Dynamics and Control of Membrane Hydration in a PEMFC

Size: px
Start display at page:

Download "Dynamics and Control of Membrane Hydration in a PEMFC"

Transcription

1 Dynamics and Control of Membrane Hydration in a PMFC Syed K. Ahmed Donald J. Chmielewski Department of Chemical and Biological ngineering Presented at the American Control Conference: June 009

2 Outline PMFC Model Mat. & nergy Balances and lectrochemistry Membrane Model Controller Analysis Power/Temperature Control Manipulation of Hydration Profile

3 Dynamic Model of PMFC Cooling Air In Anode In (H, H O) Solid Material H H O Insulator Current Collector O N Jacket xhaust Cathode In (air) Parameters based on 1 kw scale. Humidified hydrogen feed Anode xhaust H O Cathode xhaust Air cooling is assumed. Gas Diffusion Layers (GDLs) Catalyst Layers Polymer Membrane cell

4 Dynamic Model of PMFC Material Balances nergy Balances dc H an an H in an H H mem in V F C, F C r A dt dc ( an) HO in an an an an an H O in an H O H O mem ( ) ( ) ( ) V F C, F C J A dt F C F C r J A in ( an) an an ( H H O ) mem dc O ca ca O in ca O O mem in V F C, F C r A dt dc ( ca) HO in ca ca) ( ca) ca ca H O in ca H O JH O ( ) ( V F C, F C dt F C F C r J A in ( ca) ca ca O H O mem A mem dt ca in in UA Vca Fca Tca Fca Tca ( Tsol Tca ) dt C p dt an in in UA Van FanTan FanTan ( Tsol Tan ) dt C p dt jac in in UA V jac FjacTjac FjacTjac ( Tsol Tjac ) dt C p dt Cp Vsol UA ( Tca Tsol ) sol ca dt UA ( T T ) UA ( T T ) Q A sol jac jac sol an an sol gen mem ca an jac

5 lectrochemical Model cell ner act ohm mt ner o 1 RT F RT F sol sol act ln j / j o j o o ( ( ca) C / o O C O ) PH P ln PH j o 1/ O O ohm mt IR tmem j 1 RT 1 F K sol ln j F K L mt D ( ca) GDL j mt L t j C L GDL ( ca) O j

6 Outline PMFC Model Mat. & nergy Balances and lectrochemistry Membrane Model Controller Analysis Feedback Control Feedback/Feed-forward Control

7 Water Transport in the Membrane LCTRO-OSMOTIC DRAG DIFFUSION

8 Hydration Model for MA C ( mem) J HO Jdiff Jdrag D z ( mem) HO j F Anode Solid Material Current Collector In Cathode (H, H O) H Air in O H + H + C ( mem) H O t D e C z ( mem) H O Anode xhaust H O H + H + H + H + H + H + N H O Cathode xhaust Boundary Conditions MA D D e e C z C ( mem) H O ( mem) H O z j F j F J J ( an) H O ( ca) H O 0 r H O 0 at at z 0 z m

9 Concentration Profiles ( mem C ) ( ) H O m ( an) C HO ˆ ( mem ) C o ( mem) C H O 0 ( ca) ˆ ( mem) C C HO m ( mem C ) ( z) HO Anode Gas GDL Membrane GDL Cathode Gas δ a δ m δ c

10 Water Content Profiles cell ner act ohm mt A/cm λ=ho/so A/cm A/cm Length Across PM (cm) Ohmic Loss: ohm j t mem dz ( z 0 ) Ionic Conductivity: ( ( z)) = (z)

11 Water Content Profiles Dynamic Simulation A/cm A/cm λ=ho/so A/cm Length Across PM (cm)

12 Outline PMFC Model Mat. & nergy Balances and lectrochemistry Membrane Model Controller Analysis Power/Temperature Control Manipulation of Hydration Profile

13 Power/Temperature Control Temperature Control Loop P e (sp) Power Controller F c o cell P e,, F a o j PMFC T sol (sp) + - PI F jac T sol

14 Power/Temperature Control 0.5 Power Density (watts/cm ) P e P e (sp) Time (seconds)

15 Power/Temperature Control

16 Power/Temperature Control! Water Content (0) ( mem /) ( mem ) Time (seconds)

17 Power/Temperature Control Power Density (watts/cm ) P e P e (sp) Time (seconds)

18 Power/Temperature Control

19 Power/Temperature Control! Water Content (0) ( mem /) ( mem ) Time (seconds)

20 Outline PMFC Model Mat. & nergy Balances and lectrochemistry Membrane Model Controller Analysis Power/Temperature Control Manipulation of Hydration Profile

21 Manipulation of Hydration Profile Ideal Profile Zero Slope Just Below λ=14! Water Content (0) ( mem /) ( mem ) Time (seconds)

22 Manipulation of Hydration Profile ( mem), sp C HO P e (sp) T sol (sp) Power/ Temp Controller + - G c c a Fo, Fo cell, F jac P e, j T sol u PMFC ( mem) C HO m! Water Content (0) ( mem /) ( mem ) Time (seconds)

23 Anode Bubbler Temperature 8 Upper Plot, 86 o C to 90 o C, Lower Plot, 86 o C to 8 o C! Water Content! Water Content

24 Cathode Bubbler Temperature Upper Plot, 40 o C to 50 o C, Lower Plot, 40 o C to 30 o C! Water Content! Water Content

25 Solid Temperature Set-Point 8 Upper Plot, 80 o C to 70 o C, Lower Plot, 80 o C to 90 o C! Water Content! Water Content

26 Combined Approach 14 Inc. Anode Bubbler Temperature Results: Flatten Slope Dec. Solid Setpoint Temperature Prevents Flooding - Water Content

27 Conclusions and Future Work Portion of the Puzzle Measurements Channel Complications Validations

28 Acknowledgements Argonne National Laboratory Department of Chemical & Biological ngineering, IIT

The Impact of Hydration Dynamics on the Control of a PEM Fuel Cell

The Impact of Hydration Dynamics on the Control of a PEM Fuel Cell The Impact of Hydration Dynamics on the Control of a PM Fuel Cell Syed K. Ahmed Donald J. Chmielewski Department of Chemical and nvironmental ngineering Illinois Institute of Technology Presented at the

More information

Power Control for a Polymer Electrolyte Membrane Fuel Cell

Power Control for a Polymer Electrolyte Membrane Fuel Cell Power Control for a Polymer lectrolyte Membrane Fuel Cell Donald J. Chmielewski Kevin Lauzze Department of Chemical and nvironmental ngineering Illinois Institute of Technology Presented at the Annual

More information

Electrochemical Equipment Design for Hybrid Vehicles

Electrochemical Equipment Design for Hybrid Vehicles ower to Motor (kw) Speed (mph) Electrochemical Equipment Design for Hybrid Vehicles Syed K. Ahmed, Benja. Omell and Donald J. Chmielewski 6 4 Cooling Air In Anode In (H, H O) Solid Material H H O Insulator

More information

Control of Proton Electrolyte Membrane Fuel Cell Systems. Dr. M. Grujicic Department of Mechanical Engineering

Control of Proton Electrolyte Membrane Fuel Cell Systems. Dr. M. Grujicic Department of Mechanical Engineering Control of Proton Electrolyte Membrane Fuel Cell Systems Dr. M. Grujicic 4 Department of Mechanical Engineering OUTLINE. Feedforward Control, Fuel Cell System. Feedback Control, Fuel Cell System W Cp Supply

More information

Power System and Controller Design for Hybrid Fuel Cell Vehicles

Power System and Controller Design for Hybrid Fuel Cell Vehicles Power System and Controller Design for Hybrid Fuel Cell Vehicles Syed K. Ahmed Donald J. Chmielewski Department of Chemical and Biological Engineering Illinois Institute of Technology Presented at the

More information

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system.

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system. Objective of the fuel cell experiments: To familiarize the working principles and performance characteristics of proton exchange membrane fuel cells. Experimental Procedures Instrumentation A Scriber Associates

More information

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Sandro Skoda 1*, Eric Robalinho 2, André L. R. Paulino 1, Edgar F. Cunha 1, Marcelo Linardi

More information

Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell

Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell A. H. Sadoughi 1 and A. Asnaghi 2 and M. J. Kermani 3 1, 2 Ms Student of Mechanical Engineering, Sharif University of Technology Tehran,

More information

Modelling fuel cells in start-up and reactant starvation conditions

Modelling fuel cells in start-up and reactant starvation conditions Modelling fuel cells in start-up and reactant starvation conditions Brian Wetton Radu Bradean Keith Promislow Jean St Pierre Mathematics Department University of British Columbia www.math.ubc.ca/ wetton

More information

Diagnosis of PEMFC operation using EIS

Diagnosis of PEMFC operation using EIS Diagnosis of PEMFC operation using EIS Electrical Research Institute Hydrogen and Fuel Cells Group Félix Loyola, Ulises Cano-Castillo ucano@iie.org.mx International Symposium on DIAGNOSTIC TOOLS FOR FUEL

More information

Direct Energy Conversion: Fuel Cells

Direct Energy Conversion: Fuel Cells Direct Energy Conversion: Fuel Cells References and Sources: Direct Energy Conversion by Stanley W. Angrist, Allyn and Beacon, 1982. Fuel Cell Systems, Explained by James Larminie and Andrew Dicks, Wiley,

More information

FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL

FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL CONDENSED MATTER FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL V. IONESCU 1 1 Department of Physics and Electronics, Ovidius University, Constanta, 900527, Romania, E-mail: ionescu.vio@gmail.com

More information

Performance Simulation of Passive Direct Methanol Fuel Cell

Performance Simulation of Passive Direct Methanol Fuel Cell International Journal of Advanced Mechanical Engineering. ISSN 50-334 Volume 8, Number 1 (018), pp. 05-1 Research India Publications http://www.ripublication.com Performance Simulation of Passive Direct

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17653 Supplementary Methods Electronic transport mechanism in H-SNO In pristine RNO, pronounced electron-phonon interaction results in polaron formation that dominates the electronic

More information

Modeling of Electrochemical Cells: HYD Lecture 04. Overview of transport processes in PEMs

Modeling of Electrochemical Cells: HYD Lecture 04. Overview of transport processes in PEMs Modeling of Electrochemical Cells: Proton Exchange Membrane Fuel Cells HYD7007 01 Lecture 04. Overview of transport processes in PEMs Dept. of Chemical & Biomolecular Engineering Yonsei University Spring,

More information

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802 Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells using Fluent Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park,

More information

Appendix A Electric Vehicle PEM Fuel Cell Stack Parameters

Appendix A Electric Vehicle PEM Fuel Cell Stack Parameters Appendix A Electric Vehicle PEM Fuel Cell Stack Parameters A.1 Return Manifold Polynomial Fitting Table A.1 Return manifold polynomial fitting Parameter Value Return manifold parameter p 0 0.001248 kg/s

More information

ELECTROCHEMICAL COMPRESSION OF PRODUCT HYDROGEN FROM PEM ELECTROLYZER STACK

ELECTROCHEMICAL COMPRESSION OF PRODUCT HYDROGEN FROM PEM ELECTROLYZER STACK ELECTROCHEMICAL COMPRESSION OF PRODUCT HYDROGEN FROM PEM ELECTROLYZER STACK N.V. Dale 1,*, C. Y. Biaku 1, M. D. Mann 1, H. Salehfar 2, A. J. Peters 2 Abstract The low volumetric energy density of hydrogen

More information

Modeling the Behaviour of a Polymer Electrolyte Membrane within a Fuel Cell Using COMSOL

Modeling the Behaviour of a Polymer Electrolyte Membrane within a Fuel Cell Using COMSOL Modeling the Behaviour of a Polymer Electrolyte Membrane within a Fuel Cell Using COMSOL S. Beharry 1 1 University of the West Indies, St. Augustine, Trinidad and Tobago Abstract: In recent years, scientists

More information

Porous silicon as base material of MEMS-compatible fuel cell components

Porous silicon as base material of MEMS-compatible fuel cell components Porous silicon as base material of MEMS-compatible fuel cell components José Geraldo Alves Brito Neto Tokyo University of Science - Faculty of Science and Technology Department of Mechanical Engineering

More information

NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT

NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT Lakshminarayanan V 1, Karthikeyan P 2, D. S. Kiran Kumar 1 and SMK Dhilip Kumar 1 1 Department of Mechanical Engineering, KGiSL Institute

More information

D DAVID PUBLISHING. 1. Introduction. Akira Nishimura 1, Masashi Baba 1, Kotaro Osada 1, Takenori Fukuoka 1, Masafumi Hirota 1 and Eric Hu 2

D DAVID PUBLISHING. 1. Introduction. Akira Nishimura 1, Masashi Baba 1, Kotaro Osada 1, Takenori Fukuoka 1, Masafumi Hirota 1 and Eric Hu 2 Journal of Energy and Power Engineering () - doi:./-/.. D DAVID PUBLISHING Temperature Distributions in Single Cell of Polymer Electrolyte Fuel Cell Simulated by an D Multi-plate Heat-Transfer Model and

More information

Cross Section of Proton Exchange Membrane Fuel Cell

Cross Section of Proton Exchange Membrane Fuel Cell PEMFC Electrodes 1 Cross Section of Proton Exchange Membrane Fuel Cell Anode Cathode 2 Typical PEMFC Electrodes: - Anode Hydrogen Oxidation - Pt Ru / C - Cathode Oxygen reduction - Pt / C Pt is alloyed

More information

Advanced Analytical Chemistry Lecture 12. Chem 4631

Advanced Analytical Chemistry Lecture 12. Chem 4631 Advanced Analytical Chemistry Lecture 12 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

A mathematical model for an isothermal direct ethanol fuel cell

A mathematical model for an isothermal direct ethanol fuel cell Trabalho apresentado no CNMAC, Gramado - RS, 2016. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics A mathematical model for an isothermal direct ethanol fuel cell Ranon

More information

sensors ISSN by MDPI

sensors ISSN by MDPI Sensors 008, 8, 1475-1487 Full Research Paper sensors ISSN 144-80 008 by MDPI www.mdpi.org/sensors Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow

More information

General Energy PEM Membrane Tests

General Energy PEM Membrane Tests General Energy PEM Membrane Tests Date 11/03/2016 Author Annette Mosdale, R&D PaxiTech Client Ms. Sophia Hu General Energy Room 404, 321 Talent Building, No. 1009 East Tianyuan Road Nanjing 210000 PR China

More information

Electrolytes for Fuel Cells

Electrolytes for Fuel Cells Electrolytes for Fuel Cells Tom Zawodzinski Materials Science and Technology Division Los Alamos National Laboratory Air-Breather Fuel Cell Stack Systems Laptop Demo DCH/Enable Prototype Small Battery

More information

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO Facoltà di Ingegneria Industriale POLITECNICO DI MILANO Department Corso di Laurea of Energy in Doctoral Ingegneria Program in Energy and Nuclear Science and Technology DMFC MODELING:

More information

Computational model of a PEM fuel cell with serpentine gas flow channels

Computational model of a PEM fuel cell with serpentine gas flow channels Journal of Power Sources 130 (2004) 149 157 Computational model of a PEM fuel cell with serpentine gas flow channels Phong Thanh Nguyen, Torsten Berning 1, Ned Djilali Institute for Integrated Energy Systems,

More information

Iranian Journal of Hydrogen & Fuel Cell 2(2017) Iranian Journal of Hydrogen & Fuel Cell IJHFC. Journal homepage://ijhfc.irost.

Iranian Journal of Hydrogen & Fuel Cell 2(2017) Iranian Journal of Hydrogen & Fuel Cell IJHFC. Journal homepage://ijhfc.irost. Iranian Journal of Hydrogen & Fuel Cell (017) 153-165 Iranian Journal of Hydrogen & Fuel Cell IJHFC Journal homepage://ijhfc.irost.ir Effect of CO in the ormatted fuel on the performance of Polymer Electrolyte

More information

Title. Author(s)Tabe, Yutaka; Kikuta, Kazushige; Chikahisa, Takemi; CitationJournal of Power Sources, 193(2): Issue Date

Title. Author(s)Tabe, Yutaka; Kikuta, Kazushige; Chikahisa, Takemi; CitationJournal of Power Sources, 193(2): Issue Date Title Basic evaluation of separator type specific phenomen of water condensation characteristics and current de Author(s)Tabe, Yutaka; Kikuta, Kazushige; Chikahisa, Takemi; CitationJournal of Power Sources,

More information

CFD Analysis of PEM Fuel Cell

CFD Analysis of PEM Fuel Cell CFD Analysis of PEM Fuel Cell Group Seminar Munir Khan Division of Heat Transfer Department of Energy Sciences Lund University Outline 1 Geometry 2 Mathematical Model 3 Results 4 Conclusions I 5 Pore Scale

More information

Fuel Cell Activities in MME Waterloo

Fuel Cell Activities in MME Waterloo Fuel Cell Activities in MME Waterloo Xianguo Li and Roydon Fraser Fuel Cells and Green Energy Research Group Department of Mechanical & Mechatronics Engineering University of Waterloo, Waterloo, Ontario,

More information

SCIENCES & TECHNOLOGY

SCIENCES & TECHNOLOGY Pertanika J. Sci. & Technol. 22 (2): 645-655 (2014) SCIENCES & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Numerical Modelling of Molten Carbonate Fuel Cell: Effects of Gas Flow Direction

More information

Simulation of Proton Exchange Membrane Fuel Cell by using ANSYS Fluent

Simulation of Proton Exchange Membrane Fuel Cell by using ANSYS Fluent IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Simulation of Proton Exchange Membrane Fuel Cell by using ANSYS Fluent To cite this article: Asifa Awan et al 2018 IOP Conf. Ser.:

More information

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V. When you have completed this exercise, you will be able to operate a zener-clamped op amp comparator circuit using dc and ac voltages. You will verify your results with an oscilloscope. U1 is zero based

More information

Numerical simulation of proton exchange membrane fuel cell

Numerical simulation of proton exchange membrane fuel cell CHAPTER 6 Numerical simulation of proton exchange membrane fuel cell T.C. Jen, T.Z. Yan & Q.H. Chen Department of Mechanical Engineering, University of Wisconsin-Milwaukee, USA. Abstract This chapter presents

More information

DISCLAIMER. Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER. Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ; i i : L4 0 t DSCLAMER Portions of this document may be illegible in electronic image products. mages are produced from the best available original document. EVALUATON OF THE HUMDFCATON REQTJREMENTS OF

More information

Control. CSC752: Autonomous Robotic Systems. Ubbo Visser. March 9, Department of Computer Science University of Miami

Control. CSC752: Autonomous Robotic Systems. Ubbo Visser. March 9, Department of Computer Science University of Miami Control CSC752: Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami March 9, 2017 Outline 1 Control system 2 Controller Images from http://en.wikipedia.org/wiki/feed-forward

More information

This addendum describes the use of new termination actions in the Arbitrary Control Experiment in FuelCell Version 3.8d and later.

This addendum describes the use of new termination actions in the Arbitrary Control Experiment in FuelCell Version 3.8d and later. FuelCell Addendum Arbitrary Control Termination D. Johnson, Scribner Associates, Inc. 4/16/2007, Ver. 2 Introduction This addendum describes the use of new termination actions in the Arbitrary Control

More information

There are five problems on the exam. Do all of the problems. Show your work

There are five problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals of Physical Chemistry Second Hour Exam March 8, 2017 There are five problems on the exam. Do all of the problems. Show your work R = 0.08206 L atm/mole K N A = 6.022 x 10 23 R = 0.08314

More information

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010 Modeling as a tool for understanding the MEA Henrik Ekström Utö Summer School, June 22 nd 2010 COMSOL Multiphysics and Electrochemistry Modeling The software is based on the finite element method A number

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

Nitrogen Front Evolution in Purged Polymer Electrolyte Membrane Fuel Cell with Dead-Ended Anode

Nitrogen Front Evolution in Purged Polymer Electrolyte Membrane Fuel Cell with Dead-Ended Anode Nitrogen Front Evolution in Purged Polymer Electrolyte Membrane Fuel Cell with Dead-Ended Anode Jason B. Siegel, Stanislav V. Bohac, Anna G. Stefanopoulou, and Serhat Yesilyurt Abstract In this paper we

More information

Spanish Fork High School Unit Topics and I Can Statements AP Chemistry

Spanish Fork High School Unit Topics and I Can Statements AP Chemistry Spanish Fork High School 2014-15 Unit Topics and I Can Statements AP Chemistry Properties of Elements I can describe how mass spectroscopy works and use analysis of elements to calculate the atomic mass

More information

Water equilibria and management using a two-volume model of a polymer electrolyte fuel cell

Water equilibria and management using a two-volume model of a polymer electrolyte fuel cell Journal of Power Sources 164 (2007) 590 605 Water equilibria and management using a two-volume model of a polymer electrolyte fuel cell Amey Y. Karnik a,, Anna G. Stefanopoulou a, Jing Sun b a Department

More information

Two-Phase Transients of Polymer Electrolyte Fuel Cells

Two-Phase Transients of Polymer Electrolyte Fuel Cells B636 Journal of The Electrochemical Society, 154 7 B636-B643 007 0013-4651/007/1547/B636/8/$0.00 The Electrochemical Society Two-Phase Transients of Polymer Electrolyte Fuel Cells Yun Wang*,a and Chao-Yang

More information

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications S. Altmann a,b, T. Kaz b, K. A. Friedrich a,b a Institute of Thermodynamics and Thermal Engineering, University Stuttgart,

More information

Introduction to cardiac electrophysiology 1. Dr. Tóth András 2018

Introduction to cardiac electrophysiology 1. Dr. Tóth András 2018 Introduction to cardiac electrophysiology 1. Dr. Tóth ndrás 2018 Topics Transmembran transport Donnan equilibrium Resting potential 1 Transmembran transport Major types of transmembran transport J: net

More information

Performance Investigation on Electrochemical Compressor with Ammonia

Performance Investigation on Electrochemical Compressor with Ammonia Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2016 Performance Investigation on Electrochemical Compressor with Ammonia Ye Tao University

More information

Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells

Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells Journal of The Electroemical Society, 151 3 A399-A406 2004 0013-4651/2004/1513/A399/8/$7.00 The Electroemical Society, nc. Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells

More information

Oxygen Transfer Model in Cathode GDL of PEM Fuel Cell for Estimation of Cathode Overpotential

Oxygen Transfer Model in Cathode GDL of PEM Fuel Cell for Estimation of Cathode Overpotential Oxygen Transfer Model in Cathode GDL of PEM Fuel Cell for Estimation of Cathode Overpotential Abstract... The mathematical model involving kinetics and mass transfer in a PEM fuel cell cathode is developed

More information

ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL IN MOBILE APPLICATIONS

ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL IN MOBILE APPLICATIONS Int. J. of Applied Mechanics and Engineering, 015, vol.0, No., pp.319-38 DOI: 10.1515/ijame-015-001 ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL

More information

DMFC Models and Applications - A Literature Survey, Part I

DMFC Models and Applications - A Literature Survey, Part I Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 DMFC Models and Applications - A Literature Survey, Part I S. Patrabansh,

More information

Optimization on Serpentine flow channel of PEMFC using RSM

Optimization on Serpentine flow channel of PEMFC using RSM Optimization on Serpentine flow channel of PEMFC using RSM Dr.V.Lakshminarayanan Department of Mechanical Engineering, B.V.Raju Institute of Technology, Narsapur, Telangana-502313, India. e-mail: lux32engineer@yahoo.co.in

More information

Modeling Polymer Electrolyte Fuel Cells with Large Density and Velocity Changes

Modeling Polymer Electrolyte Fuel Cells with Large Density and Velocity Changes Journal of The Electrochemical Society, 152 2 A445-A453 2005 0013-4651/2005/1522/A445/9/$7.00 The Electrochemical Society, Inc. Modeling Polymer Electrolyte Fuel Cells with Large Density and Velocity Changes

More information

Prediction and Experimental Validation of In-Plane Current Distribution Between Channel and Land in a PEFC

Prediction and Experimental Validation of In-Plane Current Distribution Between Channel and Land in a PEFC B64 Journal of The Electrochemical Society, 155 1 B64-B69 2008 0013-4651/2007/155 1 /B64/6/$23.00 The Electrochemical Society Prediction and Experimental Validation of In-Plane Current Distribution Between

More information

Batteries (Electrochemical Power Sources)

Batteries (Electrochemical Power Sources) Batteries (Electrochemical Power Sources) 1. Primary (single-discharge) batteries. => finite quantity of the reactants 2. Secondary or rechargeable batteries => regeneration of the original reactants by

More information

NTC Project: F04-AE01 1 COATED AND LAMINATED FABRICS FOR FUEL CELLS

NTC Project: F04-AE01 1 COATED AND LAMINATED FABRICS FOR FUEL CELLS 1 COATED AND LAMINATED FABRICS FOR FUEL CELLS Project Team: Dr. Sabit Adanur, Auburn Univ., Polymer and Fiber Eng. (leader) (adanusa@auburn.edu) Dr. Bruce Tatarchuk, Auburn Univ., Chemical Eng. (tatarbj@auburn.edu)

More information

The Pennsylvania State University. The Graduate School. College of Engineering COMPUTATIONAL EXPLORATION OF HIGH POWER OPERATION IN POROUS FLOW

The Pennsylvania State University. The Graduate School. College of Engineering COMPUTATIONAL EXPLORATION OF HIGH POWER OPERATION IN POROUS FLOW The Pennsylvania State University The Graduate School College of Engineering COMPUTATIONAL EXPLORATION OF HIGH POWER OPERATION IN POROUS FLOW FIELD POLYMER ELECTROLYTE FUEL CELLS WITH A VALIDATED MODEL

More information

Materials for a Sustainable Energy Future. IPAM Tutorials. Sept 10-12, Continuum Models of PEM Fuel Cells. Keith Promislow

Materials for a Sustainable Energy Future. IPAM Tutorials. Sept 10-12, Continuum Models of PEM Fuel Cells. Keith Promislow Materials for a Sustainable Energy Future IPAM Tutorials Sept 10-12, 2013 Continuum Models of PEM Fuel Cells Keith Promislow 1 PEM Fuel Cell: Macroview 2H 2 + O 2 2H 2 O + 1.2V Volts = Energy/electron

More information

Polymer electrolyte fuel cell stack modelling with temporalspatial and EIS experimental validations

Polymer electrolyte fuel cell stack modelling with temporalspatial and EIS experimental validations olymer electrolyte fuel cell stack modelling with temporalspatial and EIS experimental validations Fei Gao 1, El-Hassane Aglzim 1, Benjamin Blunier 1, Abdellatif Miraoui 1 and Amar Rouane 1 University

More information

Master of Applied Science

Master of Applied Science A Three-Dimensional Computational Model of PEM Fuel Cell with Serpentine Gas Channels by Phong Thanh Nguyen B.E.Sc., University of Western Ontario, 2001 A Thesis Submitted in Partial Fulfillment of the

More information

ESP FLOWSHEET SIMULATION APPLICATION BRIEF Chlor-Alkali Simulation

ESP FLOWSHEET SIMULATION APPLICATION BRIEF Chlor-Alkali Simulation ESP FLOWSHEET SIMULATION APPLICATION BRIEF Chlor-Alkali Simulation Revised April 10, 2012 1 The anode in an electrochemical cell is the strongest oxidizer known, as it is fully capable of taking an electron

More information

Study of current distribution and oxygen diffusion in the fuel cell cathode catalyst layer through electrochemical impedance spectroscopy

Study of current distribution and oxygen diffusion in the fuel cell cathode catalyst layer through electrochemical impedance spectroscopy Loughborough University Institutional Repository Study of current distribution and oxygen diffusion in the fuel cell cathode catalyst layer through electrochemical impedance spectroscopy This item was

More information

Apparatus and Method for the Electrolysis of Water Employing a Sulfonated Solid Polymer Electrolyte

Apparatus and Method for the Electrolysis of Water Employing a Sulfonated Solid Polymer Electrolyte University of Central Florida UCF Patents Patent Apparatus and Method for the Electrolysis of Water Employing a Sulfonated Solid Polymer Electrolyte 12-21-1993 Clovis Linkous University of Central Florida

More information

Transients of Water Distribution and Transport in PEM Fuel Cells

Transients of Water Distribution and Transport in PEM Fuel Cells B1394 0013-4651/2009/156 12 /B1394/7/$25.00 The Electrochemical Society Transients of Water Distribution and Transport in PEM Fuel Cells Irfan S. Hussaini* and Chao-Yang Wang**,z Department of Mechanical

More information

Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell

Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell Downloaded 3 Mar to 4..3.58. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp B7 Journal of The Electrochemical Society, 5 B7-B8 9 3-45/9/5 /B7/7/$5. The Electrochemical

More information

Introduction to Physiology II: Control of Cell Volume and Membrane Potential

Introduction to Physiology II: Control of Cell Volume and Membrane Potential Introduction to Physiology II: Control of Cell Volume and Membrane Potential J. P. Keener Mathematics Department Math Physiology p.1/23 Basic Problem The cell is full of stuff: Proteins, ions, fats, etc.

More information

Modeling and Simulation of a PEM Fuel Cell System Under Various Temperature Conditions

Modeling and Simulation of a PEM Fuel Cell System Under Various Temperature Conditions nd WSEAS/IASME International Conference on RENEWABLE ENERGY SOURCES (RES'08) Corfu, Greece, October 6-8, 008 Modelg and Simulation of a EM Fuel Cell System Under Various Temperature Conditions A. A. SALAM,

More information

Basic Concepts of Electrochemistry

Basic Concepts of Electrochemistry ELECTROCHEMISTRY Electricity-driven Chemistry or Chemistry-driven Electricity Electricity: Chemistry (redox): charge flow (electrons, holes, ions) reduction = electron uptake oxidation = electron loss

More information

Process Control, 3P4 Assignment 6

Process Control, 3P4 Assignment 6 Process Control, 3P4 Assignment 6 Kevin Dunn, kevin.dunn@mcmaster.ca Due date: 28 March 204 This assignment gives you practice with cascade control and feedforward control. Question [0 = 6 + 4] The outlet

More information

ANSYS FLUENT 12.0 Fuel Cells Module Manual

ANSYS FLUENT 12.0 Fuel Cells Module Manual ANSYS FLUENT 12.0 Fuel Cells Module Manual April 2009 Copyright c 2009 by ANSYS, Inc. All Rights Reserved. No part of this document may be reproduced or otherwise used in any form without express written

More information

3 N. (12) Patent Application Publication (10) Pub. No.: US 2010/ A1. (19) United States CL2+ ( (43) Pub. Date: Dec.

3 N. (12) Patent Application Publication (10) Pub. No.: US 2010/ A1. (19) United States CL2+ ( (43) Pub. Date: Dec. (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0314261 A1 Perry US 20100314261A1 (43) Pub. Date: Dec. 16, 2010 (54) OXYGEN-CONSUMING ZERO-GAP ELECTROLYSIS CELLS WITH POROUSASOLID

More information

Parameter Estimates for a PEMFC Cathode

Parameter Estimates for a PEMFC Cathode Journal of The Electrochemical Society, 151 7 A983-A993 4 13-4651/4/1517/A983/11/$7. The Electrochemical Society, Inc. Parameter Estimates for a PEMFC Cathode Qingzhi Guo,* Vijay A. Sethuraman,* and Ralph

More information

Chapter 22. Bulk Electrolysis: Electrogravimetry and Coulometry. Definition. Features of Bulk Electrolysis Cells

Chapter 22. Bulk Electrolysis: Electrogravimetry and Coulometry. Definition. Features of Bulk Electrolysis Cells Chapter 22 Bulk Electrolysis: Electrogravimetry and Coulometry Definition Bulk Electrolysis deals with methods that involve electrolysis producing a quantitative change in oxidation state Example: In a

More information

Analysis of the Catalyst Layer of Polymer Electrolyte Fuel Cells

Analysis of the Catalyst Layer of Polymer Electrolyte Fuel Cells 33 Research Report Analysis of the Catalyst Layer of Polymer Electrolyte Fuel Cells Takahisa Suzuki Hajime Murata Tatsuya Hatanaka Yu Morimoto Comprehensive techniques for diagnosing the catalyst layer

More information

Forced Convectional Heat Transfer in Solid Oxide Fuel Cells: An Analytical Treatment.

Forced Convectional Heat Transfer in Solid Oxide Fuel Cells: An Analytical Treatment. Ionics 9 (2003) 83 Forced Convectional Heat Transfer in Solid Oxide Fuel Cells: An Analytical Treatment. F.A. Coutelieris 1, A.K. Demin 2, S.L. Douvartzides 1 and P.E. Tsiakaras 1 1 University of Thessalia,

More information

: INSTRUMENTATION AND PROCESS CONTROL COURSE CODE : 6071 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: INSTRUMENTATION AND PROCESS CONTROL COURSE CODE : 6071 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : INSTRUMENTATION AND PROCESS CONTROL COURSE CODE : 6071 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Measuring Instruments

More information

Computational Analysis of Heat Transfer in Air-cooled Fuel Cells

Computational Analysis of Heat Transfer in Air-cooled Fuel Cells Proceedings of ASME 2011, 5th International Conference on Energy Sustainability & 9th Fuel Cell Science, Engineering and Technology Conference, ESFuelCell2011 August 7-10, 2011, Washington, DC, USA ESFuelCell2011-54794

More information

The Pennsylvania State University. The Graduate School. College of Engineering A COMPUTATIONAL MODEL FOR ASSESSING IMPACT OF INTERFACIAL

The Pennsylvania State University. The Graduate School. College of Engineering A COMPUTATIONAL MODEL FOR ASSESSING IMPACT OF INTERFACIAL The Pennsylvania State University The Graduate School College of Engineering A COMPUTATIONAL MODEL FOR ASSESSING IMPACT OF INTERFACIAL MORPHOLOGY ON POLYMER ELECTROLYTE FUEL CELL PERFORMANCE A Thesis in

More information

CHE 611 Advanced Chemical Reaction Engineering

CHE 611 Advanced Chemical Reaction Engineering CHE 611 Advanced Chemical Reaction Engineering Dr. Muhammad Rashid Usman Institute of Chemical Engineering and Technology University of the Punjab, Lahore 54590 mrusman.icet@pu.edu.pk 1 Advanced Chemical

More information

Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell

Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell by Ibrahim Alaefour A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree

More information

Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells

Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells Supplementary Information Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells Ok-Hee Kim 1, Yong-Hun Cho 2, Dong Young Chung 3,4, Minjeong Kim 3,4, Ji

More information

YBR-12FRW00-C. ø12mm bi-color LED (common cathode)

YBR-12FRW00-C. ø12mm bi-color LED (common cathode) Features: 1) Chip Material: AlGaInP & InGaN 2) Lens Color: Water Clear 3) Source Color: Red & White 4) Pb free 5) The product itself will remain within RoHS compliant version. Dimensions: 13.4 11.5 13.6

More information

Identification and Analysis of Key Factors Affecting Performance of PEM Fuel Cell

Identification and Analysis of Key Factors Affecting Performance of PEM Fuel Cell Identification and Analysis of Key Factors Affecting Performance of PEM Fuel Cell Submitted by: Lia Maisarah Umar Supervised by Associate Professor Ho Hiang Kwee Associate Professor Chan Siew Hwa School

More information

Water management issues in PEMFC

Water management issues in PEMFC Water management issues in PEMFC Torsten Berning Department of Energy Technology Aalborg University Denmark Outline Introduction to water management in PEFC Wt Water transport tissues in different PEFC

More information

A ONE-DIMENSIONAL MODEL OF A PROTON-EXCHANGE MEMBRANE PHOTOELECTROLYSIS CELL. A Honors Research Project. Presented to

A ONE-DIMENSIONAL MODEL OF A PROTON-EXCHANGE MEMBRANE PHOTOELECTROLYSIS CELL. A Honors Research Project. Presented to A ONE-DIMENSIONAL MODEL OF A PROTON-EXCHANGE MEMBRANE PHOTOELECTROLYSIS CELL A Honors Research Project Presented to The Honors College Faculty of The University of Akron In Partial Fulfillment of the Requirements

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson II Lesson II: fuel cells (electrochemistry)

More information

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name ChE 142 pril 11, 25 Midterm II (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name KEY By signing this sheet, you agree to adhere to the U.C. Berkeley Honor Code Signed Name_ KEY

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 (19) United States US 2004O157111A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0157111A1 Sakamoto et al. (43) Pub. Date: (54) FUEL CELL (76) Inventors: Shigeru Sakamoto, Osaka (JP); Yasunori

More information

Linear Parameter Varying and Time-Varying Model Predictive Control

Linear Parameter Varying and Time-Varying Model Predictive Control Linear Parameter Varying and Time-Varying Model Predictive Control Alberto Bemporad - Model Predictive Control course - Academic year 016/17 0-1 Linear Parameter-Varying (LPV) MPC LTI prediction model

More information

Experimental Characterization Methodology for the Identification of Voltage Losses of PEMFC: Applied to an Open Cathode Stack

Experimental Characterization Methodology for the Identification of Voltage Losses of PEMFC: Applied to an Open Cathode Stack Experimental Characterization Methodology for the Identification of Voltage Losses of PEMFC: Applied to an Open Cathode Stack A. Husar *, S. Strahl, J. Riera Institut de Robòtica i Informàtica Industrial

More information

8. ELECTROCHEMICAL CELLS. n Electrode Reactions and Electrode Potentials a. H 2 2H + + 2e. Cl 2 + 2e 2Cl. H 2 + Cl 2 2H + + 2Cl ; z = 2

8. ELECTROCHEMICAL CELLS. n Electrode Reactions and Electrode Potentials a. H 2 2H + + 2e. Cl 2 + 2e 2Cl. H 2 + Cl 2 2H + + 2Cl ; z = 2 8. ELECTROCHEMICAL CELLS n Electrode Reactions and Electrode Potentials 8.1. a. H H + + e Cl + e Cl H + Cl H + + Cl ; z = E = E RT F ln ( a H +a Cl ) b. Hg(l)+ Cl Hg Cl + e H + + e H Hg + H + + Cl Hg Cl

More information

The Application of a Numerical Model of a Proton Exchange Membrane Fuel Cell to the Estimations of Some Cell Parameters

The Application of a Numerical Model of a Proton Exchange Membrane Fuel Cell to the Estimations of Some Cell Parameters The Application of a Numerical Model of a Proton Exchange Membrane Fuel Cell to the Estimations of Some Cell Parameters Ágnes Havasi 1, Róbert Horváth 2 and Tamás Szabó 3 1 Eötvös Loránd University, Pázmány

More information

Large-scale simulation of polymer electrolyte fuel cells by parallel computing

Large-scale simulation of polymer electrolyte fuel cells by parallel computing Chemical Engineering Science 9 (00) www.elsevier.com/locate/ces Large-scale simulation of polymer electrolyte fuel cells by parallel computing Hua Meng, Chao-Yang Wang Department of Mechanical and Nuclear

More information

Gas Transport and Electrochemistry in Solid Oxide Fuel Cell Electrodes

Gas Transport and Electrochemistry in Solid Oxide Fuel Cell Electrodes Gas Transport and Electrochemistry in Solid Oxide Fuel Cell Electrodes Wilson K. S. Chiu University of Connecticut Overview of Research Activities Heat & Mass Transfer with Chemical Rxns: CVD Nanomaterials

More information

TRANSIENTS IN POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELLS

TRANSIENTS IN POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELLS TRANSIENTS IN POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELLS Atul Verma Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

Catalyst Development Needs

Catalyst Development Needs Catalyst Development Needs (presented at the NSF Workshop in Washington DC, Nov. 14-15, 2001) Hubert Gasteiger 1) Mark Mathias 2) Susan Yan 3) Cathode Catalysts cathode related MEA performance losses cathode

More information