine learning algorithm, linear regression. In regression, we are interested in predicting a scalar-valued

More information

Math 2210Q (Roby) Practice Midterm #1 Solutions Fall 2017

Math 2210Q (Roby) Practice Midterm #1 Solutions Fall 2017 Math Q (Roby) Practice Midterm # Solutions Fall 7 SHOW ALL YOUR WORK! Make sure you give reasons to support your answers. If you have any questions, do not hesitate to ask! For this exam no calculators

More information

LINEAR ALGEBRA KNOWLEDGE SURVEY

LINEAR ALGEBRA KNOWLEDGE SURVEY LINEAR ALGEBRA KNOWLEDGE SURVEY Instructions: This is a Knowledge Survey. For this assignment, I am only interested in your level of confidence about your ability to do the tasks on the following pages.

More information

Lecture 8: A Crash Course in Linear Algebra

Lecture 8: A Crash Course in Linear Algebra Math/CS 120: Intro. to Math Professor: Padraic Bartlett Lecture 8: A Crash Course in Linear Algebra Week 9 UCSB 2014 Qué sed de saber cuánto! Pablo Neruda, Oda a los Números 1 Linear Algebra In the past

More information

CHAPTER 4. Interpolation

CHAPTER 4. Interpolation CHAPTER 4 Interpolation 4.1. Introduction We will cover sections 4.1 through 4.12 in the book. Read section 4.1 in the book on your own. The basic problem of one-dimensional interpolation is this: Given

More information

Math 1553, Introduction to Linear Algebra

Math 1553, Introduction to Linear Algebra Learning goals articulate what students are expected to be able to do in a course that can be measured. This course has course-level learning goals that pertain to the entire course, and section-level

More information