Gas Transport and Electrochemistry in Solid Oxide Fuel Cell Electrodes

Size: px
Start display at page:

Download "Gas Transport and Electrochemistry in Solid Oxide Fuel Cell Electrodes"

Transcription

1 Gas Transport and Electrochemistry in Solid Oxide Fuel Cell Electrodes Wilson K. S. Chiu University of Connecticut

2 Overview of Research Activities Heat & Mass Transfer with Chemical Rxns: CVD Nanomaterials Photonics Fuel Cells 7 microns Ni-YSZ Anode P. Russell, Science 99:358, 003.

3 Outline Introduction Energy Conversion Fuel Cell Background & Motivation Imaging & Analysis at the Pore Level Pore Imaging Gas Transport Electrochemistry Electrode Microstructure and Grading Conclusions & Future Research Plans

4 Global Energy Usage

5 U.S. Energy Usage Energy Information Association Annual Energy Outlook, DOE/EIA Report # 0383, 007. C. Song, Catal. Today 115:

6 Energy Conversion Efficiency US Power Plants, 003, in quadrillion BTU C. Song, Catal. Today 115:

7 Energy Conversion Technologies For Fossil Fuels: SOA: Heat Engines Steam Cycles Gas Turbines Internal Combustion Fuel Cells? High Electrical Efficiency Fuel Flexibility Scalable

8 Outline Introduction Energy Conversion Fuel Cell Background & Motivation Imaging & Analysis at the Pore Level Pore Imaging Gas Transport Electrochemistry Electrode Microstructure and Grading Conclusions & Future Research Plans

9 Types of Fuel Cells Fuel Cells Electrolyte Operating Temperature Fuel Supply Applications Alkaline (AFC) circulating liquid or matrix Hydrogen or NH 3 -Cracker small units, up to automobiles Proton Exchange Membrane(PEM) immobilized, acidic Hydrogen or Converter small units, up to automobiles Phosphoric Acid (PAFC) concentrated acid gel Hydrogen or Converter Power Plants 50 to 00 kw Molten Carbonate (MCFC) Li/Na-carbonate melt Selected fuel or Converter Power Plants up to 1 MW Solid Oxide (SOFC) ceramic Zr/Yoxides All Fuels, direct feed Small to large Power Plants

10 Solid Oxide Fuel Cell Hydrogen (& CO) Fueled Internal Reforming from Steam Reforming Shift Reaction CH H O H + CO CO + H + O H CO

11 How, specifically, can we design fuel cell microstructure to optimize performance and durability? Design Input Electrochemistry Materials Design Fabricate Test Previous Generation SOFC Current Generation SOFC Next Generation? Atkinson et al., Nature Mat. 3:17-7, 004. La 0.3 Sr 0.7 TiO 3 current collector Porous YSZ-active region YSZ electrolyte Gorte et al., 006 Modeling Tool needed to Determine Optimal Microstructure.

12 Outline Introduction Energy Conversion Fuel Cell Background & Motivation Imaging & Analysis at the Pore Level Pore Imaging Gas Transport Electrochemistry Electrode Microstructure and Grading Conclusions & Future Research Plans

13 SOFC Pore Structure Imaging X-Ray Microtomography (XMT) Non-destructive tomography capable of reconstructing 3-D pore structure. X-rays penetrate sample, which is mounted on a rotation stage, and pass through a scintillation screen. The -D slice is captured by a camera. The sample is rotated through 180 degrees where each slice is captured at specified angle intervals and reconstructed into a 3-D volume of the pore structure.

14 SOFC Pore Structure Imaging cont d XMT Experiment details Xradia (Concord, CA) 8 kev copper source 181 projections at 300 sec per projection.6 µm field of view 50 nm resolution 3-D tomographic reconstruction

15 Imaging Processing and Modeling anode Digital image file Geometry Input file for Model ImageJ 5 µm Actual SEM image Model Image A.S. Joshi, W.K.S. Chiu, et al., 9th AIAA , 006.

16 Modeling Challenges Gas diffusion occurs at high temperature and through micron size pores. Continuum theory is no longer valid. Gas particles can get adsorbed on the solid material. Complex structure. SOLID 5 [µm] Chemical reactions among gas components need to be included for the case of internal reforming and at the TPB.

17 A Comparison of Modeling Approaches Molecular Dynamics Monte Carlo SIMULATION COST Dusty Gas Model Lattice Boltzmann Method continuum slip transition free molecular KNUDSEN NUMBER

18 Lattice Boltzmann Method (LBM) Historically derived from the lattice gas cellular automata LBM is a numerical approximation to the Boltzmann equation Multiple species Complex geometry Parallel algorithm SOLID FLUID Wall interactions Non-continuum regime M.E. McCracken M. E. and J. Abraham, Phys. Rev. E, 71:

19 Basic LBM Algorithm: Stream and Collide new time level species old time-level 1 e 4 1 e 3 1 e n σ, n+ 1 i, r + e i = n σ, n i, r Ω σ, n i, r 1 e 5 1 e 0 1 e 1 direction discrete velocity velocity distribution function BGK collision term 1 1 e 6 e 7 1 e 8

20 Multi-Component Gas Transport in a SOFC Anode Digitized Pore Structure φ = 0.5 Z (lattice units) H O mole fraction Z (lattice units) H mole fraction Z (lattice units) X (lattice units) N mole fraction Gas Channel X (lattice units) TPB Gas Channel X (lattice units) TPB 0 A.S. Joshi, W.K.S. Chiu, et al., J. Power Sources, accepted, 006. A.S. Joshi, W.K.S. Chiu, et al., 4 nd Power Sources Conference, pp , 006.

21 LBM Validation Concentration polarization [ V ] Zhao & Virkar (005) Chan et al. (001) Present LB model Non-dimensional current density ( i* )

22 LBM Validation cont d. Knudsen number ( Kn ) Mole fraction ratio ( X* ) Pe = 0.01 Pe = 0.08 Pe = 0.16 Pe = 0.3 Pe = Diffusivity ratio ( D* ) LBM: data points Dusty Gas: solid lines A.S. Joshi, W.K.S. Chiu, et al., ASME IMECE , 006.

23 3D LBM Analysis of a SOFC Anode Z Electrolyte (YSZ) Y H X H O Pore space Anode (Ni + YSZ) Pore Structure (Ψ,<r>,<r >), Properties, η conc, η ohmic H mole fraction Surface representing the interface between the solid region and pores. Pore phase

24 Electrochemical Reaction Kinetics in a SOFC Anode Global Reaction: g g H + O H O + e electrolyte The Gauckler Reaction Mechanism: H k1, k 1 ( g) + S H S H O( g) O S + H H H k, k + S H k 3, k 3 S OH O S k 4, k 4 O S + O S OH O S + x O k 5, k 5 S OH S + A. Bieberle and L.J. Gauckler, Solid State Ionics. 146: 3-41, 00. S + O S S H S k 6, k S O S + VO + eni e - Electrolyte Ni H O S Anode k + / # : S: X S: V. ȯ : O o x : H O(g) e - (1) Reaction rate Surface vacancy Surface species Oxygen vacancies Oxygen ion H (g) () () OH S O S O - (4) () e - O - H S (5) (3) (1) Dissociation/Adsorption/ Desorption () Surface Diffusion (3) Triple Phase Boundary (4) O - Diffusion (5) Ion Transfer into Anode O S Triple Phase Boundary (TPB)

25 Electrochemical Model Rate Equations Traditional analysis requires selection of single rate limiting step and equilibration Langmuir-Hinshelwood type rate equation Approach breaks down when reaction mechanisms contain steps that occur at similar rates For proposed mechanism requires solution to set of (4) coupled nonlinear, stiff differential-equations θ t θ H HO ( k1θ ) k θ θ θ θ θ θ θ θ θ V 1 k H 3 H O k 3 OH V k5 H O V k 5 OH H = ( kθv k θh O + k θoh k θh OθV k θohθ 4 H ) 5 5 ( k3θh θo k 3θOHθV k4θh OθO k θoh k θh OθV k θohθ 4 H ) 5 5 ( k3θhθo k 3θOHθV k4θh OθO k OH k V k 4θ O) 6θ 6θ = + + t θoh t = + + θo = t = θ + θ + θ + θ + θ V H OH HO O θ i : Species Surface Coverage k k o F = k exp β η RT 6 6 ( β ) o F = k 1 exp η RT 6 6 ( θ θ ) i = F N N k k r r J n = o A i F 6 V 6 O

26 Validation of Reaction Kinetics Function H OH Vacancy Bessler (4) 1.0E E-06 HO O Bessler (4) Surface Coverage Surface Coverage 1.0E E Overpotential [V] 1.0E Overpotential [V] g k1, k 1 g k, k k3, k 3 H + S H S HO + S HO S O S OH S + S k4, k 4 k5, k 5 o x k6, k 6.. o HO S+ O S OH S HO S+ S OH S+ H S O + S O S + V + e W.G. Bessler, Solid State Ionics 176: , 005. K. N. Grew, W. K. S. Chiu, et al., ASME IMECE , 006. NI

27 Electrochemistry & Gas Transport in a SOFC Anode (a) (b) (c) Reifsnider et. al. 005 TPB at Ni-YSZ interfaces (d) H H, H O, & N Concentrations Specified Solid Wall Traditional TPB New method allows electrochemically Flux Interface active boundaries to be placed on (See Fig. 1d): obstacles in an ad hock manner as TPB dictates in SEM (See Fig. 1c) H Flux Impermeable Obstacle H O Flux Open Domain Solid Wall Y X Solid Wall L y / H x / L H Mole Fraction y / H x / L K. N. Grew, W. K. S. Chiu, et al., ASME IMECE , H Mole Fraction η act k +/-# θ i

28 Outline Introduction Energy Conversion Fuel Cell Background & Motivation Imaging & Analysis at the Pore Level Pore Imaging Gas Transport Electrochemistry Electrode Microstructure and Grading Conclusions & Future Research Plans

29 Electrode Microstructure Structure can be described by three parameters: channel anode electrolyte cathode Ψ,<r>, <r > TPB 0 x d model domain Ψ Structural Parameter (ε/τ) Porosity: 0 ε 1 Tortuosity: τ 1 ~10X as important upon performance as other parameters in conditions studied. <r> Average pore radius <r > Pore radius distribution Pore-Level Analysis Properties, η act, η ohmic, η conc

30 Effect of Grading Electrode Microstructure Performance evaluated with alternative anode designs Two fuel streams Diluted hydrogen - Conditions near cell outlet 10% H 3% HO balance inert gas Partially reformed methane with internal reforming- Approx. cell inlet 10% H 49% CH 4 30% H O 6% CO 5% CO Four microstructure cases {1} - Ψ is a constant high value of 0.5 {} - Ψ is a constant low value of {3} - Ψ is high at the TPB and low at the gas supply channel 0.5 -> 0.05 {4} - Ψ is low at the TPB and high at the gas supply channel > 0.5 Ψ 0.05 {3} {1} {} {4} Electrolyte Cathode

31 Model Validation by Experiments Concentric Alumina Tubes Furnace Cell Potential (V) Cell Potential Power Density Cell operating temperature 1173 K 113 K 1073 K Power Density (W/cm ) Current Density (ma/cm ) 0.0 SOFC Electric Leads E. S. Greene, W. K. S. Chiu, A. A. Burke and M. G. Medeiros, 4 nd Power Sources Conference, pp , 006.

32 Effect of Electrode Grading on Performance Diluted Hydrogen Feed With Internal Reforming E. S. Greene, W. K. S. Chiu and M. G. Medeiros, J. Power Sources 161:5-31, 006.

33 SOFC Performance Correlations Curve Fits Da ~ d 1.79 R = Da ~ Ψ R = Displays prevalently kinetically limited characteristics (Da<1) Da INCREASING Ψ τ diffusion Da = = τ reaction Ψ R D EC H d C H Exponent of power law fits display larger sensitivity of Da to d than Ψ d [mm] E.S. Greene, M.G. Medeiros and W.K.S. Chiu, J. Fuel Cell Sci. Tech. : , 005.

34 Conclusions SOFC is promising energy conversion device. Performance strongly dependent on electrode microstructure. Presented modeling/experimental approach to analyze and design SOFC electrodes. Optimized fuel cell electrodes can provide a durable high efficiency energy conversion technology for our society.

35 Acknowledgements Sponsors Office of Naval Research Army Research Office University of Connecticut - Institute of Materials Science Collaborators Naval Undersea Warfare Center Adaptive Materials NexTech Materials Xradia Advanced Photon Source, Argonne National Lab

36 Acknowledgements Fuel Cell Group Aldo Peracchio, Visiting Scholar Abhijit Joshi, Post-Doctoral Researcher Graduate Students Srinath S. Chakravarthy Eric S. Greene Kyle N. Grew John R. Izzo Andrew C. Lysaght Undergraduate & High School Students

Introduction to Solid Oxide Fuel Cells. Solid Oxide Fuel Cell (SOFC)

Introduction to Solid Oxide Fuel Cells. Solid Oxide Fuel Cell (SOFC) Introduction to Solid Oxide Fuel Cells Basics Electrochemistry Microstructure Effects Stacks Solid Oxide Fuel Cell (SOFC) CATHODE: (La,Sr)(Mn)O 3 (LSM) LSM-YSZ ELECTROLYTE: ANODE: Y-doped ZrO 2 (YSZ) Ni-YSZ

More information

Introduction Fuel Cells Repetition

Introduction Fuel Cells Repetition Introduction Fuel Cells Repetition Fuel cell applications PEMFC PowerCell AB, (S1-S3) PEMFC,1-100 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the

More information

State-Space Modeling of Electrochemical Processes. Michel Prestat

State-Space Modeling of Electrochemical Processes. Michel Prestat State-Space Modeling of Electrochemical Processes Who uses up my battery power? Michel Prestat ETH-Zürich Institute for Nonmetallic Materials Head: Prof. L.J. Gauckler Outline Electrochemistry Electrochemical

More information

On Continuum Models for Heat Transfer in Small Scale Porous Materials Professor Jinliang Yuan

On Continuum Models for Heat Transfer in Small Scale Porous Materials Professor Jinliang Yuan On Continuum Models for Heat Transfer in Small Scale Porous Materials Professor Jinliang Yuan August 30, 2013 Department of Energy Sciences Lund University, Sweden Jinliang.yuan@energy.lth.se Why porous

More information

FUEL CELLS: INTRODUCTION

FUEL CELLS: INTRODUCTION FUEL CELLS: INTRODUCTION M. OLIVIER marjorie.olivier@fpms.ac.be 19/5/8 A SIMPLE FUEL CELL Two electrochemical half reactions : H 1 O H + + H + e + + e H O These reactions are spatially separated: Electrons:

More information

Lifetime and Performance Prediction of SOFC Anodes Operated with Trace Amounts of Hydrogen Sulfide

Lifetime and Performance Prediction of SOFC Anodes Operated with Trace Amounts of Hydrogen Sulfide www.dlr.de Chart 1 > SOFC Forum > W. G. Bessler Presentation > 28.06.2012 Lifetime and Performance Prediction of SOFC Anodes Operated with Trace Amounts of Hydrogen Sulfide Matthias Riegraf, Günter Schiller,

More information

Multi-Physicochemical Modeling of Solid Oxide Fuel Cells and Electrolyzer Cells

Multi-Physicochemical Modeling of Solid Oxide Fuel Cells and Electrolyzer Cells University of South Carolina Scholar Commons Theses and Dissertations 1-1-013 Multi-Physicochemical Modeling of Solid Oxide Fuel Cells and Electrolyzer Cells YUANYUAN XIE University of South Carolina Follow

More information

Grading the amount of electrochemcial active sites along the main flow direction of an SOFC Andersson, Martin; Yuan, Jinliang; Sundén, Bengt

Grading the amount of electrochemcial active sites along the main flow direction of an SOFC Andersson, Martin; Yuan, Jinliang; Sundén, Bengt Grading the amount of electrochemcial active sites along the main flow direction of an SOFC Andersson, Martin; Yuan, Jinliang; Sundén, Bengt Published in: Journal of the Electrochemical Society DOI: 10.1149/2.026301jes

More information

Solid Oxide Fuel Cell Material Structure Grading in the Direction Normal to the Electrode/Electrolyte Interface using COMSOL Multiphysics

Solid Oxide Fuel Cell Material Structure Grading in the Direction Normal to the Electrode/Electrolyte Interface using COMSOL Multiphysics Solid Oxide Fuel Cell Material Structure Grading in the Direction Normal to the Electrode/Electrolyte Interface using COMSOL Multiphysics M. Andersson*, B. Sundén, Department of Energy Sciences, Lund University,

More information

Batteries (Electrochemical Power Sources)

Batteries (Electrochemical Power Sources) Batteries (Electrochemical Power Sources) 1. Primary (single-discharge) batteries. => finite quantity of the reactants 2. Secondary or rechargeable batteries => regeneration of the original reactants by

More information

Oxygen Reduction Reaction

Oxygen Reduction Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Oxygen Reduction Reaction Oxygen is the most common oxidant for most fuel cell cathodes simply

More information

Advanced Analytical Chemistry Lecture 12. Chem 4631

Advanced Analytical Chemistry Lecture 12. Chem 4631 Advanced Analytical Chemistry Lecture 12 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson II Lesson II: fuel cells (electrochemistry)

More information

Modeling of a one dimensional Anode supported high temperature tubular SOFC

Modeling of a one dimensional Anode supported high temperature tubular SOFC International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.6, pp 784-792, 2017 Modeling of a one dimensional Anode supported high temperature tubular

More information

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells K. Tseronis a, I. Kookos b, C. Theodoropoulos a* a School of Chemical Engineering and Analytical Science, University

More information

DMFC Models and Applications - A Literature Survey, Part I

DMFC Models and Applications - A Literature Survey, Part I Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 DMFC Models and Applications - A Literature Survey, Part I S. Patrabansh,

More information

SOFC Modeling Considering Electrochemical Reactions at the Active Three Phase Boundaries

SOFC Modeling Considering Electrochemical Reactions at the Active Three Phase Boundaries SOFC Modeling Considering Electrochemical Reactions at the Active Three Phase Boundaries Andersson, Martin; Yuan, Jinliang; Sundén, Bengt Published in: International Journal of Heat and Mass Transfer DOI:

More information

SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants

SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants Andersson, Martin; Yuan, Jinliang; Sundén, Bengt Published in: Journal of Power Sources DOI: 10.1016/j.jpowsour.01.1.1

More information

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Diffusion and Adsorption in porous media Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Devices used to Measure Diffusion in Porous Solids Modes of transport in

More information

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010 Modeling as a tool for understanding the MEA Henrik Ekström Utö Summer School, June 22 nd 2010 COMSOL Multiphysics and Electrochemistry Modeling The software is based on the finite element method A number

More information

Gas Turbine Technologies Torino (Italy) 26 January 2006

Gas Turbine Technologies Torino (Italy) 26 January 2006 Pore Scale Mesoscopic Modeling of Reactive Mixtures in the Porous Media for SOFC Application: Physical Model, Numerical Code Development and Preliminary Validation Michele CALI, Pietro ASINARI Dipartimento

More information

Numerical Study of Heterogeneous Reactions in an SOFC Anode With Oxygen Addition. Yong Hao, David G. Goodwin

Numerical Study of Heterogeneous Reactions in an SOFC Anode With Oxygen Addition. Yong Hao, David G. Goodwin 1859 ECS Transactions, 7 (1) 1859-1867 (7) 1.1149/1.2729298, The Electrochemical Society Numerical Study of Heterogeneous Reactions in an SOFC Anode With Oxygen Addition Yong Hao, David G. Goodwin Division

More information

Fuel Cell Activities in MME Waterloo

Fuel Cell Activities in MME Waterloo Fuel Cell Activities in MME Waterloo Xianguo Li and Roydon Fraser Fuel Cells and Green Energy Research Group Department of Mechanical & Mechatronics Engineering University of Waterloo, Waterloo, Ontario,

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Ceramic Processing Research

Ceramic Processing Research Journal of Ceramic Processing Research. Vol. 8, No. 3, pp. 224-228 (2007) J O U R N A L O F Ceramic Processing Research Computer modeling of single-chamber SOFCs with hydrocarbon fuel Jeong-Hwa Cha 1,2,

More information

K. N. Grew 1,A.S.Joshi 1,andW.K.S.Chiu 1 * ORIGINAL RESEARCH PAPER. Abstract. 1 Introduction. Received July 13, 2010accepted July 26, 2010

K. N. Grew 1,A.S.Joshi 1,andW.K.S.Chiu 1 * ORIGINAL RESEARCH PAPER. Abstract. 1 Introduction. Received July 13, 2010accepted July 26, 2010 DOI: 10.1002/fuce.201000078 Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-scale Lattice Boltzmann Study with Detailed Reaction Kinetics K. N. Grew 1,A.S.Joshi

More information

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam 10.626 Electrochemical Energy Systems, Spring 2014, M. Z. Bazant Final Exam Instructions. This is a three-hour closed book exam. You are allowed to have five doublesided pages of personal notes during

More information

Nano-Composites for Next-Generation Electrochemical Devices

Nano-Composites for Next-Generation Electrochemical Devices Nano-Composites for Next-Generation Electrochemical Devices Dr. Jason D. Nicholas Chemical Engineering & Materials Science Dept. Michigan State University, East Lansing, MI http://www.egr.msu.edu/nicholasgroup/index.html

More information

A Current-Voltage Model for Hydrogen Production by Electrolysis of Steam Using Solid Oxide Electrolysis Cell (SOEC)

A Current-Voltage Model for Hydrogen Production by Electrolysis of Steam Using Solid Oxide Electrolysis Cell (SOEC) 15 th International Conference on Environmental Science and Technology Rhodes, Greece, 31 August to 2 September 2017 A Current-Voltage Model for Hydrogen Production by Electrolysis of Steam Using Solid

More information

Polarization analysis and microstructural characterization of SOFC anode and electrolyte supported cells

Polarization analysis and microstructural characterization of SOFC anode and electrolyte supported cells Polarization analysis and microstructural characterization of SOFC anode and electrolyte supported cells Lanzini A., Leone P., Santarelli M., Asinari P., Calì M. Dipartimento di Energetica. Politecnico

More information

Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell

Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell Keyvan Daneshvar *1, Alessandro Fantino 1, Cinzia Cristiani 1, Giovanni Dotelli 1, Renato Pelosato 1, Massimo Santarelli

More information

Hybrid CFD and equivalent-circuit impedance modeling of solid oxide electrochemical cells

Hybrid CFD and equivalent-circuit impedance modeling of solid oxide electrochemical cells Risø campus Hybrid CFD and equivalent-circuit impedance modeling of solid oxide electrochemical cells Valerio Novaresio, Christopher Graves, Henrik Lund Frandsen, Massimo Santarelli Valerio Novaresio 11/12/2013

More information

Lattice Boltzmann Modeling From the Macro- to the Microscale - An Approximation to the Porous Media in Fuel Cells -

Lattice Boltzmann Modeling From the Macro- to the Microscale - An Approximation to the Porous Media in Fuel Cells - Lattice Boltzmann Modeling From the Macro- to the Microscale - An Approximation to the Porous Media in Fuel Cells Espinoza Andaluz, Mayken; Sundén, Bengt; Andersson, Martin Unpublished: 2014-01-01 Link

More information

Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode 1

Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode 1 Kyle N. Grew John R. Izzo, Jr. Wilson K. S. Chiu 2 e-mail: wchiu@engr.uconn.edu Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269-3139 Characterization

More information

Electrochimica Acta 64 (2012) Contents lists available at SciVerse ScienceDirect. Electrochimica Acta

Electrochimica Acta 64 (2012) Contents lists available at SciVerse ScienceDirect. Electrochimica Acta Electrochimica Acta 64 (2012) 46 64 Contents lists available at SciVerse ScienceDirect Electrochimica Acta j ourna l ho me pag e: www.elsevier.com/locate/electacta 3-D pore-scale resolved model for coupled

More information

Air Flow Modeling and Performance Prediction of the. Integrated-Planar Solid Oxide Fuel Cell IP-SOFC

Air Flow Modeling and Performance Prediction of the. Integrated-Planar Solid Oxide Fuel Cell IP-SOFC Applied Mathematical Sciences, Vol. 7, 2013, no. 96, 4775-4788 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.36296 Air Flow Modeling and Performance Prediction of the Integrated-Planar

More information

FUEL CELLS in energy technology (4)

FUEL CELLS in energy technology (4) Fuel Cells 1 FUEL CELLS in energy technology (4) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU Munich summer term 213 Fuel Cells 2 Nernst equation and its application to fuel

More information

Effect of Design Parameters on the Internal Steam Reforming of Methane in Solid Oxide Fuel Cell Systems

Effect of Design Parameters on the Internal Steam Reforming of Methane in Solid Oxide Fuel Cell Systems American Journal of Modern Energy 2017; 3(3): 38-49 http://www.sciencepublishinggroup.com/j/ajme doi: 10.11648/j.ajme.20170303.11 Effect of Design Parameters on the Internal Steam Reforming of Methane

More information

Direct Internal Methane Steam Reforming in Operating Solid Oxide Fuel Cells

Direct Internal Methane Steam Reforming in Operating Solid Oxide Fuel Cells Master thesis - Mechanical Engineering Direct Internal Methane Steam Reforming in Operating Solid Oxide Fuel Cells A kinetic modelling approach Lindert van Biert 4044452 Delft University of Technology

More information

SCIENCES & TECHNOLOGY

SCIENCES & TECHNOLOGY Pertanika J. Sci. & Technol. 22 (2): 645-655 (2014) SCIENCES & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Numerical Modelling of Molten Carbonate Fuel Cell: Effects of Gas Flow Direction

More information

Fernando O. Raineri. Office Hours: MWF 9:30-10:30 AM Room 519 Tue. 3:00-5:00 CLC (lobby).

Fernando O. Raineri. Office Hours: MWF 9:30-10:30 AM Room 519 Tue. 3:00-5:00 CLC (lobby). Fernando O. Raineri Office Hours: MWF 9:30-10:30 AM Room 519 Tue. 3:00-5:00 CLC (lobby). P1) What is the reduction potential of the hydrogen electrode g bar H O aq Pt(s) H,1 2 3 when the aqueous solution

More information

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802 Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells using Fluent Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park,

More information

Applied Energy 87 (2010) Contents lists available at ScienceDirect. Applied Energy. journal homepage:

Applied Energy 87 (2010) Contents lists available at ScienceDirect. Applied Energy. journal homepage: Applied Energy 87 (2010) 1461 1476 Contents lists available at ScienceDirect Applied Energy journal homepage: www.elsevier.com/locate/apenergy Review on modeling development for multiscale chemical reactions

More information

Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels a review

Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels a review Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels a review J. Hanna a,, W.Y. Lee a, Y. Shi b, A.F. Ghoniem a a Department of Mechanical

More information

Fuel Cells in Energy Technology. Tutorial 5 / SS solutions. Prof. W. Schindler, Jassen Brumbarov / Celine Rüdiger

Fuel Cells in Energy Technology. Tutorial 5 / SS solutions. Prof. W. Schindler, Jassen Brumbarov / Celine Rüdiger Fuel Cells in Energy Technology Tutorial 5 / SS 2013 - solutions Prof. W. Schindler, Jassen Brumbarov / Celine Rüdiger 05.06.2013 Homework 3: What hydrogen flow rate (g/hour) is required to generate 1

More information

Tutorials : Corrosion Part 1: Theory and basics

Tutorials : Corrosion Part 1: Theory and basics Tutorials : Corrosion Part 1: Theory and basics Outline A. Definition and effects of corrosion B. General thermodynamics and kinetics in electrochemistry C. Thermodynamics and kinetics in corrosion 2 2/21

More information

Three-Dimensional CFD Modeling of Transport Phenomena in a Cross-Flow Anode-Supported Planar SOFC

Three-Dimensional CFD Modeling of Transport Phenomena in a Cross-Flow Anode-Supported Planar SOFC Energies 2014, 7, 80-98; doi:10.3390/en7010080 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Three-Dimensional CFD Modeling of Transport Phenomena in a Cross-Flow Anode-Supported

More information

Modeling the next battery generation: Lithium-sulfur and lithium-air cells

Modeling the next battery generation: Lithium-sulfur and lithium-air cells Modeling the next battery generation: Lithium-sulfur and lithium-air cells D. N. Fronczek, T. Danner, B. Horstmann, Wolfgang G. Bessler German Aerospace Center (DLR) University Stuttgart (ITW) Helmholtz

More information

NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT

NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT Lakshminarayanan V 1, Karthikeyan P 2, D. S. Kiran Kumar 1 and SMK Dhilip Kumar 1 1 Department of Mechanical Engineering, KGiSL Institute

More information

Three-Dimensional Numerical Analysis of Mixed Ionic and Electronic. Conducting Cathode Reconstructed by Focused Ion Beam Scanning. Electron Microscope

Three-Dimensional Numerical Analysis of Mixed Ionic and Electronic. Conducting Cathode Reconstructed by Focused Ion Beam Scanning. Electron Microscope Three-Dimensional Numerical Analysis of Mixed Ionic and Electronic Conducting Cathode Reconstructed by Focused Ion Beam Scanning Electron Microscope Katsuhisa Matsuzaki 1, Naoki Shikazono * and Nobuhide

More information

2D Heat and Mass Transfer Modeling of Methane Steam Reforming for Hydrogen Production in a Compact Reformer

2D Heat and Mass Transfer Modeling of Methane Steam Reforming for Hydrogen Production in a Compact Reformer This is the Pre-Published Version. 2D Heat and Mass Transfer Modeling of Methane Steam Reforming for Hydrogen Production in a Compact Reformer Meng Ni Building Energy Research Group, Department of Building

More information

Electrochemical and thermo-fluid modeling of a tubular solid oxide fuel cell with accompanying indirect internal fuel reforming

Electrochemical and thermo-fluid modeling of a tubular solid oxide fuel cell with accompanying indirect internal fuel reforming CHAPTER 3 Electrochemical and thermo-fluid modeling of a tubular solid oxide fuel cell with accompanying indirect internal fuel reforming K. Suzuki 1, H. Iwai 2 & T. Nishino 2 1 Department of Machinery

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

CFD Modeling: Different Kinetic Approaches for Internal Reforming Reactions in an Anode-Supported SOFC

CFD Modeling: Different Kinetic Approaches for Internal Reforming Reactions in an Anode-Supported SOFC Hedvig Paradis 1 e-mail: hedvig.paradis@energy.lth.se Martin Andersson Jinliang Yuan Bengt Sundén Department of Energy Sciences, Faculty of Engineering, Lund University, P.O. Box 118, 221 00 Lund, Sweden

More information

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Sandro Skoda 1*, Eric Robalinho 2, André L. R. Paulino 1, Edgar F. Cunha 1, Marcelo Linardi

More information

The effect of heat transfer on the polarizations within an intermediate temperature solid oxide fuel cell

The effect of heat transfer on the polarizations within an intermediate temperature solid oxide fuel cell Advanced Computational Methods and Experiments in Heat Transfer XII 3 The effect of heat transfer on the polarizations within an intermediate temperature solid oxide fuel cell M. Navasa, M. Andersson,

More information

possesses negative potential & undergoes oxidation preferably act as ANODE

possesses negative potential & undergoes oxidation preferably act as ANODE ELECTROCHEMISTRY Introduction: Electrochemistry is the area of Chemistry dealing with the interconversion of electrical energy and chemical energy. There are many applications of this in every day life.

More information

Numerical model of Ni-infiltrated porous anode solid oxide fuel cells

Numerical model of Ni-infiltrated porous anode solid oxide fuel cells Numerical model of Ni-infiltrated porous anode solid oxide fuel cells by Eric Freddy Hardjo A thesis submitted to the Department of Chemical Engineering in conformity with the requirements for the degree

More information

VI. Porous Media. Lecture 34: Transport in Porous Media

VI. Porous Media. Lecture 34: Transport in Porous Media VI. Porous Media Lecture 34: Transport in Porous Media 4/29/20 (corrected 5/4/2 MZB) Notes by MIT Student. Conduction In the previous lecture, we considered conduction of electricity (or heat conduction

More information

FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL

FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL CONDENSED MATTER FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL V. IONESCU 1 1 Department of Physics and Electronics, Ovidius University, Constanta, 900527, Romania, E-mail: ionescu.vio@gmail.com

More information

January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells. Fuel Cells

January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells. Fuel Cells January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells Fuel Cells Instructor James M. Fenton, Professor, Chemical Engineering University of Connecticut Teaching Assistants: 1.

More information

Parameter Effects on Transport Phenomena in Conjunction with Internal Reforming Reactions in Intermediate Temperature SOFCs

Parameter Effects on Transport Phenomena in Conjunction with Internal Reforming Reactions in Intermediate Temperature SOFCs 1909 10.1149/1.2729303, The Electrochemical Society Parameter Effects on Transport Phenomena in Conjunction with Internal Reforming Reactions in Intermediate Temperature SOFCs Jinliang Yuan a,*, Wei Guo

More information

Sliding Mode Control for Stabilizing of Boost Converter in a Solid Oxide Fuel Cell

Sliding Mode Control for Stabilizing of Boost Converter in a Solid Oxide Fuel Cell BUGARAN ACADEMY OF SCENCES CYBERNETCS AND NFORMATON TECHNOOGES Volume 13, No 4 Sofia 013 Print SSN: 1311-970; Online SSN: 1314-4081 DO: 10.478/cait-013-0060 Sliding Mode Control for Stabilizing of Boost

More information

A 3-dimensional planar SOFC stack model

A 3-dimensional planar SOFC stack model A 3-dimensional planar SOFC stack model Michel Bernier, James Ferguson and Raphaèle Herbin 1 Introduction A fuel cell converts chemical energy to electrical energy through electro-chemical reactions at

More information

ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL IN MOBILE APPLICATIONS

ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL IN MOBILE APPLICATIONS Int. J. of Applied Mechanics and Engineering, 015, vol.0, No., pp.319-38 DOI: 10.1515/ijame-015-001 ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL

More information

Numerical Assessment of SOFC Anode Polarization Based on Three-Dimensional Model. Microstructure Reconstructed from FIB-SEM Images

Numerical Assessment of SOFC Anode Polarization Based on Three-Dimensional Model. Microstructure Reconstructed from FIB-SEM Images Numerical Assessment of SFC Anode Polarization Based on Three-Dimensional Model Microstructure Reconstructed from FIB-SEM Images Naoki Shikazono, Daisuke Kanno, Katsuhisa Matsuzaki, isanori Teshima, Shinji

More information

2D segment model for a bi-layer electrolyte solid oxide fuel cell

2D segment model for a bi-layer electrolyte solid oxide fuel cell This is the Pre-Published Version. 2D segment model for a bi-layer electrolyte solid oxide fuel cell Shuanglin Shen a, *, Meng Ni b a School of Electric Power Engineering, China University of Mining and

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS

REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS S.K. Lazarouk, D.A. Sasinovich BELARUSIAN STATE UNIVERSITY OF INFORMATICS AND RADIOELECTRONICS Outline: -- experimental

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17653 Supplementary Methods Electronic transport mechanism in H-SNO In pristine RNO, pronounced electron-phonon interaction results in polaron formation that dominates the electronic

More information

Three-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Electrolysis Cells and Stacks

Three-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Electrolysis Cells and Stacks INL/CON-08-14297 PREPRINT Three-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Electrolysis Cells and Stacks 8 th European SOFC Forum Grant Hawkes James O Brien Carl Stoots Stephen Herring

More information

NUMERICAL MODELING OF THE EFFECT OF SULFUR POISONING ON THE PERFORMANCE OF THE POROUS ANODE SOLID OXIDE FUEL CELL

NUMERICAL MODELING OF THE EFFECT OF SULFUR POISONING ON THE PERFORMANCE OF THE POROUS ANODE SOLID OXIDE FUEL CELL NUMERICAL MODELING OF THE EFFECT OF SULFUR POISONING ON THE PERFORMANCE OF THE POROUS ANODE SOLID OXIDE FUEL CELL by Negar Manafi Rasi A thesis submitted to the Department of Chemical Engineering In conformity

More information

Review of temperature distribution in cathode of PEMFC

Review of temperature distribution in cathode of PEMFC Project Report 2008 MVK 160 Heat and Mass Transport May 08, 2008, Lund, Sweden Review of temperature distribution in cathode of PEMFC Munir Ahmed Khan Department of Energy Sciences, Lund Institute of Technology,

More information

Evaluation of SOFC Anode Polarization Simulation using. Three-Dimensional Microstructures Reconstructed by FIB Tomography

Evaluation of SOFC Anode Polarization Simulation using. Three-Dimensional Microstructures Reconstructed by FIB Tomography Evaluation of SOFC Anode Polarization Simulation using Three-Dimensional Microstructures Reconstructed by FIB Tomography Daisuke Kanno a, c, Naoki Shikazono b *, Norikazu Takagi a, d, Katsuhisa Matsuzaki

More information

Modelling fuel cells in start-up and reactant starvation conditions

Modelling fuel cells in start-up and reactant starvation conditions Modelling fuel cells in start-up and reactant starvation conditions Brian Wetton Radu Bradean Keith Promislow Jean St Pierre Mathematics Department University of British Columbia www.math.ubc.ca/ wetton

More information

Extrinsic Defect Reactions in

Extrinsic Defect Reactions in Chapter 5 Extrinsic Defect Reactions in Perovskite Materials The work presented in this Chapter has been published in Solid State Ionics [203]. 5.1 Introduction With dwindling fossil fuel reserves [204]

More information

III. Reaction Kinetics Lecture 15: Ion Adsorption and Intercalation

III. Reaction Kinetics Lecture 15: Ion Adsorption and Intercalation III. Reaction Kinetics Lecture 15: Ion Adsorption and Intercalation MIT Student 1. Surface adsorption/intercalation of neutral species Adsorption on a surface or intercalation in a bulk solid involves

More information

Cross Section of Proton Exchange Membrane Fuel Cell

Cross Section of Proton Exchange Membrane Fuel Cell PEMFC Electrodes 1 Cross Section of Proton Exchange Membrane Fuel Cell Anode Cathode 2 Typical PEMFC Electrodes: - Anode Hydrogen Oxidation - Pt Ru / C - Cathode Oxygen reduction - Pt / C Pt is alloyed

More information

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system.

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system. Objective of the fuel cell experiments: To familiarize the working principles and performance characteristics of proton exchange membrane fuel cells. Experimental Procedures Instrumentation A Scriber Associates

More information

Modeling of a Coal Syngas Based SOFC

Modeling of a Coal Syngas Based SOFC Status, Needs and Future Applications. Morgantown WV, October 11-1, 007 Modeling of a Coal Syngas Based SOFC S. R. Pakalapati, F. Elizalde-Blancas, I. B. Celik Mechanical and Aerospace Engineering Department,

More information

Lattice Boltzmann Simulation of Complex Flows II: Applications

Lattice Boltzmann Simulation of Complex Flows II: Applications Lattice Boltzmann Simulation of Flows II: Applications Bodies Dr Giacomo Falcucci, PhD University of Rome Tor Vergata, Via del Politecnico 1, 00100, Italy Outline Bodies 1 2 Reconstruction 3 Problem Statement

More information

Power Control for a Polymer Electrolyte Membrane Fuel Cell

Power Control for a Polymer Electrolyte Membrane Fuel Cell Power Control for a Polymer lectrolyte Membrane Fuel Cell Donald J. Chmielewski Kevin Lauzze Department of Chemical and nvironmental ngineering Illinois Institute of Technology Presented at the Annual

More information

Materials for Electrochemical Energy Conversion and Storage. Truls Norby 1.1

Materials for Electrochemical Energy Conversion and Storage. Truls Norby 1.1 Materials for Electrochemical Energy Conversion and Storage Truls Norby 1.1 Preface This text is being written in the first round to serve as curriculum for parts of the course MEF3200/MEF4200 Energy Materials

More information

Lecture 29: Forced Convection II

Lecture 29: Forced Convection II Lecture 29: Forced Convection II Notes by MIT Student (and MZB) As discussed in the previous lecture, the magnitude of limiting current can be increased by imposing convective transport of reactant in

More information

Electrochemistry objectives

Electrochemistry objectives Electrochemistry objectives 1) Understand how a voltaic and electrolytic cell work 2) Be able to tell which substance is being oxidized and reduced and where it is occuring the anode or cathode 3) Students

More information

Fuel Cells Activation polarization

Fuel Cells Activation polarization Fuel Cells The principle of fuel cells Oxygen and hydrogen, when mixed together in the presence of enough activation energy have a natural tendency to react and form water, because the Gibbs free energy

More information

On heat and mass transfer phenomena in PEMFC and SOFC and modeling approaches

On heat and mass transfer phenomena in PEMFC and SOFC and modeling approaches On heat and mass transfer phenomena in PEMFC and SOFC and modeling approaches J. Yuan 1, M. Faghri 2 & B. Sundén 1 1 Division of Heat Transfer, Lund Institute of Technology, Sweden. 2 Department of Mechanical

More information

Chapter 12: Chemistry of Solutions

Chapter 12: Chemistry of Solutions CHEM 1412 LECTURE OUTLINE - Smr II 2017 - Ch 12-20 General Chemistry II (Chem 1412/LSC - Tomball) Chapter 12: Chemistry of Solutions I. Types of Solutions A. Definition of Solutions B. Components of A

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Electrochemical Cell Consists of electrodes which dip into an electrolyte & in which a chem. rxn. uses or generates an electric current Voltaic (Galvanic) Cell Spont. rxn. -

More information

Electrochemical System

Electrochemical System Electrochemical System Topic Outcomes Week Topic Topic Outcomes 8-10 Electrochemical systems It is expected that students are able to: Electrochemical system and its thermodynamics Chemical reactions in

More information

Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell

Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell by Ibrahim Alaefour A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree

More information

Fuel Cells Jong Hak Kim Chemical Engineering Yonsei University

Fuel Cells Jong Hak Kim Chemical Engineering Yonsei University 에너지소재특론 Fuel Cells Jong Hak Kim Chemical Engineering Yonsei University Fuel Cells Electrochemical cell which can continuously convert the chemical energy of a fuel and an oxidant to electrical energy PEMFC

More information

K n. III. Gas flow. 1. The nature of the gas : Knudsen s number. 2. Relative flow : Reynold s number R = ( dimensionless )

K n. III. Gas flow. 1. The nature of the gas : Knudsen s number. 2. Relative flow : Reynold s number R = ( dimensionless ) III. Gas flow. The nature of the gas : Knudsen s number K n λ d 2. Relative flow : U ρ d η U : stream velocity ρ : mass density Reynold s number R ( dimensionless ) 3. Flow regions - turbulent : R > 2200

More information

Model Development and Validation of Samaria Doped Ceria (SDC) Based Solid Oxide Fuel Cell Operating with Practical Fuels

Model Development and Validation of Samaria Doped Ceria (SDC) Based Solid Oxide Fuel Cell Operating with Practical Fuels Model Development and Validation of Samaria Doped Ceria (SDC) Based Solid Oxide Fuel Cell Operating with Practical Fuels by Mazni Ismail A thesis presented to the University of Waterloo in fulfillment

More information

Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed

Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed Electrochimica Acta 49 (2004) 2333 2341 Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed Krishan Kumar Bhatia, Chao-Yang Wang Electrochemical Engine

More information

Chapter 19: Oxidation - Reduction Reactions

Chapter 19: Oxidation - Reduction Reactions Chapter 19: Oxidation - Reduction Reactions 19-1 Oxidation and Reduction I. Oxidation States A. The oxidation rules (as summarized by Mr. Allan) 1. In compounds, hydrogen has an oxidation # of +1. In compounds,

More information

Numerical simulation of proton exchange membrane fuel cell

Numerical simulation of proton exchange membrane fuel cell CHAPTER 6 Numerical simulation of proton exchange membrane fuel cell T.C. Jen, T.Z. Yan & Q.H. Chen Department of Mechanical Engineering, University of Wisconsin-Milwaukee, USA. Abstract This chapter presents

More information

Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion The MIT Faculty has made this article openly available. Please share how this access benefits

More information

Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell

Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell A. H. Sadoughi 1 and A. Asnaghi 2 and M. J. Kermani 3 1, 2 Ms Student of Mechanical Engineering, Sharif University of Technology Tehran,

More information

DEVELOPMENT OF A NOVEL COMPACT REFORMER FOR PEMFC

DEVELOPMENT OF A NOVEL COMPACT REFORMER FOR PEMFC DEVELOPMENT OF A NOVEL COMPACT REFORMER FOR PEMFC By JING SU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR

More information