Nano-Composites for Next-Generation Electrochemical Devices

Size: px
Start display at page:

Download "Nano-Composites for Next-Generation Electrochemical Devices"

Transcription

1 Nano-Composites for Next-Generation Electrochemical Devices Dr. Jason D. Nicholas Chemical Engineering & Materials Science Dept. Michigan State University, East Lansing, MI MSU EGR Noontime Lecture Series- April 6, 2010

2 A Call to Arms 50% Increase in World Energy Demand in 30 years! Today, 87% of the world s electrical energy comes from the breakup of chemical bonds. Energy Information Association, U.S. Department of Energy, (2009). 2

3 Solid Oxide Fuel Cell (SOFC) Overview Oxygen Conducting SOFCs 3

4 Solid Oxide Fuel Cell (SOFC) Overview SOFC Advantages - Precious metal H 2 dissociation catalysts are not required - Fuel Flexibility (H 2, Gasoline, Natural Gas, JP-8, Butane, etc) - Efficiencies of ~80% with Cogeneration, 60% without - Provides a Transition to the H 2 Economy - Can be made using cheap, colloidal deposition techniques SOFC Technological Challenges - Traditionally operated above 800 o C - Performance limited by electrodes, typically cathodes SOFC Cathode Reaction: 1/2O 2 (g) + 2e - + V o ** = O o 4

5 Justification for Nano- Composite SOFC Electrodes Use high performance materials Data for 800 o C in Air Make composite electrodes 10mm Colloidal Film 100nm Thin Film The imposed limits would allow for dense cathodes with a cathode R P 0.1Wcm 2, e - migration distances 1cm, and R S 0.01* R P. 5 LSC=La 0.6 Sr 0.4 CoO 3-x LSCF=La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-x LSFC= La 0.6 Sr 0.4 Fe 0.8 Co 0.2 O 3-x LSF=La 0.6 Sr 0.4 FeO 3-x BSCF=Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-x YSZ= Y 0.08 Zr 0.92 O 1.9 CGO=Ce 0.9 Gd 0.1 O 1.95 LSGM= La 0.9 Sr 0.1 Ga 0.8 Sr 0.2 O 3-x

6 Talk Outline Nano-Composites -Nano-Composite SOFC Cathodes -S.I.M.P.L.E. Model to Predict SOFC Cathode Performance Nicholas Group Research Overview

7 Symmetric Cell Fabrication Step 1 Produce 98%+ Dense CGO Pellets by Firing at 1450 o C for 6 hrs 7

8 Symmetric Cell Fabrication Step 2 Screen Print 20mm Thick CGO Scaffold Layers, Fire at 1100 o C for 1 hr 8

9 Symmetric Cell Fabrication Step 3 Screen Print 17.5mm Thick LSCF Current Collector Layers, Fire at 1000 o C for 1 hr 9

10 Symmetric Cell Fabrication Step 4 Infiltrate Nitrate Solutions through LSCF Current Collector into CGO Scaffold, Fire at 800 o C for 2 hrs. 10

11 Symmetric Cell Fabrication Step 5 Apply Gold Current Collection Grid and Measure Electrical Properties 11

12 Symmetric Cell Electrical Measurements Polarization Resistances for LSCF-CGO Cathodes Infiltrated Multiple Times with 1mL of 1.4M La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-d Nitrate Solution Target Shah, M., Nicholas, J. D., and Barnett, S. A., Electrochemistry Communications 11, 2 (2008). R p (W-cm 2 ) ο C 700 ο C Volume % LSCF Solid Lines = Rp of a Pure Porous LSCF Cathode from Beckel, D. et al., Solid State Ionics 178,

13 Talk Outline Next-Generation Electrochemical Devices Nano-Composites -Nano-Composite SOFC Cathodes -S.I.M.P.L.E. Model to Predict SOFC Cathode Performance Interface Engineereing Nicholas Group Overview

14 Symmetric Cell Fabrication 14

15 Symmetric Cell Fabrication LSCF Infiltrated CGO Cathode CGO Electrolyte 50µm 15

16 Symmetric Cell Fabrication LSCF Infiltrated CGO Cathode CGO Electrolyte 50µm 16

17 Symmetric Cell Characterization Images of La0.6Sr0.4Co0.2Fe0.8O3-d Infiltrated into CGO Courtesy of Megna Shah 17

18 Symmetric Cell Characterization 500nm Images of La0.6Sr0.4Co0.2Fe0.8O3-d Infiltrated into CGO Courtesy of Megna Shah 18

19 S.I.M.P.L.E. Model to Predict SOFC Cathode Performance ~~ 19

20 S.I.M.P.L.E. Model to Predict SOFC Cathode Performance Shah, M., Nicholas, J. D. & Barnett, S. A. Electrochem. Commun. 11, 2-5 (2008). R p 1 2h 1 Exp r R A r I Sc A Inf h 1 Exp h 2h 1 Exp h 1 pexp 1 Exp pr Shah, M., Nicholas, J. D., Barnett, S. A., Electrochem. Commun. 11, 2 (2008). V r 1 O, Sc p RI A A Inf Sc V V O, Sc O, Sc RI A AInf RI A A Inf Sc Sc Based in large part on the model of C.W. Tanner, K.-Z. Fung and A.V. Virkar, J. Electrochem. Soc (1997) (1), p

21 S.I.M.P.L.E. Model to Predict SOFC Cathode Performance S.I.M.P.L.E model predictions matchs both the 600 o C & 700 o C data without the use of fitting parameters! (Estimates are within 40% of Experimental Values) Ionic Resistance in CGO also limiting at high temp. E a (Rs,LSCF) ~ 1.6eV 1 E a (CGO-V O -) ~ ev 2,3 Shah, M., Nicholas, J. D. & Barnett, S. A. Electrochem. Commun. 11, F.S. Baumann et al. Journal of the Electrochemical Society 154(9)(2007) B M. Mogensen et al. Solid State Ionics 129(1-4)(2000) B.C.H. Steele et al. Solid State Ionics 129(1-4)(2000) Shah, M., Nicholas, J. D., and Barnett, S. A., Electrochemistry Communications 11, 2 (2008).

22 S.I.M.P.L.E. Model to Predict SOFC Cathode Performance SSC=Sm 0.5 Sr 0.5 CoO 3-x SDC= Sm 0.2 Ce 0.8 O 1.9 LSC= La 0.6 Sr 0.4 CoO 3-x YSZ=Y 0.08 Zr 0.92 O 1.96 (SSC-SDC) F. Zhao, Z. Wang, M. Liu, L. Zhang, C. Xia and F. Chen, J. Power Sources, 185, 13 (2008). (LSC-SDC) F. Zhao, R. Peng and C. Xia, Mat. Res. Bull., 43, 370 (2008). (LSC-YSZ) Y. Y. Huang, K. Ahn, J. M. Vohs and R. J. Gorte, J. Electrochem. Soc., 151, A1592 (2004). 22 Points=Exp. Meas. Solid Line= S.I.M.P.L.E. Model

23 Talk Outline Nano-Composites -Nano-Composite SOFC Cathodes -S.I.M.P.L.E. Model to Predict SOFC Cathode Performance Nicholas Group Research Overview

24 Nicholas Group Core Compencies Nicholas Group Core Competencies - Structure Property Relationships - Extreme Inorganic Materials Processing (Particles & Films) - Cost-Effective NanoArchitecture Processing and Optimization - Modification of Fundamental Materials Properties with Structure - Fundamental and Applied Electrochemical Property Measurements - New Materials Development 24

A1308. Combined experimental and modeling study of interaction between LSCF and CGO in SOFC cathodes

A1308. Combined experimental and modeling study of interaction between LSCF and CGO in SOFC cathodes A1308 Combined experimental and modeling study of interaction between LSCF and CGO in SOFC cathodes Rémi Costa (1), Roberto Spotorno (1), Claudia Repetto (1), Zeynep Ilhan (1,2) and Vitaliy Yurkiv (1,2)

More information

State-Space Modeling of Electrochemical Processes. Michel Prestat

State-Space Modeling of Electrochemical Processes. Michel Prestat State-Space Modeling of Electrochemical Processes Who uses up my battery power? Michel Prestat ETH-Zürich Institute for Nonmetallic Materials Head: Prof. L.J. Gauckler Outline Electrochemistry Electrochemical

More information

Graphene-based Electrodes for Electrochemical Energy Conversion

Graphene-based Electrodes for Electrochemical Energy Conversion Graphene-based Electrodes for Electrochemical Energy Conversion September 23, 2014 AVS North California Chapter Prof. Min Hwan Lee School of Engineering Graphene for electrochemical devices Properties

More information

Polarization analysis and microstructural characterization of SOFC anode and electrolyte supported cells

Polarization analysis and microstructural characterization of SOFC anode and electrolyte supported cells Polarization analysis and microstructural characterization of SOFC anode and electrolyte supported cells Lanzini A., Leone P., Santarelli M., Asinari P., Calì M. Dipartimento di Energetica. Politecnico

More information

TOPOLOGY OPTIMIZATION APPLIED TO DESIGN OF SOLID OXIDE FUEL CELLS

TOPOLOGY OPTIMIZATION APPLIED TO DESIGN OF SOLID OXIDE FUEL CELLS TOPOLOGY OPTIMIZATION APPLIED TO DESIGN OF SOLID OXIDE FUEL CELLS By Xiankai Song A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Mechanical

More information

Graphene-based Air Electrodes for Solid Oxide Electrochemical Cells

Graphene-based Air Electrodes for Solid Oxide Electrochemical Cells Graphene-based Air Electrodes for Solid Oxide Electrochemical Cells April 18, 2014 Prof. Min Hwan Lee School of Engineering Graphene for electrochemical devices Properties Applications Electron conducting

More information

Introduction to Solid Oxide Fuel Cells. Solid Oxide Fuel Cell (SOFC)

Introduction to Solid Oxide Fuel Cells. Solid Oxide Fuel Cell (SOFC) Introduction to Solid Oxide Fuel Cells Basics Electrochemistry Microstructure Effects Stacks Solid Oxide Fuel Cell (SOFC) CATHODE: (La,Sr)(Mn)O 3 (LSM) LSM-YSZ ELECTROLYTE: ANODE: Y-doped ZrO 2 (YSZ) Ni-YSZ

More information

Journal of Power Sources

Journal of Power Sources Journal of Power Sources 185 (2008) 917 921 Contents lists available at ScienceDirect Journal of Power Sources journal homepage: www.elsevier.com/locate/jpowsour Short communication Oxygen ion transference

More information

Significance of interfaces in solid-state cells with porous electrodes of mixed ionic electronic conductors

Significance of interfaces in solid-state cells with porous electrodes of mixed ionic electronic conductors Solid State Ionics 107 (1998) 105 110 Significance of interfaces in solid-state cells with porous electrodes of mixed ionic electronic conductors * Meilin Liu, Zhonglin Wu School of Materials Science and

More information

Numerical Study of Heterogeneous Reactions in an SOFC Anode With Oxygen Addition. Yong Hao, David G. Goodwin

Numerical Study of Heterogeneous Reactions in an SOFC Anode With Oxygen Addition. Yong Hao, David G. Goodwin 1859 ECS Transactions, 7 (1) 1859-1867 (7) 1.1149/1.2729298, The Electrochemical Society Numerical Study of Heterogeneous Reactions in an SOFC Anode With Oxygen Addition Yong Hao, David G. Goodwin Division

More information

Mixed Protonic/ Electronic Conductors: SSAS and DAFC Applications. Jason Ganley, Ted Olszanski, and Neal Sullivan 24 September

Mixed Protonic/ Electronic Conductors: SSAS and DAFC Applications. Jason Ganley, Ted Olszanski, and Neal Sullivan 24 September Mixed Protonic/ Electronic Conductors: SSAS and DAFC Applications Jason Ganley, Ted Olszanski, and Neal Sullivan 24 September 2013 1 Presentation Outline Review of ongoing work at the CFCC Mixed Protonic

More information

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries Supporting Information Hierarchical Mesoporous/Macroporous Perovskite La 0.5 Sr 0.5 CoO 3-x Nanotubes: a Bi-functional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen

More information

Fabrication and Characterization of Composite LSCF-Ag Cathode for Solid Oxide Fuel Cells using Electron Beam Irradiation Process

Fabrication and Characterization of Composite LSCF-Ag Cathode for Solid Oxide Fuel Cells using Electron Beam Irradiation Process Fabrication and Characterization of Composite LSCF-Ag Cathode Bull. Korean Chem. Soc. 2014, Vol. 35, No. 10 2969 http://dx.doi.org/10.5012/bkcs.2014.35.10.2969 Fabrication and Characterization of Composite

More information

Chemical Interaction between Perovskite La 0.6 Sr 0.4 FeO 3 and Super-Ionic Zr 0.84 Y 0.16 O x

Chemical Interaction between Perovskite La 0.6 Sr 0.4 FeO 3 and Super-Ionic Zr 0.84 Y 0.16 O x Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 1 Proceedings of the XIII National School of Superconductivity, L adek Zdrój 2007 Chemical Interaction between Perovskite La 0.6 Sr 0.4 FeO 3 and Super-Ionic

More information

Comparison of the Degradation of the Polarization Resistance of Symmetrical LSM-YSZ Cells with Anode Supported Ni-YSZ/YSZ/LSM-YSZ SOFCs

Comparison of the Degradation of the Polarization Resistance of Symmetrical LSM-YSZ Cells with Anode Supported Ni-YSZ/YSZ/LSM-YSZ SOFCs 489 10.1149/1.3205559 The Electrochemical Society Comparison of the Degradation of the Polarization Resistance of Symmetrical LSM-YSZ Cells with Anode Supported Ni-YSZ/YSZ/LSM-YSZ SOFCs I. M. Torres da

More information

Measurement of Electrode Overpotentials for Direct Hydrocarbon Conversion Fuel Cells

Measurement of Electrode Overpotentials for Direct Hydrocarbon Conversion Fuel Cells University of Pennsylvania ScholarlyCommons Departmental Papers (CBE) Department of Chemical & Biomolecular Engineering January 2004 Measurement of Electrode Overpotentials for Direct Hydrocarbon Conversion

More information

Nanomaterials for Advanced Electrode of Low Temperature Solid Oxide Fuel Cells (SOFCs)

Nanomaterials for Advanced Electrode of Low Temperature Solid Oxide Fuel Cells (SOFCs) Journal of the Korean Ceramic Society Vol. 53, No. 5, pp. 469~477, 2016. http://dx.doi.org/10.4191/kcers.2016.53.5.469 Review Nanomaterials for Advanced Electrode of Low Temperature Solid Oxide Fuel Cells

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e1501038/dc1 Supplementary Materials for Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life Xiaoli Dong,

More information

K. Kammer * Fuel Cells and Solid State Chemistry Division. Risø National Laboratory for Sustainable Energy. Technical University of Denmark

K. Kammer * Fuel Cells and Solid State Chemistry Division. Risø National Laboratory for Sustainable Energy. Technical University of Denmark An EIS study of La 2-x Sr x NiO 4+δ SOFC cathodes. K. Kammer * Fuel Cells and Solid State Chemistry Division Risø National Laboratory for Sustainable Energy Technical University of Denmark DK-4000 Roskilde,

More information

Lifetime and Performance Prediction of SOFC Anodes Operated with Trace Amounts of Hydrogen Sulfide

Lifetime and Performance Prediction of SOFC Anodes Operated with Trace Amounts of Hydrogen Sulfide www.dlr.de Chart 1 > SOFC Forum > W. G. Bessler Presentation > 28.06.2012 Lifetime and Performance Prediction of SOFC Anodes Operated with Trace Amounts of Hydrogen Sulfide Matthias Riegraf, Günter Schiller,

More information

An Intermediate-Temperature Solid Oxide Fuel Cell with Electrospun Nanofiber Cathode

An Intermediate-Temperature Solid Oxide Fuel Cell with Electrospun Nanofiber Cathode Supplementary Information An Intermediate-Temperature Solid Oxide Fuel Cell with Electrospun Nanofiber Cathode Mingjia Zhi, a,b Shiwoo Lee, a Nicholas Miller, a,c Norbert H. Menzler d and Nianqiang Wu*,a,b

More information

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer Stanford University Michael Shandalov1, Shriram Ramanathan2, Changhyun Ko2 and Paul McIntyre1 1Department of Materials Science and Engineering, Stanford University 2Division of Engineering and Applied

More information

MANUFACTURING OF MICROPOROUS CERAMIC MEMBRANES FOR ENVIRONMENTAL APPLICATIONS I. CO 2 -free power plants II. Fuel cells

MANUFACTURING OF MICROPOROUS CERAMIC MEMBRANES FOR ENVIRONMENTAL APPLICATIONS I. CO 2 -free power plants II. Fuel cells Mitglied der Helmholtz-Gemeinschaft Innovation for Sustainable Production i-sup 2008 Congrescentrum Oud Sint-Jan, Brugge 21. 24. April 2008 MANUFACTURING OF MICROPOROUS CERAMIC MEMBRANES FOR ENVIRONMENTAL

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17653 Supplementary Methods Electronic transport mechanism in H-SNO In pristine RNO, pronounced electron-phonon interaction results in polaron formation that dominates the electronic

More information

EXPERIMENTAL METHODOLOGY Figure 1a) shows the geometry of the sensing elements prepared for the present investigation.

EXPERIMENTAL METHODOLOGY Figure 1a) shows the geometry of the sensing elements prepared for the present investigation. ELECTRODE MATERIALS FOR MIXED-POTENTIAL NO x SENSORS D. L. West, F. C. Montgomery, and T. R. Armstrong Oak Ridge National Laboratory PO Box 28, MS 683 Oak Ridge, TN 37831-683 ABSTRACT The focus of this

More information

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010 Modeling as a tool for understanding the MEA Henrik Ekström Utö Summer School, June 22 nd 2010 COMSOL Multiphysics and Electrochemistry Modeling The software is based on the finite element method A number

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NMAT4879 Real time impedance monitoring of oxygen reduction during surface modification of thin film cathodes Ghislain M. Rupp 1,*, Alexander

More information

Gas Transport and Electrochemistry in Solid Oxide Fuel Cell Electrodes

Gas Transport and Electrochemistry in Solid Oxide Fuel Cell Electrodes Gas Transport and Electrochemistry in Solid Oxide Fuel Cell Electrodes Wilson K. S. Chiu University of Connecticut Overview of Research Activities Heat & Mass Transfer with Chemical Rxns: CVD Nanomaterials

More information

Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels a review

Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels a review Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels a review J. Hanna a,, W.Y. Lee a, Y. Shi b, A.F. Ghoniem a a Department of Mechanical

More information

Impedance spectroscopy of symmetric cells for SOFC research

Impedance spectroscopy of symmetric cells for SOFC research Impedance spectroscopy of symmetric cells for SOFC research Shany Hershkovitz, Sioma Baltianski and Yoed Tsur Department of Chemical Engineering Technion, 32000 Haifa, Israel Outline A short update on

More information

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell Galvanic cells convert different forms of energy (chemical fuel, sunlight, mechanical pressure, etc.) into electrical energy and heat. In this lecture, we are interested in some examples of galvanic cells.

More information

Extrinsic Defect Reactions in

Extrinsic Defect Reactions in Chapter 5 Extrinsic Defect Reactions in Perovskite Materials The work presented in this Chapter has been published in Solid State Ionics [203]. 5.1 Introduction With dwindling fossil fuel reserves [204]

More information

B-site doping effects of NdBa 0.75 Ca 0.25 Co 2 O 5+δ double perovskite catalysts for oxygen evolution and reduction reactions

B-site doping effects of NdBa 0.75 Ca 0.25 Co 2 O 5+δ double perovskite catalysts for oxygen evolution and reduction reactions Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 B-site doping effects of NdBa 0.75 Ca 0.25 Co 2 O 5+δ double perovskite

More information

Impedance Basics. Fig 1. Generalized current-voltage curve; inset shows the principle of linear approximation for small perturbations.

Impedance Basics. Fig 1. Generalized current-voltage curve; inset shows the principle of linear approximation for small perturbations. Impedance Basics Electrochemical Impedance Spectroscopy (EIS) is a frequency domain measurement made by applying a sinusoidal perturbation, often a voltage, to a system. The impedance at a given frequency

More information

Tailoring in-situ growth of nanoparticles towards applications

Tailoring in-situ growth of nanoparticles towards applications The Hydrogen & Fuel Cell Researcher Conference Tailoring in-situ growth of nanoparticles towards applications Dragos Neagu and John TS Irvine 16 th - 18 th December 2013, University of Birmingham Introduction

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/334/6058/935/dc Supporting Online Material for Lowering the Temperature of Solid Oxide Fuel Cells Eric D. Wachsman* and Kang Taek Lee *To whom correspondence should

More information

2D segment model for a bi-layer electrolyte solid oxide fuel cell

2D segment model for a bi-layer electrolyte solid oxide fuel cell This is the Pre-Published Version. 2D segment model for a bi-layer electrolyte solid oxide fuel cell Shuanglin Shen a, *, Meng Ni b a School of Electric Power Engineering, China University of Mining and

More information

Characterization of a NASICON based potentiometric CO 2 sensor

Characterization of a NASICON based potentiometric CO 2 sensor Characterization of a NASICON based potentiometric CO 2 sensor S. Baliteau a, A-L. Sauvet b, C. Lopez a * and P. Fabry a a LEPMI, INPG-UJF-CNRS, 1130 rue de la piscine, 38 402 Saint Martin d Hères Cedex

More information

Hydrogen production in solid electrolyte membrane reactors (SEMRs)

Hydrogen production in solid electrolyte membrane reactors (SEMRs) International Journal of Hydrogen Energy ( ) www.elsevier.com/locate/ijhydene Hydrogen production in solid electrolyte membrane reactors (SEMRs) C. Athanassiou a,b, G. Pekridis c, N. Kaklidis c, K. Kalimeri

More information

The Industrial Necessity of Leakage Current Verification Using Sm Doped Ceria Electrolytes in SOFCs and Future Applications

The Industrial Necessity of Leakage Current Verification Using Sm Doped Ceria Electrolytes in SOFCs and Future Applications 56 The Open Materials Science Journal, 2009, 3, 56-61 Open Access The Industrial Necessity of Leakage Current Verification Using Sm Doped Ceria Electrolytes in SOFCs and Future Applications T. Miyashita

More information

Supplementary Figure 1 Supplementary Figure 2

Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 1 XRD pattern of pure 3D PGC framework. The pure 3D PGC was obtained by immersing NaCl Na 2 S@GC in water to remove the NaCl and Na 2 S. The broad reflection peak in the range of 15

More information

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells K. Tseronis a, I. Kookos b, C. Theodoropoulos a* a School of Chemical Engineering and Analytical Science, University

More information

ION-CONDUCTING MEMBRANES: MEMBRANE SEPARATIONS

ION-CONDUCTING MEMBRANES: MEMBRANE SEPARATIONS III / ION-CONDUCTING MEMBRANES: MEMBRANE SEPARATIONS 3187 ION-CONDUCTING MEMBRANES: MEMBRANE SEPARATIONS J. A. Kilner, Imperial College of Science, Technology and Medicine, London, UK Copyright ^ 2000

More information

The Curious Case of Au Nanoparticles

The Curious Case of Au Nanoparticles The Curious Case of Au Nanoparticles Industrial reactions performed by metals 1 Low Au reactivity Predictions are typically based on d-band model Hold well for polycrystalline materials Coinage metals

More information

Electrocatalytic gas sensors based on Nasicon and Lisicon

Electrocatalytic gas sensors based on Nasicon and Lisicon Materials Science-Poland, Vol. 24, No. 1, 2006 Electrocatalytic gas sensors based on Nasicon and Lisicon G. JASINSKI 1*, P. JASINSKI 1, B. CHACHULSKI 2, A. NOWAKOWSKI 1 1 Faculty of Electronics, Telecommunications

More information

Supplementary Figure 1. Visible (λ = 633 nm) Raman spectra of a-co x layers. (a) Raman spectra of

Supplementary Figure 1. Visible (λ = 633 nm) Raman spectra of a-co x layers. (a) Raman spectra of a In te n s ity [a.u.] c In te n s ity [a.u.] 6 4 2 4 3 2 1 3 2.5 2 1.5 1 p O 2 3.5 1,5 3, 4,5 R a m a n s h ift [c m -1 ] p ris tin e 1 o C 2 o C 3 o C 4 o C 5 o C b d In te n s ity [a.u.] In te n s ity

More information

Dr. Aoife Morrin. School of Chemical Sciences Dublin City University Ireland. The National Centre for Sensor Research

Dr. Aoife Morrin. School of Chemical Sciences Dublin City University Ireland. The National Centre for Sensor Research INVESTIGATION OF NANOSTRUCTURED MATERIALS FOR NOVEL BIOSENSOR FABRICATION METHODOLOGIES Dr. Aoife Morrin National Centre for Sensor Research School of Chemical Sciences Dublin City University Ireland Introduction

More information

Appendix II: Composite Nano-structured Solid Acid Fuel Cell. Electrodes via Electrospray Deposition 1

Appendix II: Composite Nano-structured Solid Acid Fuel Cell. Electrodes via Electrospray Deposition 1 202 Appendix II: Composite Nano-structured Solid Acid Fuel Cell Electrodes via Electrospray Deposition 1 A2.1. Introduction Due to their high efficiency, the possibility of cheap interconnects, and fuel

More information

Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion

Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion Craig A. Grimes Department of Electrical Engineering Center for Solar Nanomaterials

More information

Mesoporous titanium dioxide electrolyte bulk heterojunction

Mesoporous titanium dioxide electrolyte bulk heterojunction Mesoporous titanium dioxide electrolyte bulk heterojunction The term "bulk heterojunction" is used to describe a heterojunction composed of two different materials acting as electron- and a hole- transporters,

More information

Please do not adjust margins. Electronic supplementary information

Please do not adjust margins. Electronic supplementary information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Please do 2017 not adjust margins Journal of Materials Chemistry A Electronic

More information

Theoretical Verification of Wagner s Equation Considering Polarization Voltage Losses in SOFCs

Theoretical Verification of Wagner s Equation Considering Polarization Voltage Losses in SOFCs The Open Materials Science Journal, 00, 4, 03-03 Open Access Theoretical Verification of Wagner s Equation Considering Polarization Voltage osses in SOFCs T. Miyashita * -6-3, Mitsuya-kita, Yodogawa-ku,

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supporting Information for Enhanced cycling stability of boron-doped lithium-rich

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson II Lesson II: fuel cells (electrochemistry)

More information

In Situ Synchrotron X-ray Spectroscopy of Lanthanum Manganite Solid Oxide Fuel Cell Electrodes USA. Cambridge, MA USA. Illinois 60439, USA

In Situ Synchrotron X-ray Spectroscopy of Lanthanum Manganite Solid Oxide Fuel Cell Electrodes USA. Cambridge, MA USA. Illinois 60439, USA 23 10.1149/1.3242219 The Electrochemical Society In Situ Synchrotron X-ray Spectroscopy of Lanthanum Manganite Solid Oxide Fuel Cell Electrodes Kee-Chul Chang a, Bilge Yildiz b, Deborah Myers c, John David

More information

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have Nanocrystal Growth on Graphene with Various Degrees of Oxidation Hailiang Wang, Joshua Tucker Robinson, Georgi Diankov, and Hongjie Dai * Department of Chemistry and Laboratory for Advanced Materials,

More information

Performance Simulation of Passive Direct Methanol Fuel Cell

Performance Simulation of Passive Direct Methanol Fuel Cell International Journal of Advanced Mechanical Engineering. ISSN 50-334 Volume 8, Number 1 (018), pp. 05-1 Research India Publications http://www.ripublication.com Performance Simulation of Passive Direct

More information

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper SUPPORTING INFORMATION Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper Leicong Zhang,,,# Pengli Zhu,,,#, * Fengrui Zhou, Wenjin Zeng, Haibo Su, Gang Li, Jihua Gao, Rong

More information

Solved Examples On Electrochemistry

Solved Examples On Electrochemistry Solved Examples On Electrochemistry Example 1. Find the charge in coulomb on 1 g-ion of Charge on one ion of N 3- = 3 1.6 10-19 coulomb Thus, charge on one g-ion of N 3- = 3 1.6 10-19 6.02 10 23 = 2.89

More information

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Supporting Information Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Zhijie Bi, a,b Xiaomin Li,* a Yongbo Chen, a,b

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2017 Supporting Information Asymmetric hybrid energy storage of battery-type nickel

More information

Functionally Graded Cathodes for Solid Oxide Fuel Cells

Functionally Graded Cathodes for Solid Oxide Fuel Cells Functionally Graded Cathodes for Solid Oxide Fuel Cells Final Report Reporting Period: 1 October 2002 to 30 September 2006 DOE Contract No.: DE-FC26-02NT41572 DOE Project Manager: Dr. Lane Wilson Prepared

More information

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes Supporting Information for: High-Performance Flexible Asymmetric Supercapacitors Based on 3D Porous Graphene/MnO 2 Nanorod and Graphene/Ag Hybrid Thin-Film Electrodes Yuanlong Shao, a Hongzhi Wang,* a

More information

Characterization of La 1 x Sr x s MnO 3 and Doped Ceria Composite Electrodes in NO x -Containing Atmosphere with Impedance Spectroscopy

Characterization of La 1 x Sr x s MnO 3 and Doped Ceria Composite Electrodes in NO x -Containing Atmosphere with Impedance Spectroscopy 0013-4651/2010/157 5 /P35/8/$28.00 The Electrochemical Society Characterization of La 1 x Sr x s MnO 3 and Doped Ceria Composite Electrodes in NO x -Containing Atmosphere with Impedance Spectroscopy R.

More information

High-Performance PEDOT:PSS/Single-Walled Carbon Nanotube/Ionic liquid Actuators Combining Electrostatic Double-Layer and Faradaic Capacitors

High-Performance PEDOT:PSS/Single-Walled Carbon Nanotube/Ionic liquid Actuators Combining Electrostatic Double-Layer and Faradaic Capacitors Supporting Information High-Performance PEDOT:PSS/Single-Walled Carbon Nanotube/Ionic liquid Actuators Combining Electrostatic Double-Layer and Faradaic Capacitors Naohiro Terasawa *, Kinji Asaka Inorganic

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Porous Electrodes with Lower Impedance for Vanadium Redox Flow Batteries

Porous Electrodes with Lower Impedance for Vanadium Redox Flow Batteries Korean Chem. Eng. Res., 53(5), 638-645 (2015) http://dx.doi.org/10.9713/kcer.2015.53.5.638 PISSN 0304-128X, EISSN 2233-9558 Porous Electrodes with Lower Impedance for Vanadium Redox Flow Batteries Su Mi

More information

January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells. Fuel Cells

January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells. Fuel Cells January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells Fuel Cells Instructor James M. Fenton, Professor, Chemical Engineering University of Connecticut Teaching Assistants: 1.

More information

Super Flexible, High-efficiency Perovskite Solar Cells Employing Graphene Electrodes: Toward Future Foldable Power Sources

Super Flexible, High-efficiency Perovskite Solar Cells Employing Graphene Electrodes: Toward Future Foldable Power Sources Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Super Flexible, High-efficiency Perovskite

More information

Diffusion in Oxides here: Oxygen Ion Conductors

Diffusion in Oxides here: Oxygen Ion Conductors Diffusion in Oxides here: Oxygen Ion Conductors M. Martin Institute of Physical Chemistry RWTH Aachen University Germany R.A. De Souza, D. Samuelis, O. Schulz I.V. Belova, G.E. Murch Diffusion in Solids

More information

Solid Oxide Fuel Cell Material Structure Grading in the Direction Normal to the Electrode/Electrolyte Interface using COMSOL Multiphysics

Solid Oxide Fuel Cell Material Structure Grading in the Direction Normal to the Electrode/Electrolyte Interface using COMSOL Multiphysics Solid Oxide Fuel Cell Material Structure Grading in the Direction Normal to the Electrode/Electrolyte Interface using COMSOL Multiphysics M. Andersson*, B. Sundén, Department of Energy Sciences, Lund University,

More information

Dr. Anand Gupta

Dr. Anand Gupta By Dr Anand Gupta Mr. Mahesh Kapil Dr. Anand Gupta 09356511518 09888711209 anandu71@yahoo.com mkapil_foru@yahoo.com Electrochemistry Electrolysis Electric energy Chemical energy Galvanic cell 2 Electrochemistry

More information

Electric Power Generation via Asymmetric Moisturizing of Graphene. Oxide for Flexible, Printable and Portable Electronics

Electric Power Generation via Asymmetric Moisturizing of Graphene. Oxide for Flexible, Printable and Portable Electronics Electronic Supplementary Material (ESI) for Please Energy do not & adjust Environmental margins Science. This journal is The Royal Society of Chemistry 2018 Journal Name COMMUNICATION Electronic supplementary

More information

PROTON CERAMIC ELECTRODICS

PROTON CERAMIC ELECTRODICS IDEA, Nantes, France, -4 Noember 016 PN CERAMIC ELECTRDICS T. Norby, a R. Strandbakke, a E. Vøllestad, a Min Chen, a S.A. Robinson, a C. Kjølseth b a Uniersity of slo, Department of Chemistry, SMN, FERMi,

More information

SCR-Catalyst Materials for Exhaust Gas Detection D. Schönauer-Kamin, R. Moos

SCR-Catalyst Materials for Exhaust Gas Detection D. Schönauer-Kamin, R. Moos SCR-Catalyst Materials for Exhaust Gas Detection D. Schönauer-Kamin, R. Moos IMCS 14th, 22.5.212, D. Schönauer-Kamin / 1 Motivation SCR: selective catalytic reduction of NO x by NH 3 - NH 3 added as aqueous

More information

High Energy Density of All Screen-Printable Solid-State. Microsupercapacitor Integrated by Graphene/CNTs as. Hierarchical Electrodes

High Energy Density of All Screen-Printable Solid-State. Microsupercapacitor Integrated by Graphene/CNTs as. Hierarchical Electrodes Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supporting information High Energy Density of All Screen-Printable Solid-State

More information

REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS

REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS S.K. Lazarouk, D.A. Sasinovich BELARUSIAN STATE UNIVERSITY OF INFORMATICS AND RADIOELECTRONICS Outline: -- experimental

More information

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system.

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system. Objective of the fuel cell experiments: To familiarize the working principles and performance characteristics of proton exchange membrane fuel cells. Experimental Procedures Instrumentation A Scriber Associates

More information

Fuel Cells Activation polarization

Fuel Cells Activation polarization Fuel Cells The principle of fuel cells Oxygen and hydrogen, when mixed together in the presence of enough activation energy have a natural tendency to react and form water, because the Gibbs free energy

More information

Activity. Modeling the Fuel Cell Reaction. Overview. Advance Preparation. Background Information

Activity. Modeling the Fuel Cell Reaction. Overview. Advance Preparation. Background Information 4 Activity 1-2 class sessions Modeling the uel Cell Reaction 2011 Regents of the University of California Overview n order to understand the chemistry of fuel cells, students are introduced to oxidation-reduction

More information

Improving the Performance of Ceramic Anode by Exsolved Catalyst Nanoparticles in Solid Oxide Fuel Cells

Improving the Performance of Ceramic Anode by Exsolved Catalyst Nanoparticles in Solid Oxide Fuel Cells Improving the Performance of Ceramic Anode by Exsolved Catalyst Nanoparticles in Solid Oxide Fuel Cells Curtin-UQ Workshop on Nanostructured Electromaterials for Energy 2016. 1. 18. Prof. Guntae Kim Ulsan

More information

Chemistry Instrumental Analysis Lecture 18. Chem 4631

Chemistry Instrumental Analysis Lecture 18. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 18 Oxidation/Reduction Reactions Transfer of electrons in solution from one reactant to another. Ce +4 + Fe +2 Ce +3 + Fe +3 Ce +4 and Fe 3+ Fe 2+ and Ce 3+

More information

Name Date Class ELECTROCHEMICAL CELLS

Name Date Class ELECTROCHEMICAL CELLS 21.1 ELECTROCHEMICAL CELLS Section Review Objectives Use the activity series to identify which metal in a pair is more easily oxidized Identify the source of electrical energy in a voltaic cell Describe

More information

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Electronic Supplementary Material Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Hengyi Lu 1, Wei Fan 2 ( ), Yunpeng Huang 1, and

More information

Materials Science and Engineering at Michigan State

Materials Science and Engineering at Michigan State Materials Science and Engineering at Michigan State Material Science and Engineering Overview Material Engineering: applies chemistry, physics, biology, and mathematics to engineer atomic structure/architecture

More information

Supporting Information

Supporting Information Supporting Information Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes Hongwei Zhang, Owen Noonan, Xiaodan Huang, Yannan Yang, Chun Xu, Liang Zhou, and Chengzhong

More information

Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes

Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes Downloaded from orbit.dtu.dk on: Aug 24, 18 Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes Graves, Christopher R.; Chatzichristodoulou, Christodoulos; Mogensen,

More information

Electrical Conductive Perovskite Anodes in Sulfur-based Hybrid Cycle

Electrical Conductive Perovskite Anodes in Sulfur-based Hybrid Cycle 2 nd HTTR Workshop, Oct. 5-7, 25, Oarai Electrical Conductive Perovskite Anodes in Sulfur-based Hybrid Cycle Hirotaka KAWAMURA, Masashi MORI, Song-Zhu CHU,* and Masaki UOTANI Materials Science Central

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Transparent and Flexible Self-Charging Power Film and Its Application in Sliding-Unlock System in Touchpad Technology Jianjun Luo 1,#, Wei Tang 1,#, Feng Ru Fan 1, Chaofeng Liu 1,

More information

Rational SOFC material design: new advances and tools

Rational SOFC material design: new advances and tools Rational SOFC material design: new advances and tools Solid oxide fuel cells (SOFCs) offer great prospects for the most efficient and cost-effective utilization of a wide variety of fuels. However, their

More information

Modeling of Electrochemical Cells: HYD Lecture 08. Composite Membranes

Modeling of Electrochemical Cells: HYD Lecture 08. Composite Membranes Modeling of Electrochemical Cells: Proton Exchange Membrane Fuel Cells HYD7007 01 Lecture 08. Composite Membranes Dept. of Chemical & Biomolecular Engineering Yonsei University Spring, 2011 Prof. David

More information

Supporting Information. 15 January, Ms. ID: ac b. Parallel Screening of Electrocatalyst Candidates using Bipolar

Supporting Information. 15 January, Ms. ID: ac b. Parallel Screening of Electrocatalyst Candidates using Bipolar Supporting Information 15 January, 2013 Ms. ID: ac-2012-03581b Parallel Screening of Electrocatalyst Candidates using Bipolar Electrochemistry Stephen E. Fosdick, Sean P. Berglund, C. Buddie Mullins, and

More information

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique Supporting Information Design 3D hierarchical architectures of carbon and highly active transition-metals (Fe, Co, Ni) as bifunctional oxygen catalysts for hybrid lithiumair batteries Dongxiao Ji, Shengjie

More information

Understanding the Interfacial Structures Chemistry Relationships in Solid Oxide Fuel Cells (SOFC)

Understanding the Interfacial Structures Chemistry Relationships in Solid Oxide Fuel Cells (SOFC) Final Report DE-FG02-06ER15837 Page 1 Understanding the Interfacial Structures Chemistry Relationships in Solid Oxide Fuel Cells (SOFC) (Final Report for Grant Nunber DE-FG02-06ER15837) PI: Meilin Liu

More information

Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes

Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes Presented at the COMSOL Conference 2010 China Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes Zhang Qianfan, Liu Yuwen, Chen Shengli * College of Chemistry and Molecular Science,

More information

Development of 2-Dimentional Imaging XAFS System at BL-4

Development of 2-Dimentional Imaging XAFS System at BL-4 Development of 2-Dimentional Imaging XAFS System at BL-4 Koichi Sumiwaka 1, Misaki Katayama 2, Yasuhiro Inada 2 1) Department of Applied Chemistry, College of Science and Engineering, Ritsumeikan, University,

More information

Molecular Electronics For Fun and Profit(?)

Molecular Electronics For Fun and Profit(?) Molecular Electronics For Fun and Profit(?) Prof. Geoffrey Hutchison Department of Chemistry University of Pittsburgh geoffh@pitt.edu July 22, 2009 http://hutchison.chem.pitt.edu Moore s Law: Transistor

More information

Inmaculada Rodríguez Ramos Nanostructured catalysts for sustainable chemical processes

Inmaculada Rodríguez Ramos Nanostructured catalysts for sustainable chemical processes Inmaculada Rodríguez Ramos Nanostructured catalysts for sustainable chemical processes Instituto de Catálisis y Petroleoquímica (ICP) Institute of Catalysis and Petroleochemistry http://www.icp.csic.es

More information

Forced Convectional Heat Transfer in Solid Oxide Fuel Cells: An Analytical Treatment.

Forced Convectional Heat Transfer in Solid Oxide Fuel Cells: An Analytical Treatment. Ionics 9 (2003) 83 Forced Convectional Heat Transfer in Solid Oxide Fuel Cells: An Analytical Treatment. F.A. Coutelieris 1, A.K. Demin 2, S.L. Douvartzides 1 and P.E. Tsiakaras 1 1 University of Thessalia,

More information