A parallel index for semistructured data

Size: px
Start display at page:

Download "A parallel index for semistructured data"

Transcription

1 A pllel index fo emiuued d Bin F. Coope Λ Dep. of Compue Siene Snfod Univeiy Snfod, CA 9435 USA oopeb@nfod.edu Nel Smple y Dep. of Compue Siene Snfod Univeiy Snfod, CA 9435 USA nmple@nfod.edu Mohe Shdmon RihOde In. 385 N. Fi S. Sn Joe, CA USA mohe@ihode.om ABSTRACT Dbe yem e ineinly bein ued o mne emiuued d, whih my no hve fixed uue o e of elionhip beween d iem. Indexe whih ue ee uue o mne emiuued d beome unblned nd diffiul o pllelize due o he omplex nue of he d. We popoe mehnim by whih n unblned veil ee i mned in blned wy by ddiionl lye of hoizonl index. Then, he veil ee n be piioned mon pllel ompuin node in blned fhion. We diu how o onu, eh nd upde uh hoizonl uue uin he exmple ofpii ie index. We lo peen imulion eul h demone he peedup offeed by uh pllelim; fo exmple, wih hee-wy pllelim, ou ehnique n povide lmo fo of hee peedup. 1. INTRODUCTION D i ely fl. Ined, dbe n onin mny elionhip beween individul d elemen, nd hee elionhip n be impon he d ielf. Ineinly, onizion mu del wih d h i emiuued: neihe he uue of d elemen no he e of elionhip beween hem i fixed in dvne. Thu, dbe mu llow ue o effiienly e d depie ieuliie in he uue. One oluion i o epeen elionhip beween d iem in hiehil mnne, uin ee uue. Thi ee n llow ue o find obje, well obje eled o hem. Ined of hvin o join oehe epe de, we n ondu op down vel of he ee. Subodine obje e oed in ubee, uh h ll he leve of he ubee epeen ll of he eled, ubodine iem. We ould piion poion of uh elionhip ee beween pllel ompuin node o h he index i di- Λ Wok done while uho w RihOde In. y Wok done while uho w RihOde In. Pemiion o mke diil o hd opie of ll o p of hi wok fo peonl o loom ue i ned wihou fee povided h opie e no mde o diibued fo pofi o ommeil dvne nd h opie be hi noie nd he full iion on he fi pe. To opy ohewie, o epublih, o po on eve o o ediibue o li, equie pio peifi pemiion nd/o fee. SAC, Mdid, Spin Copyih ACM //3 $5.. () Fiue 1: Piionin elionhip ee. ibued nd n nwe mny queie imulneouly. Fo exmple, Fiue 1() how elionhip ee, whee eh veex epeen n obje nd eh ede epeen elionhip. A wih ny ee, he uppe lye ne he oo (lbeled ff in he fiue) e likely o be mll omped o he lowe lye ne he leve (lbeled fi). Theefoe, we n dop he piionin heme hown in Fiue 1, whee he uppe lye e eplied o evey ompuin node nd he lowe lye e piioned beween node. In hi onfiuion, ue n ubmi quey o ny node i. The i node will vee he opy of he uppe lye (ff) of he index h i hold lolly unil i ehe he lowe lye (fi 1;fi :::fi n). Then, i will fowd he quey o node j h hold he lowe lye piion (fi j) neey o nwe he quey. If i = j, hen no fowdin will be neey nd i will nwe he quey diely. Thi ppoh i lled he fowdin ey. Alenively, we n ubmi he quey imulneouly o ll node (1; :::n). Eh node will vee ff o deemine if i lolly hold he oe fi j. If o, h node will nwe he quey. If no, h node will imply did he quey. Thi ppoh i lled he pllel iue ey. One wehvehieved n even piionin of he ee, we n ue diionl ehnique o mne pllelim. Fo exmple, we n uilize epliion nd voin heme o enue onieny fe upde, nd povide filove nd vilbiliy (e.. [3, 11, 7]). The benefi of piionin o beyond he peedup offeed by pllelizin ompuion. In ddiion, he piionin llow u o onu le indexe while keepin he eoue equiemen fo ny one ompuin node mll; fo exmple, we n build ebyeized index fom olleion of ommodiy p uh 5 ibye dik diibued mon off-he-helf ompue. Unfounely, wih emiuued d he elionhip ee uue n beome unblned. D elemen wih mny omplex elionhip ue poion of he ee o beome deep nd bnhy, while elemen wih imple elionhip eide in hllowe, moe line poion of he ee.

2 Fiue : A lyeed index ee. Thi mke i diffiul o piion he ee evenly mon pllel ompuin node o uppo pllel exeuion of queie. A eul, node ined o omplex poion of he ee beome hevily loded, while node wih imple ubee e lihly loded nd undeuilized. 1.1 Blnin n unblned index To hieve pllelim, we equie n loihm o inodue popeie of blne ino n unblned d e. We hve eed n indexin mehnim, he Index Fbi uue, h del wih he poblem of blnin n uneven uue o llow fo piionin mon pllel node. The Index Fbi uue i n inne of lyeed index: he ee i divided ino eqully ized blok, nd hen ex level of index e ued o dde hee blok. Thee ex level e hoizonl level in on wih he veil uue of he noml elionhip ee, hown in Fiue. Sehe poeed lon he hoizonl uue o lolized poion of he veil ee. The lefmo level (e.. level 1, ) indexe ove he blok in level, nd even if he numbe of level blok i le he lefmo level will be elively mll. Thu, we n eplie he lefmo level o evey ompuin node while piionin he ihmo level, muh we did wih he ff nd fi in Fiue 1. A quey n be ubmied o ny node, whih nvie he lefmo level o find he oe level piion, nd hen fowd he quey o be nweed by inle node in he pllel newok. Similly, queie n be iued o evey node, nd he node wih he oe fi j will nwe he quey. The hllene in onuin uh n index i o build blned hoizonl uue, nd hi i he iue we onfon in hi ppe. A onee exmple, we will diu how o piion Pii ie [13], omp bu poenilly unblned ee uue fo indexin in d. The Pii ie llow u o epeen elionhip beween d iem by onenin in. Fo exmple, o indie h iem 1 i eled o iem, we ine he key iem 1iem ino he ie. The eul i h ll iem iem ; iem 3:::iem n eled o iem 1 fom ubie wihin he Pii ie. Moe deil of hi epeenion n be found elewhee, in [5]. Thi elionhip uue i nul fi fo emiuued d, whih ofen onin omplex elionhip beween d iem. Queyin ph in emiuued d, uh XML, equie vel of hi elionhip uue, nd hi vel i uppoed by ou index. 1. Conibuion nd oveview We hve implemened he Index Fbi, nd hve ued i o nwe queie ove emiuued d, piully XML. The enodin nd quey poein eie e diued elewhee [9]. Hee, we fou on he blnin, piionin nd pllelizion of he index, nd peen expeimenl eul h exmine he peedup offeed by ou ehnique. Speifilly, we mke he followin onibuion: ffl We peen blnin ey fo n unblned index ove emiuued d. ffl We exmine piionin ey wheeby ome level of he blned ee e eplied o ll pllel node, nd ome e piioned mon node. ffl We peen imulion eul h illue he peedup vilble unde diffeen pllelizion eie. Fo exmple, ou ehnique n povide fo of hee peedup fo hee-wy pllel yem. Thi ppe i onized follow. In Seion we deibe how n eenilly unblned uue (uh Pii ie) n be blned uin lyeed index. Then, in Seion 3 we exmine ehin hi lyeed index uue. Seion 4 diue updin he index, nd in Seion 5 we exmine imulion eul. In Seion 6 we exmine eled wok nd Seion 7 ummize ou onluion.. BALANCING AND PARTITIONING TRIES USING LAYERED INDEXES Tie e d uue fo oin in d. A veex in he ee oepond o poiion in oed in, nd ede emnin fom he veex e ined o he poible he in h poiion in he in. Tie e ehed by ompin he ppopie he in he eh key wih he ouoin ede eh veex, nd followin he pope ede o he nex veex unil lef oninin poine o d eod e found. Pii ie e ompeed fom of ie, nd onin only he veie h hve wo o moe hilden. In hi wy, diffeene beween ineed key e epeened ined of he whole key. An exmple i hown in Fiue 3, whih ipii veion of he full ie in Fiue 3(). The numbe in he veie (he deph of he veex) indie he he poiion in he in o ompe o he lbel on he ouoin ede. Fo exmple, if we e ehin fo he in key, when we eh he veex lbeled," he he key[] hould be omped o he ouoin ede. A Pii hieve ompeion he o of no lone oin he omplee key. We n divide Pii ie ino ouhly eqully ized ubie, nd oe eh ubie in i own blok. Fo exmple, we n ke he index in Fiue 4() nd divide i. Thu, in Fiue 4, he oiinl index ill exi ( level ), bu h been pli ino wo blok. The blok boundie e indied by doed line. The veex level 1now n index ove he blok in level ; peifilly, he ie in level 1 indexe he ommon pefixe of eh ubie oed in he blok in level. The ommon pefix i he pefix of ll veie in he ubie of piul blok, nd

3 () Fiue 3: Tie. Level 1 Level () Fiue 4: Piionin ie. i he poion of he in epeened by he oo veex in he blok. In Fiue 4, he uppe blok h ommon pefix h i empy, while he lowe blok h ommon pefix h i ". Fo he e of hi ppe, we will efe o he lefmo hoizonl lye (e.. lye 1, ) uppe level" nd he ihmo lye (e.. he bi piioned index uue in level ) he lowe level." An uppe level index efe o he lowe level in wo diffeen wy. The fi wy i lled f link, nd i hown Fiue 4 eul ow. Thi link i he me n ede beween pen nd hild in noml ie, exep h he pen iin level i + 1 nd he hild i in level i. Thu, f link h lbel; in he fiue, he lbel i ". In on, he ohe ype of link, lled die link, h no lbel. Thi kind of link i epeened dhed ow in Fiue 4. Die link onne veie h epeen he me key pefix bu e in diffeen level. In he fiue, he pefix epeened by boh veie lbeled " i he empy pefix (lhouh ny pefix n be epeened.) Die nd f link e neey fo ehin he lyeed index ie uue deibed below. We n efe o noml" ede beween pen ndhild wihin he me blok, ne link. Ede h o blok boundie wihin he me level e lled pli link. Tie n hve moe hn wo level. In f, hi uue n be enelized o mny level needed. Eh level i onin omplee ie divided ino blok. Level i i indexed by level i + 1 uh h he ie in level i + 1 indexe he ommon pefixe of level i. In Fiue 4we illue inein level i; i + 1:::n fom ih o lef. The lefmo o hihe" level onin he oo of he hoizonl index, nd h only one blok. Thi oo blok onin omplee Pii ie nd heefoe my onin evel ie veie in ode o index evel blok he nex level. In pie, he numbe of hoizonl level in he ee emin mll, even he numbe of indexed key beome vey le. The Pii equie vey lile pe pe indexed key, levin e del of oom in blok fo poine. Conequenly, he hoizonl ee h vey hih bnhin fo nd oepondinly low heih. Fo illuion, we n mke imple umpion bou he ize of blok nd poine (e.. 8 Kb blok nd 3 bi poine) nd oe 1, poine pe blok. The oo blok (level n) n hen index 1, blok level n 1, nd eh n 1 blok n index 1, blok level n, nd o on. Thu, hee level ee n index billion iem. The uppemo level (level n > ) e vey mll omped o he lef blok (level ). In f, he uppe wo level of hee level ee oupy le hn 1 Mb of pe, nd n eily be oed in min memoy. A eul, he uppe level n be eplied ll ompuin node, nd only he blok in he lowe lye mu be piioned mon node. The numbe of blok in he lowe lye of he index i deemined by he ize of he ie nd he ined blok ize. We ould mke blok le, o h eh ompuin node i ined inle blok. Anohe poibiliy iomke blok mll, nd in muliple blok o eh node. Thi le ppoh h he benefi h ddin o emovin ompuin node o he pllel newok equie nfein few mll blok oppoed o epiionin he enie index wih diffeen blok ize.

4 dde SEARCH(key x, in blok B) f while B i no poine o d do B =SEARCH BLOCK(x; B); if B = NULL hen eun NULL; if B i poine o blok no hed lolly hen Invoke SEARCH(x,B) node i holdin B; Reun mke indiin node i will nwe quey; if key(b) =x hen eun B; ele eun NULL; Fiue 5: Poedue SEARCH. dde SEARCH BLOCK(key x, blok B) f n =oo veex of B; i = deph(n); /* The deph of he veex */ B = NULL; /* Thi will be he blok in he nex level */ while B = NULL nd i < lenh(x) nd ne o f ede n! n lbeled x[i] exi f if n! n i f link hen f /* n i in he nex lowe level */ B =dde of blok poined o by ede n! n ; ele f /* n! n i ne link */ n = n ; i = deph(n); if B = NULL nd hee exi die ede n! n hen B =dde of blok poined o by die ede n! n ; /* hi poin, B my be poine o nohe blok, poine o d, o NULL */ eun B ; Fiue 6: Poedue SEARCH BLOCK. 3. SEARCHING A LAYERED INDEX The eh poedue fo he lyeed index index loely pllel he eh poe fo imple ie. Fiue 5 how poedue SEARCH, whih eun he dik dde of he d mhin he eh key, o NULL if no uh d exi. When quey i iued, he in blok umen B i e o he oo blok of he lyeed index ie (e.., he blok in he lefmo hoizonl level). Billy, he eh he op level nd poeed boh veilly (wihin he me level) nd hoizonlly (beween level). A eh level i poeed unil i i ppopie o follow f o die link o he nex level (level i 1). Then he eh eume he ie in level i 1. Fo ll level exep he lef level (i = ), poedue SEARCH ll poedue SEARCH BLOCK (Fiue 6) o eh wihin piul blok. The eul of SEARCH BLOCK i eihe poine o nohe blok, poine o d, o NULL. We n illue he eh loihm uin Fiue 4. Imine h we e ehin fo he key." Poedue SEARCH bein by findin he oo blok, whih i he blok in level 1, nd ehin hi blok wih poedue SEARCH BLOCK. The oo veex in he blok i exmined, nd h deph of." Thu, key[], o," i omped o he ouoin ede. The f link fom he oo veex h he lbel ", nd he eh hen poeed o he blok poined o by he f link. Thi blok ihe level blok in Fiue 4 oninin ie ooed veex of deph." Poedue SEARCH heefoe invoke SEARCH BLOCK in. Thi poedue bein by exminin key[], o," nd follow he ne link lbeled." Thi ke he eh o i ol, he veex whih poin diely o he d wih key." The effe i h he eh in he hih hoizonl level, nd hen poeed diely o lolized poion of he veil ie (in level ) h onin he deied d. Evey eh ee he me numbe of level; moeove, i i only neey o ene inle blok pe level. A eul, ny nodeoninin eplie of he uppe level n pefom he fi poion of he eh. Howeve, one i beome ppopie o ene he lowe lye, he quey mu be nweed by he peifi ompuin node ined o h blok. Thi ompuin node n nwe he quey ompleely, ine inle blok i needed in level. (See Seion 3.1.) Noe h beue of he ompeion hieved by he Pii ie, poedue SEARCH my eun d fo key h doe no ully exi in he index. Fo exmple, in he index in Fiue 4, he key u" doe no exi. Howeve, if u" i peified eh key o poedue SEARCH, hen he eun vlue will be he dde of he d wih key." Thi i n unvoidble onequene of he f h Pii doe no oe full key. Theefoe, he found d hould be heked o veify h he eh key mhe he d key; hi i done he boom of poedue SEARCH. Thee e ohe ompliion inodued by he ompeion h we do no dde hee due o pe limiion, ee [5]. 3.1 Sehin pllel lyeed index Thee e wo eie fo ehin lyeed index in pllel. In he fowdin ey, poedue SEARCH i exeued ny ompue node holdin hed opy of he uppe level of he lyeed index ie. Queie n be iued o node in ny eonble wy, e.. ndomly o in ound-obin ode. The node i eeivin he quey vee muh of he lyeed ie i n unil i ehe he piioned lowe lye. The i node hek o ee if he equied blok ivilble lolly. If o, he i node nwe he quey. If no, he quey i fowded o he ompue node j h doe hve he blok. The j node exeue poedue SEARCH, bu he ppopie lowe lye blok ined of he oo. The j node n hen nwe he quey. In he pllel iue ey, queie e iued o ll node imulneouly. All node vee he uppe lye of he lyeed ie unil hey eh blok B L in he lef lye. One node h been ined he piion oninin B L; hi node oninue he vel in B L unil i nwe he quey. All ohe node imply did he quey. 4. INSERTING DATA Key e ineed ino he lyeed index ie uin hee ep poe. Fi, eh i pefomed o loe he level blok h mu be upded. Nex, he key i ineed in hi blok uin he noml Pii ineion loihm.

5 f Level 1 Level f f h f () f h f f Fiue 7: Spliin blok. Thi my involve ein one o moe veie in n exiin blok. Thid, if fe ein new veie hee e now oo mny veie o fi in he blok, he blok mu be pli. Mo ineion will no equie pli nd n be wholly hndled by he ompuin node ined o he ffeed blok. I i only when pli ou e he uppe level ffeed nd ll node mu be noified. Evey blok in he index onin onneed ubie. The pliin opeion mu peeve hi popey. Theefoe, in ode o pli we mu ele pli ede, uh h pliin he blok' ubie on hi ede podue wo onneed ubie. One ubie emin in he exiin blok, while he new ubie mu be pled in newly eed blok. Boh ubie eulin fom he pli hould be of ppoximely equl ize o minin ood pe uilizion of he dik blok. I i ofen impoible o ele pli ede h podue wo ubie of exly equl ize. In hi e, pli hould be eleed whih i loe o hi idel. Fiue 7 illue he pliin poe. Fiue 7() how ie, wih he pli ede mked. Afe he pli, hi ie oupie wo blok, hown in Fiue 7. Afe he pli i ompleed, poine o he new blok mu be dded o he level 1 ie. We ke he pli veex, whih i he pen veex on he pli ede, nd opy io he level 1 ie. Thi veex ein i deph. The opy of he pli veex in level 1 i iven f poine, wih he me lbel he pli ede, poinin o he new blok. The opy of he pli veex i lo iven die (unlbeled) poine efein o he old blok. The eul i hown in Fiue 7, whee he hded veex, lbeled," h been opied o level 1. Finlly, he newly opied pli veex mu be onneed o ny exiin veie in he level 1 blok o peeve he popey h eh blok h onneed ubie. Thi my involve onvein f link o ne link nd opyin ddiionl node fom level o level 1. The omplee poe i deibed in [5]. If opyin he veie o level 1 ue level 1 blok o oveflow, h blok mu be pli well. Thi i done in he me wy he pli level, nd hi poe n onine hihe level in he index. Evenully, imybe neey o pli he blok he oo level (level n). If o, hen new level (level n +1) i eed. Thi i how he lyeed index ow hoizonlly. 5. PERFORMANCE RESULTS We hve exmined he pefomne of ou piioned index by unnin imulion expeimen. We ook blok e fom n implemened, inle-node veion of he Index Fbi, nd fed he e o imuled pllelized veion of he index. In hi wy, we n exmine he effe of piionin nd pllelizion on el woklod. 5.1 Expeimenl eup The Index Fbi w ued o index XML doumen fom he DBLP, he popul ompue iene bibliophy [1]. Eh XML doumen oepond o inle publiion. The dbe onined ove 18, doumen, olin 7 Mb of d, ouped ino eih le (jounl ile, book, e.) The doumen wee oed in popul ommeil elionl dbe yem, nd he Index Fbi w ued ined of he dbe yem' nive quey poeo. We n eie of 1, queie ove hi dbe; eh quey equied one index key lookup. The deil of he indexin ey, well pefomne numbe in he non-pllel e, n be found in [9]. Hee, i i uffiien o noe h he Index Fbi povided up o n ode of mniude peedup veu he dbe yem' nive quey poeo. Fom hee expeimen, we olleed blok e whih indied he ode of index blok eque, nd whehe hoe blok oeponded o lefmo level (e.. ff in Fiue ) o he ihmo level (e.. fi in he me fiue). Thi blok e w fed o imulo. The imulo onued enio whee he index w piioned mon muliple node, nd epoed eul bou he numbe of queie h ould be nweed by eh node h w iued quey. The piionin w pefomed by ndomly inin blok o node. In hi wy, we ould ompe he benefi of he fowdin (wih queie iued in oundobin fhion) nd pllel iue pllelizion eie (ee Seion 1). We omped in he be e of no pllelizion (e.., one node). We umed he followin pmee in ou imulion: ffl The ime o poe he ff lye (in memoy) fo quey i 1 uni. ffl The newok o o fowd quey o nohe node i 4 uni. ffl The ime o ed fi blok fom dik o nwe he quey w 1 uni. ffl If he fi blok w in he, hen i ould be poeed in memoy wihou dik ed, nd hu he o w 1 uni. Thee o efle ndd umpion bou lenie, e.. newok lenie e bou 4 ime memoy leny, nd dik e bou n ode of mniude lowe hn memoy.

6 Fiue 8: Pefomne fo pllel index wih no he, 3 node. 5. Reul The fi expeimen we n exmined he imp due o piionin he index mon pllel node. In hi expeimen, he ize wee e o zeo o elimine he effe. We omped he fowdin nd pllel iue eie in he be e of no pllelim. In he fowdin ey, node mu be hoen o eeive eh quey; we iued queie o node in ound-obin fhion. The eul e hown in Fiue 8 fo he e of 3 node. Thi fiue illue wo mei. Speedup i he io of he ime o nwe queie fo he pllel index veu he ime fo he non-pllel index. Effo i he io of he ol uni of wok done by he pllel index o he ol uni of wok done by he non-pllel index. Speedup hu epeen he inee in he houhpu due o pllelim, while effo efle yle wed." In he fowdin ey, yle e wed by he fowdin of queie, nd in he pllel iue ey, yle e wed by node h e iued quey bu did i beue hey do no hold he oe fi j. An effo vlue of 1 indie he pllel index did muh wok he non-pllel index, while ny vlue ove 1 indie he popoion of wed wok. Fiue 8 illue h boh eie offe moe hn peedup. Howeve, i i le h he pllel iue ey offe he be houhpu. The effo wed" by node h exmine quey bu doe no nwe i i le hn he effo wed" by fowdin queie. Thi mke ene, iven h he o of fowd i 4 uni, bu he o fo wo node o exmine hei lol ff opy i only wo uni. Nex, we exmined he peedup nd effo he numbe of pllel node hned. Fiue 9 how he eul, wih he numbe of node lon he hoizonl xi. Thi fiue how he peedup nd effo fo boh he fowdin nd pllel iue ey. A he numbe of node inee, he peedup unde he fowdin ey inee linely, while he peedup unde he pllel iue ey inee le quikly. In f, when hee e fou node, boh eie e eqully f, bu beyond fou node, he fowdin ey i be. Rell h in ou o model, he o o fowd quey i 4 uni, while he o o poe n ff lye in memoy i 1 uni. Unde fowdin, he only wed effo" i wok done o fowd quey, while unde pllel iue, he wed effo i done when node Fiue 9: Pefomne fo pllel index wih no he veu numbe of pllel node. Fiue 1: Pefomne fo pllel index wih hin, 3 node. poe he ff lye bu hen did he quey. Thu, fou node, boh eie e doin ouhly equl moun of wed" wok, while moe hn fou node, fowdin doe le wed wok hn pllel iue. The eul i bee ue of ompuin eoue unde he fowdin ey, nd hu moe peedup veu pllel iue, when hee e moe hn fou node. Thi eul depend on he io R of he o o fowd quey veu he o o poe n ff lye. Howeve, he enel eul emin he me: fowdin povide moe peedup when hee e le R node. Anohe benefi of pllelim i he biliy o onu yem h hve le moun of eoue fom mlle, hepe omponen. In hi onex we n onu yem h h le moun of ee he fom omponen h hemelve hve mll he. To exmine hi effe, we n nohe expeimen, whee we umed h n individul node ould devoe enouh memoy o he one peen of he ol index ize. The eul fo hee node e hown in Fiue 1. Thi fiue demone h he biliy o build le ee he fom muliple individul mll he impove pefomne inifinly. Boh eie hve le :5 peedup; in f, he pllel iue ey ppohe 3 peedup, he heoeil mximum fo hee-wy pllelim. (The ul peedup i

7 :99.) Thi i beue he o of ein he dik domine he o o poe queie, nd hin n edue hi dominn o. By piionin he index mon hee node, we hve effeively ipled he ee he ize. In f, ou expeimen indie h he vee hi e in eh node' he i he me (39 peen) if hee w inle-node index wih hee ime muh he. Even houh eh node h mll individul he (only one peen of he index ize), he ee effe i h of le lobl he, beue eh node need only he blok fom i lol piion of he fi lye. The inee in effeive hin edue numbe of dik ed, nd hi benefi ompene fo he wed" yle needed o ondu queie in pllel. The end eul i h he yem n ppoh 3 peedup. We n nohe expeimen whee we vied he numbe of node in iuion whee node hd he, nd meued he peedup nd effo. The eul (no hown) e imil o hoe of Fiue 9. Speifilly, fowdin povide bee peedup (up o 8.3 ime peedup fo en node) hn pllel iue when hee e moe hn fou node. The be peedup obeved fo pllel iue w 5.9 ime peedup fo en node. 6. RELATED WORK Mny inveio hve exmined he poblem of diibuin nd epliin dbe o povide lod blnin while poein dbe onieny [7, 14]. Tdiionlly, he poblem i onfined o mnin uued d h n be eily piioned. Semiuued d h eeived muh enion eenly [6, 1, ], lhouh he uho know ofnowok foued on pllelizin nd diibuin emiuued indexe. The mo ommon indexin ehnoloy i he B-ee nd i vin [4]. The ize of B-ee i eniive o he lenh of key well he numbe of key ineed. A eul, B-ee end o hve mny level, eduin he eh effiieny. Anohe ype of index i he hh ble, whih ompue hh funion ove key o ple key in epe buke [13]. Alhouh he hh ble n be uppo effiien queyin, i equie ome knowlede bou he nue of he indexed d o h n ppopie hh funion n be eleed. Boh B-ee nd hh ble index homoeneou e of key. The Index Fbi opee he me wy edle of he nue of he d. Moeove, hh ble doe no uppo ne queie, while he Index Fbi n. Ohe eehe hve exmined moe flexible ee indexe (e.. enelized eh ee [1]) nd fuhe wok need o be done o ee if ou ehnique n be pplied o uh indexe. Ohe eehe hve inveied piionin unblned ee. Fo exmple, Diwn e l [8] exmine wy o lue veie of ee ino blok o minimize exenl e ime. The Index Fbi i imil o hee peviou effo in he emp o hieve blne houh ee piionin. Howeve, ou ppoh i moe diely foued on piionin he ee fo ue wih he pllel mehnim hown in Fiue 1. uue llow quey poeo o poeed diely o he elevn poion of he ee, llowin he quey o be nweed independen of ohe node. Thi uue llow u o exploi pllel ompuin o nwe muliple queie nd o build le indexe by diibuin hem ove ommodiy hdwe. The biliy o build nd pllelize uh ee uue ive u he biliy o epeen nd eh emiuued d elionhip effeively. We hve implemened piionble, lyeed index, nd ondued expeimen h meued he peedup offeed by pllelim. Fo exmple, ou eul indie h hee pllel node n hieve fo of.5 peedup imply by piionin he index, nd lmo fo of 3 peedup if eh node h even mll lol he. Clely, he Index Fbi i nul uue fo pllel exeuion of queie ove emiuued d. 8. REFERENCES [1] DBLP ompue iene bibliophy. hp:// [] See Abieboul. Queyin emi-uued d. In Po. ICDT, [3] Bb T. Bluein nd Chle W. Kufmn. Updin eplied d duin ommuniion filue. In Po. VLDB, pe 49 58, [4] D. Come. The ubiquiou b-ee. Compuin Suvey, 11():11 137, [5] Bin Coope nd Mohe Shdmon. The Index Fbi: A mehnim fo indexin nd queyin he me d in mny diffeen wy,. RihOde Inopoed Tehnil Repo. [6] Alin Deuh, My Fenndez, nd Dn Suiu. Soin emiuued d wih STORED. In Po. SIGMOD, [7] Dvid J. DeWi nd Jim Gy. Pllel dbe yem: The fuue of hih pefomne dbe yem. CACM, 35(6):85 98, 199. [8] A. A. Diwn, Snjeev Rne, S. Sehdi, nd S. Sudhn. Cluein ehnique fo minimizin exenl ph lenh. In Po. VLDB, pe , [9] Bin Coope e l. A f index fo emiuued d. In Po. VLDB, Sepembe 1. [1] Jon MHuh e l. Loe: A dbe mnemen yem fo emiuued d. SIGMOD Reod, 6(3):54 66, Sepembe [11] D. Giffod. Weihed voin fo eplied d. In Po. SOSP, pe 49 58, [1] Joeph M. Helleein, Jeffey F. Nuhon, nd Avi Pfeffe. Genelized eh ee fo dbe yem. In Po. VLDB, pe , Sepembe [13] Donld Knuh. The A of Compue Pommin, Vol. III, Soin nd Sehin, Thid Ediion. Addion Weley, Redin, MA, [14] M. Tme Ozu nd Pik Vlduiez. Piniple of Diibued Dbe Syem (Seond Ediion). Penie Hll, Uppe Sddle Rive, New Jeey, CONCLUSION We hve deibed how o nfom n unblned ee ino blned, piionble uue. The lyeed index

Primal and Weakly Primal Sub Semi Modules

Primal and Weakly Primal Sub Semi Modules Aein Inenionl Jounl of Conepoy eeh Vol 4 No ; Jnuy 204 Pil nd Wekly Pil ub ei odule lik Bineh ub l hei Depen Jodn Univeiy of iene nd Tehnology Ibid 220 Jodn Ab Le be ouive eiing wih ideniy nd n -ei odule

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt.

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt. 4/08/00 eview Fomul s icuis cice s BL B A B I I I I E...... s n n hging Q Q 0 e... n... Q Q n 0 e Q I I0e Dischging Q U Q A wie mde of bss nd nohe wie mde of silve hve he sme lengh, bu he dimee of he bss

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

More information

Reinforcement learning

Reinforcement learning CS 75 Mchine Lening Lecue b einfocemen lening Milos Huskech milos@cs.pi.edu 539 Senno Sque einfocemen lening We wn o len conol policy: : X A We see emples of bu oupus e no given Insed of we ge feedbck

More information

Invert and multiply. Fractions express a ratio of two quantities. For example, the fraction

Invert and multiply. Fractions express a ratio of two quantities. For example, the fraction Appendi E: Mnipuling Fions Te ules fo mnipuling fions involve lgei epessions e el e sme s e ules fo mnipuling fions involve numes Te fundmenl ules fo omining nd mnipuling fions e lised elow Te uses of

More information

LECTURE 5. is defined by the position vectors r, 1. and. The displacement vector (from P 1 to P 2 ) is defined through r and 1.

LECTURE 5. is defined by the position vectors r, 1. and. The displacement vector (from P 1 to P 2 ) is defined through r and 1. LECTURE 5 ] DESCRIPTION OF PARTICLE MOTION IN SPACE -The displcemen, veloci nd cceleion in -D moion evel hei veco nue (diecion) houh he cuion h one mus p o hei sin. Thei full veco menin ppes when he picle

More information

Consider a Binary antipodal system which produces data of δ (t)

Consider a Binary antipodal system which produces data of δ (t) Modulaion Polem PSK: (inay Phae-hi keying) Conide a inay anipodal yem whih podue daa o δ ( o + δ ( o inay and epeively. Thi daa i paed o pule haping ile and he oupu o he pule haping ile i muliplied y o(

More information

Graduate Algorithms CS F-18 Flow Networks

Graduate Algorithms CS F-18 Flow Networks Grue Algorihm CS673-2016F-18 Flow Nework Dvi Glle Deprmen of Compuer Siene Univeriy of Sn Frnio 18-0: Flow Nework Diree Grph G Eh ege weigh i piy Amoun of wer/eon h n flow hrough pipe, for inne Single

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9 C C A 55NED n R 5 0 9 b c c \ { s AS EC 2 5? 9 Con 0 \ 0265 o + s ^! 4 y!! {! w Y n < R > s s = ~ C c [ + * c n j R c C / e A / = + j ) d /! Y 6 ] s v * ^ / ) v } > { ± n S = S w c s y c C { ~! > R = n

More information

Computer Aided Geometric Design

Computer Aided Geometric Design Copue Aided Geoei Design Geshon Ele, Tehnion sed on ook Cohen, Riesenfeld, & Ele Geshon Ele, Tehnion Definiion 3. The Cile Given poin C in plne nd nue R 0, he ile ih ene C nd dius R is defined s he se

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration Secion 1.4 Moion in Spce: Velociy nd Acceleion We e going o dive lile deepe ino somehing we ve ledy inoduced, nmely () nd (). Discuss wih you neighbo he elionships beween posiion, velociy nd cceleion you

More information

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017 Uer ID (NOT he 9 igi numer): gurell4 CS351 Deign & Anlyi of Algorihm Fll 17 Seion A Te 3 Soluion Inruor: Rihr Peng In l, Weney, Nov 15, 17 Do no open hi quiz ookle unil you re iree o o o. Re ll he inruion

More information

Maximum Flow. Flow Graph

Maximum Flow. Flow Graph Mximum Flow Chper 26 Flow Grph A ommon enrio i o ue grph o repreen flow nework nd ue i o nwer queion ou meril flow Flow i he re h meril move hrough he nework Eh direed edge i ondui for he meril wih ome

More information

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2 Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe

More information

Equations from The Four Principal Kinetic States of Material Bodies. Copyright 2005 Joseph A. Rybczyk

Equations from The Four Principal Kinetic States of Material Bodies. Copyright 2005 Joseph A. Rybczyk Equions fom he Fou Pinipl Kinei Ses of Meil Bodies Copyigh 005 Joseph A. Rybzyk Following is omplee lis of ll of he equions used in o deied in he Fou Pinipl Kinei Ses of Meil Bodies. Eh equion is idenified

More information

On Fractional Operational Calculus pertaining to the product of H- functions

On Fractional Operational Calculus pertaining to the product of H- functions nenonl eh ounl of Enneen n ehnolo RE e-ssn: 2395-56 Volume: 2 ue: 3 une-25 wwwene -SSN: 2395-72 On Fonl Oeonl Clulu enn o he ou of - funon D VBL Chu, C A 2 Demen of hem, Unve of Rhn, u-3255, n E-ml : vl@hooom

More information

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8 Molecula Evoluion and hylogeny Baed on: Dubin e al Chape 8. hylogeneic Tee umpion banch inenal node leaf Topology T : bifucaing Leave - N Inenal node N+ N- Lengh { i } fo each banch hylogeneic ee Topology

More information

Addition & Subtraction of Polynomials

Addition & Subtraction of Polynomials Addiion & Sucion of Polynomil Addiion of Polynomil: Adding wo o moe olynomil i imly me of dding like em. The following ocedue hould e ued o dd olynomil 1. Remove enhee if hee e enhee. Add imil em. Wie

More information

1 The Network Flow Problem

1 The Network Flow Problem 5-5/65: Deign & Anlyi of Algorihm Ooer 5, 05 Leure #0: Nework Flow I l hnged: Ooer 5, 05 In hee nex wo leure we re going o lk ou n imporn lgorihmi prolem lled he Nework Flow Prolem. Nework flow i imporn

More information

Bounding the Locality of Distributed Routing Algorithms

Bounding the Locality of Distributed Routing Algorithms Bonding he Loliy of Diied Roing Algoihm [Exended A] Poenji Boe Shool of Compe Siene Cleon Univeiy Ow, Cnd ji@.leon. Pz Cmi Dep. of Compe Siene Ben-Gion Univ. of he Negev Bee-Shev, Iel mip@.g..il Sephne

More information

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS Af Joul of See Tehology (AJST) See Egeeg See Vol. 4, No.,. 7-79 GENERALISED DELETION DESIGNS Mhel Ku Gh Joh Wylff Ohbo Dee of Mhe, Uvey of Nob, P. O. Bo 3097, Nob, Key ABSTRACT:- I h e yel gle ele fol

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes] ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

More information

D zone schemes

D zone schemes Ch. 5. Enegy Bnds in Cysls 5.. -D zone schemes Fee elecons E k m h Fee elecons in cysl sinα P + cosα cosk α cos α cos k cos( k + π n α k + πn mv ob P 0 h cos α cos k n α k + π m h k E Enegy is peiodic

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

EE 410/510: Electromechanical Systems Chapter 3

EE 410/510: Electromechanical Systems Chapter 3 EE 4/5: Eleomehnl Syem hpe 3 hpe 3. Inoon o Powe Eleon Moelng n Applon of Op. Amp. Powe Amplfe Powe onvee Powe Amp n Anlog onolle Swhng onvee Boo onvee onvee Flyb n Fow onvee eonn n Swhng onvee 5// All

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples CS 7 Algorihm Fll 24 Dvid Wgner /3 Noe The min-u problem Le G = (V,E) be direed grph, wih oure verex V nd ink verex V. Aume h edge re lbelled wih o, whih n be modelled o funion : E N h oie non-negive inegrl

More information

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

Final Exam. Tuesday, December hours, 30 minutes

Final Exam. Tuesday, December hours, 30 minutes an Faniso ae Univesi Mihael Ba ECON 30 Fall 04 Final Exam Tuesda, Deembe 6 hous, 30 minues Name: Insuions. This is losed book, losed noes exam.. No alulaos of an kind ae allowed. 3. how all he alulaions.

More information

Physics Mechanics. Rule #2: LABEL/LIST YOUR KNOWN VALUES AND THOSE DESIRED (Include units!!)

Physics Mechanics. Rule #2: LABEL/LIST YOUR KNOWN VALUES AND THOSE DESIRED (Include units!!) Phic Mechnic Rule #1: DRAW A PICTURE (Picoil Repeenion, Moion Dim, ee-bod Dim) Dw picue o wh he queion i decibin. Ue moion dim nd ee-bod dim o i ou in eein wh i oin on in he queion. Moion Dim: + ee-bod

More information

Physics 232 Exam II Mar. 28, 2005

Physics 232 Exam II Mar. 28, 2005 Phi 3 M. 8, 5 So. Se # Ne. A piee o gl, ide o eio.5, h hi oig o oil o i. The oil h ide o eio.4.d hike o. Fo wh welegh, i he iile egio, do ou ge o eleio? The ol phe dieee i gie δ Tol δ PhDieee δ i,il δ

More information

PHYSICS 102. Intro PHYSICS-ELECTROMAGNETISM

PHYSICS 102. Intro PHYSICS-ELECTROMAGNETISM PHYS 0 Suen Nme: Suen Numbe: FAUTY OF SIENE Viul Miem EXAMINATION PHYSIS 0 Ino PHYSIS-EETROMAGNETISM Emines: D. Yoichi Miyh INSTRUTIONS: Aemp ll 4 quesions. All quesions hve equl weighs 0 poins ech. Answes

More information

Chapter 2. Kinematics in One Dimension. Kinematics deals with the concepts that are needed to describe motion.

Chapter 2. Kinematics in One Dimension. Kinematics deals with the concepts that are needed to describe motion. Chpe Kinemic in One Dimenin Kinemic del wih he cncep h e needed decibe min. Dynmic del wih he effec h fce he n min. Tgehe, kinemic nd dynmic fm he bnch f phyic knwn Mechnic.. Diplcemen. Diplcemen.0 m 5.0

More information

Ch.4 Motion in 2D. Ch.4 Motion in 2D

Ch.4 Motion in 2D. Ch.4 Motion in 2D Moion in plne, such s in he sceen, is clled 2-dimensionl (2D) moion. 1. Posiion, displcemen nd eloci ecos If he picle s posiion is ( 1, 1 ) 1, nd ( 2, 2 ) 2, he posiions ecos e 1 = 1 1 2 = 2 2 Aege eloci

More information

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis 2/3/2007 Physics 253

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis   2/3/2007 Physics 253 Science Adeisemen Inegoenmenl Pnel on Clime Chnge: The Phsicl Science Bsis hp://www.ipcc.ch/spmfeb7.pdf /3/7 Phsics 53 hp://www.fonews.com/pojecs/pdf/spmfeb7.pdf /3/7 Phsics 53 3 Sus: Uni, Chpe 3 Vecos

More information

Chapter 6 Plane Motion of Rigid Bodies

Chapter 6 Plane Motion of Rigid Bodies Chpe 6 Pne oon of Rd ode 6. Equon of oon fo Rd bod. 6., 6., 6.3 Conde d bod ced upon b ee een foce,, 3,. We cn ume h he bod mde of e numbe n of pce of m Δm (,,, n). Conden f he moon of he m cene of he

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2 156 Thee ae 9 books sacked on a shelf. The hickness of each book is eihe 1 inch o 2 F inches. The heigh of he sack of 9 books is 14 inches. Which sysem of equaions can be used o deemine x, he numbe of

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Classification of Equations Characteristics

Classification of Equations Characteristics Clssiiion o Eqions Cheisis Consie n elemen o li moing in wo imensionl spe enoe s poin P elow. The ph o P is inie he line. The posiion ile is s so h n inemenl isne long is s. Le he goening eqions e epesene

More information

Global alignment in linear space

Global alignment in linear space Globl linmen in liner spe 1 2 Globl linmen in liner spe Gol: Find n opiml linmen of A[1..n] nd B[1..m] in liner spe, i.e. O(n) Exisin lorihm: Globl linmen wih bkrkin O(nm) ime nd spe, bu he opiml os n

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

CS 188: Artificial Intelligence Fall Probabilistic Models

CS 188: Artificial Intelligence Fall Probabilistic Models CS 188: Aificial Inelligence Fall 2007 Lecue 15: Bayes Nes 10/18/2007 Dan Klein UC Bekeley Pobabilisic Models A pobabilisic model is a join disibuion ove a se of vaiables Given a join disibuion, we can

More information

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1 8. a For ep repone, inpu i u, U Y a U α α Y a α α Taking invere Laplae ranform a α e e / α / α A α 0 a δ 0 e / α a δ deal repone, α d Y i Gi U i δ Hene a α 0 a i For ramp repone, inpu i u, U Soluion anual

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Detection of a Solitude Senior s Irregular States Based on Learning and Recognizing of Behavioral Patterns

Detection of a Solitude Senior s Irregular States Based on Learning and Recognizing of Behavioral Patterns eeion of oliude enio Ieul e ed on Lenin nd Reonizin of eviol en ieki oki onmeme ki nii eme uio Kojim eme Kunio ukun eme Reenly enion i id o monioin yem w evio of oliude eon in ome e oulion of oliude enio

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

Dividing Algebraic Fractions

Dividing Algebraic Fractions Leig Eheme Tem Model Awe: Mlilig d Diidig Algei Fio Mlilig d Diidig Algei Fio d gide ) Yo e he me mehod o mlil lgei io o wold o mlil meil io. To id he meo o he we o mlil he meo o he io i he eio. Simill

More information

Physics 201, Lecture 5

Physics 201, Lecture 5 Phsics 1 Lecue 5 Tod s Topics n Moion in D (Chp 4.1-4.3): n D Kinemicl Quniies (sec. 4.1) n D Kinemics wih Consn Acceleion (sec. 4.) n D Pojecile (Sec 4.3) n Epeced fom Peiew: n Displcemen eloci cceleion

More information

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Discussion Session 2 Constant Acceleration/Relative Motion Week 03 PHYS 100 Dicuion Seion Conan Acceleraion/Relaive Moion Week 03 The Plan Today you will work wih your group explore he idea of reference frame (i.e. relaive moion) and moion wih conan acceleraion. You ll

More information

Designing A Fanlike Structure

Designing A Fanlike Structure Designing A Fnlike Sruure To proeed wih his lesson, lik on he Nex buon here or he op of ny pge. When you re done wih his lesson, lik on he Conens buon here or he op of ny pge o reurn o he lis of lessons.

More information

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions Inenaional Mahemaical Foum, Vol 8, 03, no 0, 463-47 HIKARI Ld, wwwm-hikaicom Combinaoial Appoach o M/M/ Queues Using Hypegeomeic Funcions Jagdish Saan and Kamal Nain Depamen of Saisics, Univesiy of Delhi,

More information

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can. 1 Cicula Moion Radians One evoluion is equivalen o 360 0 which is also equivalen o 2π adians. Theefoe we can say ha 360 = 2π adians, 180 = π adians, 90 = π 2 adians. Hence 1 adian = 360 2π Convesions Rule

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

Part I. Labor- Leisure Decision (15 pts)

Part I. Labor- Leisure Decision (15 pts) Eon 509 Sping 204 Final Exam S. Paene Pa I. Labo- Leisue Deision (5 ps. Conside he following sai eonom given b he following equaions. Uili ln( H ln( l whee H sands fo he househ f f Poduion: Ah whee f sands

More information

Price Discrimination

Price Discrimination My 0 Price Dicriminion. Direc rice dicriminion. Direc Price Dicriminion uing wo r ricing 3. Indirec Price Dicriminion wih wo r ricing 4. Oiml indirec rice dicriminion 5. Key Inigh ge . Direc Price Dicriminion

More information

8.5 Circles and Lengths of Segments

8.5 Circles and Lengths of Segments LenghofSegmen20052006.nb 1 8.5 Cicle and Lengh of Segmen In hi ecion we will how (and in ome cae pove) ha lengh of chod, ecan, and angen ae elaed in ome nal way. We will look a hee heoem ha ae hee elaionhip

More information

MIDPOINT-YEAR BASKET INDEX AS A PRACTICAL APPROXIMATION TO SUPERLATIVE INDEX. Masato Okamoto

MIDPOINT-YEAR BASKET INDEX AS A PRACTICAL APPROXIMATION TO SUPERLATIVE INDEX. Masato Okamoto MDPONT-YEAR BASKET NDEX AS A PRACTCAL APPROXMATON TO SUPERLATVE NDEX Mo Ooo Conue Sii Diviion Sii Bueu o Jn 9- Wu-ho Shinjuu-u Toyo 6-8668 e-il ooo@.o.j Pe eened he Sixh Meein o he nenionl Woin ou on Pie

More information

_ =- 314 TH / 3 RD 60M AR M NT GROUP C L) _. 5 TH AIR F0 RCE ` Pl R?N ]9. ia UNIT, - _ : --.

_ =- 314 TH / 3 RD 60M AR M NT GROUP C L) _. 5 TH AIR F0 RCE ` Pl R?N ]9. ia UNIT, - _ : --. H OR UN UN4 Q NOV 99 O ^ 0 342g = o 3 RD 60M AR M N GROUP ) = 34 H q 5 H AR F0 RE P R?N ]9 9 B UA DA Q N0U 99 n > o > 4 = H PAGE DEAFED AW E0 2958 R2 R g 8 B B F 0 328 p NOV 99 DA 3 9 9 3 ne o B o O o

More information

Limit Analysis of Stability of Circular Foundation Pit

Limit Analysis of Stability of Circular Foundation Pit Limi Anlyi of Sbiliy of Ciul Foundion Pi, Wu Simei Sool of Civil Engineeing Sndong Univeiy Sool of Civil Engineeing, Sou Cmpu of Sndong Univeiy, Jingi Rod 73#, Jinn, 561 Cin uixz@du.edu.n znyong-y@du.edu.n

More information

Bisimulation, Games & Hennessy Milner logic p.1/32

Bisimulation, Games & Hennessy Milner logic p.1/32 Clil lnguge heory Biimulion, Gme & Henney Milner logi Leure 1 of Modelli Memii dei Proei Conorreni Pweł Sooińki Univeriy of Souhmon, UK I onerned rimrily wih lnguge, eg finie uom regulr lnguge; uhdown

More information

Computer Propagation Analysis Tools

Computer Propagation Analysis Tools Compue Popagaion Analysis Tools. Compue Popagaion Analysis Tools Inoducion By now you ae pobably geing he idea ha pedicing eceived signal sengh is a eally impoan as in he design of a wieless communicaion

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2 ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER Seion Eerise -: Coninuiy of he uiliy funion Le λ ( ) be he monooni uiliy funion defined in he proof of eisene of uiliy funion If his funion is oninuous y hen

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

Reinforcement learning

Reinforcement learning Lecue 3 Reinfocemen leaning Milos Hauskech milos@cs.pi.edu 539 Senno Squae Reinfocemen leaning We wan o lean he conol policy: : X A We see examples of x (bu oupus a ae no given) Insead of a we ge a feedback

More information

Probabilistic Models. CS 188: Artificial Intelligence Fall Independence. Example: Independence. Example: Independence? Conditional Independence

Probabilistic Models. CS 188: Artificial Intelligence Fall Independence. Example: Independence. Example: Independence? Conditional Independence C 188: Aificial Inelligence Fall 2007 obabilisic Models A pobabilisic model is a join disibuion ove a se of vaiables Lecue 15: Bayes Nes 10/18/2007 Given a join disibuion, we can eason abou unobseved vaiables

More information

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example C 188: Aificial Inelligence Fall 2007 epesening Knowledge ecue 17: ayes Nes III 10/25/2007 an Klein UC ekeley Popeies of Ns Independence? ayes nes: pecify complex join disibuions using simple local condiional

More information

Graphs III - Network Flow

Graphs III - Network Flow Graph III - Nework Flow Flow nework eup graph G=(V,E) edge capaciy w(u,v) 0 - if edge doe no exi, hen w(u,v)=0 pecial verice: ource verex ; ink verex - no edge ino and no edge ou of Aume every verex v

More information

Add the transfer payments and subtract the total taxes from (1): Using these definitions, the above becomes: The Saving and Investment Equation:

Add the transfer payments and subtract the total taxes from (1): Using these definitions, the above becomes: The Saving and Investment Equation: San Fanio Sae Univei Mihael Ba ECON 30 Fall 06 Poblem e 5 Conumpion-Saving Deiion and Riadian Equivalene. (0 poin. Saving and Invemen equaion. a. Deive he aving and invemen equaion. The fomula fo GDP uing

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002 Mmm lkelhood eme of phylogey BIO 9S/ S 90B/ MH 90B/ S 90B Iodco o Bofomc pl 00 Ovevew of he pobblc ppoch o phylogey o k ee ccodg o he lkelhood d ee whee d e e of eqece d ee by ee wh leve fo he eqece. he

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

The Covenant Renewed. Family Journal Page. creation; He tells us in the Bible.)

The Covenant Renewed. Family Journal Page. creation; He tells us in the Bible.) i ell orie o go ih he picure. L, up ng i gro ve el ur Pren, ho phoo picure; u oher ell ee hey (T l. chi u b o on hi pge y ur ki kn pl. (We ee Hi i H b o b o kn e hem orie.) Compre h o ho creion; He ell

More information

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005. Techc Appedx fo Iveoy geme fo Assemy Sysem wh Poduc o Compoe eus ecox d Zp geme Scece 2005 Lemm µ µ s c Poof If J d µ > µ he ˆ 0 µ µ µ µ µ µ µ µ Sm gumes essh he esu f µ ˆ > µ > µ > µ o K ˆ If J he so

More information

Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data

Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data Avlble ole wwwsceceeccom Physcs Poce 0 475 480 0 Ieol Cofeece o Mecl Physcs Bomecl ee Pmee smo Hyohess es of wo Neve Boml Dsbuo Poulo wh Mss D Zhwe Zho Collee of MhemcsJl Noml UvesyS Ch zhozhwe@6com Absc

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

m d n a s y is x p m l f t e clus i t n s t.

m d n a s y is x p m l f t e clus i t n s t. Implemei Clueg Bed eue S u Selei Algoihm fo HDD [1] T.Gyhi [2] D.Suvidh [ 3] P.V.Mh B.Teh/IT B.Teh/IT B.Teh/IT P hyuh iue Phyuh iue P hyuh iue Of Tehology Tehology o f Tehology M geme Mgeme M geme C hei

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Soviet Rail Network, 1955

Soviet Rail Network, 1955 7.1 Nework Flow Sovie Rail Nework, 19 Reerence: On he hiory o he ranporaion and maximum low problem. lexander Schrijver in Mah Programming, 91: 3, 00. (See Exernal Link ) Maximum Flow and Minimum Cu Max

More information

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006 Homewok 5 fo BST 63: Sisicl Theoy I Soluions, 9//6 Due Time: 5:PM Thusy, on 9/8/6. Polem ( oins). Book olem.8. Soluion: E = x f ( x) = ( x) f ( x) + ( x ) f ( x) = xf ( x) + xf ( x) + f ( x) f ( x) Accoing

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z) 08 Tylo eie nd Mcluin eie A holomophic function f( z) defined on domin cn be expnded into the Tylo eie ound point except ingul point. Alo, f( z) cn be expnded into the Mcluin eie in the open dik with diu

More information

How dark matter, axion walls, and graviton production lead to observable Entropy generation in the Early Universe. Dr.

How dark matter, axion walls, and graviton production lead to observable Entropy generation in the Early Universe. Dr. How dk me, xion wlls, nd gvion poduion led o obsevble Enopy geneion in he Ely Univese D. Andew Bekwih he D Albembein opeion in n equion of moion fo emegen sl fields implying Non-zeo sl field V && Penose

More information

An Algorithm for Integrated Pin Assignment and Buffer Planning Λ

An Algorithm for Integrated Pin Assignment and Buffer Planning Λ An Algoihm fo Ineged Pin Aignmen nd Buffe Plnning Λ Hu Xing, Xioing Tng, nd D.F. Wong Univeiy of Tex Auin, Auin, TX Silion Peeive, A Cdene Comny, Sn Cl, CA fxingh, ng, wongg@.uex.edu ABSTRACT The uffe

More information

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID wwweo/voue/vo9iue/ijas_9 9f ON THE EXTENSION OF WEAK AENDAIZ INGS ELATIVE TO A ONOID Eye A & Ayou Eoy Dee of e Nowe No Uvey Lzou 77 C Dee of e Uvey of Kou Ou Su E-: eye76@o; you975@yooo ABSTACT Fo oo we

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues Alied Maheaical Sciece Vol. 8 o. 5 747-75 The No-Tucaed Bul Aival Queue M x /M/ wih Reei Bali Sae-Deede ad a Addiioal Seve fo Loe Queue A. A. EL Shebiy aculy of Sciece Meofia Uiveiy Ey elhebiy@yahoo.co

More information

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

Notes on cointegration of real interest rates and real exchange rates. ρ (2) Noe on coinegraion of real inere rae and real exchange rae Charle ngel, Univeriy of Wiconin Le me ar wih he obervaion ha while he lieraure (mo prominenly Meee and Rogoff (988) and dion and Paul (993))

More information

district department or positionnumber e fa Vr Ar 4 tj qj home phone tut t ounty Elections Official of Filing of Candidacy by Decleration ORS

district department or positionnumber e fa Vr Ar 4 tj qj home phone tut t ounty Elections Official of Filing of Candidacy by Decleration ORS F f ddy f p SEL ev 6 RS 49 h f e f pub ed d y be pubhed epdued p e ype peby bk k ub f ffe fude dde e 4v4L 6 hw e hud ppe b e e u fx b 7 f AUS p d dep pube e fa f Pde V A 4 q k 6 S4 8 W9 f ede 4 9f e L

More information

4/3/2017. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103

4/3/2017. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103 PHY 7 Eleodnais 9-9:50 AM MWF Olin 0 Plan fo Leue 0: Coninue eading Chap Snhoon adiaion adiaion fo eleon snhoon deies adiaion fo asonoial objes in iula obis 0/05/07 PHY 7 Sping 07 -- Leue 0 0/05/07 PHY

More information