Big Questions. Physics 201, Lecture 7. Newton s First Law. What Did the Big Guys Say. Today s Topics. What does it take to maintain a motion?

Size: px
Start display at page:

Download "Big Questions. Physics 201, Lecture 7. Newton s First Law. What Did the Big Guys Say. Today s Topics. What does it take to maintain a motion?"

Transcription

1 Big Questions Physics 201, Lecture 7 oday s opics n n What does it take to maintain a motion? ewton s Laws of Motion (Chap. 5) n First Law, Force and Inertia Forces n Second Law, F=ma Mass n hird Law, Action and Reaction What does it take to change a motion? (and quantitatively how?) It is very important that you have previewed Chapter 5. What Did the Big Guys Say A force is a must for any and all motions! v Force is not necessary for a motion in constant velocity v But to change a motion, a net force is a must! --ewton: 3 laws say it all. ewton s 2nd Law is mostly right, except when the object is at very high speed. + Aristotle ( BC) Galileo Galilei ( ) Isaac ewton ( ) Albert Einstein ( ) ewton s First Law q he Law: An object will maintain a constant motion* (with constant velocity) until it is acted upon by a net force. Ø Message #1: Motion (with constant velocity) is possible even without a force! Ø Message #2: We do need a force to change a motion. Ø Some simple examples: Without a force (or net force =0) If stationary (v=0), the object will remain stationary. If moving at a velocity, it will keep moving at the same velocity. q Sometimes, ewton s First Law is also called Law of Inertia All matter has an intrinsic tendency to resist change of motion. * Unless otherwise specified, the motions we are talking about in this course are measured in something called a inertia reference frame. 1

2 Force q Force: A measure of action one object exerting on another q Force has a unit of ewton () 1 = 1 kg m / s 2 q Force is a vector! (Described by both magnitude and direction) q otal Force: If an object is subject to more than one forces, the total (net) force on it is the vector sum of all forces F net = F pulling force on box Many Forms of Forces kicking (pushing) force on the ball electric force on q friction force supporting force (normal force) F 1 =1.0 F 2 =2.0 F 1 +F 2 =3.0 F 1 +F 2 =2.2 gravitational force ( weight ) Gravitational Force (Weight) q All objects on earth are experiencing a gravitational force F G (exerted by the Earth). he direction of the gravitational force is always downwards (to the Earth) and the magnitude of F G is always proportional to the mass (M) of the object by a factor of g=9.81 m/s 2. (i.e. F G = ) ormal Force q ormal force () is a supporting force exerted on an object by a supporting surface. ormal Force is always normal to the surface ormal force is always pointing towards the object (away from the supporting surface) F G = he magnitude of the normal force is an adaptive quantity that depends on other factors such as the weight, inclination, and even the acceleration of the object. q It is important to note that for an object with a certain ( fixed) mass, its weight on earth is fixed. (i.e. both direction and magnitude are fixed) 2

3 ension q ension () is a pulling force transmitted along a soft string. ension always goes parallel to the string ension is always pulling away from the object he magnitude of the tension is adaptive but it is the same along a massless string. Friction q Friction is a kind of dragging force on the contacting surface between two objects. q here are two kinds of frictions: Kinetic Friction (F k ): Friction when the object is moving on the surface. moving along the surface F k v Static Friction (F s ): Friction when the object is not moving but has a tendency to move on surface. pulling ot moving but has a tendency to move due to pulling F s Kinetic Friction q Kinetic Friction (F k ): Friction when the object is moving on the surface. F k is always parallel to the surface in the opposite direction of the relative motion F k is always proportional to the corresponding ormal force: F k = µ k (µ k : kinetic coefficient of friction) F k v Static Friction q Static Friction (F s ): Friction when the object is not moving but has a tendency to move on surface. F s is always parallel to the surface in the opposite direction of the tendency of motion F s is an adaptive force. Its magnitude is self adjustable to maintain the object to be at rest. For a given normal force, F s can not exceed a maximum of F s_max = µ s (µ s : Static coefficient of friction) F s pull You foot pretends to move backwards he ground provide an F s forward 3

4 Friction summary q Friction is a kind of dragging force on the contacting surface between two objects. q here are two kinds of frictions: Kinetic Friction (F k ): Friction when the object is moving on the surface. moving along the surface F k = µ k F k v From Static to Kinetic Friction For most materials, µ s > µ k Static Friction (F s ): Friction when the object is not moving but has a tendency to move on surface. F s <= µ s pulling ot moving but has a tendency to move due to pulling F s ewton s Second Law q he Law: At any moment, the acceleration of an object is proportional to the total force on it and inversely proportional to its own mass. F a = m OR F = ma Ø otes: he direction of acceleration is always the same as the direction of the net force. Mass: An physical quantity intrinsically associated with all matter. Mass is additive : M 1+2 = M 1 + M 2 unit: kg Mass is conservative Larger mass more inertia (i.e. harder to change velocity) * Modern Physics (not required for this course): ewton s 2 nd law is valid only at size >> m, and speed<< 3x10 8 m/s. ewton s 2 nd Law in Cartesian Coordinates q ewton s Second Law: F = Fi = ma q Calculating total force : F = F F q Apply standard formulas to decompose forces and kinematic parameters in x,y,z coordinate system. Exercises on hursday... x y z F = ma x y z F = F 1x F = F 1y F = F 1z x F = ma y F = ma z 2x 2 y 2z 3x 3 y 3z

5 Example: Acceleration By Gravitational Force q Recall: all objects on earth are experiencing a gravitational force F G, the magnitude of F G is F G = If the F G is the only force on an object of mass M, what is the acceleration of the object? F 1 rivial Examples M M=10 kg F 1 =200 What is a? a = F net /M = 200/10kg = 20 m/s 2 Solution: a = F G /M = /M = g = 9.8 m/s 2, and pointing downwards. Conventionally, g is called gravitational acceleration. he motion under sole gravitational force is called Free Fall. F 1 M F 2 M=10 kg F 1 =200 F 2 = 100 What is a? a = F net /M = ( )/10kg = 10 m/s 2 Weight Readings Quiz: Acceleration of an Elevator q Which of the four cases has the direction of acceleration marked wrong? v v v v A floor scale reads A Spring scale reads We feel our weight by the pressure on our feet moving up with increasing speed a moving up with decreasing speed a correct: a down with increasing speed a down with decreasing speed a 5

6 Weight Reading Inside an Elevator (Apparent Weight) ewton s hird Law q he Law: When two objects intact, the force F 12, exerted on object 2 by object 1 is always equal in magnitude and opposite in direction to the force F 21 which is exerted on object 1 by object 2, regardless of size or mass of the objects. note: ewton s 3 rd law is about two objects F 12 =-F 21 F 12 =-F 21 2 F 2 21 F 21 F 12 1 F 12 1 Attractive Repulsive * F 12 and F 21 are often called a pair of action-reaction ot moving, or moving at constant v = accelerating up or decelerating down = + M a > up w/ slower v or down w/ faster v = M a < ewton s hird Law: Example Example of Bad hinking F A,B = - F B,A. is true for all types of forces Since F m,b = -F b,m, so F net = 0, and a = 0! Incorrect! F w,m F m,w a?? m F b,m F m,b F m,f ice F f,m Action-Reaction are two forces on two objects! An action-reaction pair must always refer to two objects rivial Quiz, so what is a? 6

7 End-of-Lecture Quizzes q What is the net force on the block? 6.0, 0.0, other. 3.0 F F 1 F net = F 1 +F 2 = 3+ (-3)=0 q If the two forces are not back to back, can they ever balance to produce a zero net force? Yes o One More End-of--Lecture Quiz q We have shown that if the person is standing still, the supporting force F must be equal to his weight F G in magnitude and opposite to F G in direction. Do F and F G form an action-reaction pair? YES, F and F G are action-reaction pair as F =-F G O, F and F G are O action-reaction pair as they are forces on the same object. F F G a third force is necessary to balance 7

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction. Newton s Laws Newton s first law: An object will stay at rest or in a state of uniform motion with constant velocity, in a straight line, unless acted upon by an external force. In other words, the bodies

More information

Topic: Force PHYSICS 231

Topic: Force PHYSICS 231 Topic: Force PHYSICS 231 Current Assignments Homework Set 2 due this Thursday, Jan 27, 11 pm Reading for next week: Chapters 10.1-6,10.10,8.3 2/1/11 Physics 231 Spring 2011 2 Key Concepts: Force Free body

More information

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

More information

Chapter 6 Dynamics I: Motion Along a Line

Chapter 6 Dynamics I: Motion Along a Line Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2 Chapter 6 Preview Slide 6-3 Chapter 6 Preview Slide 6-4 Chapter 6 Preview Slide

More information

General Physics I Forces

General Physics I Forces General Physics I Forces Dynamics Isaac Newton (1643-1727) published Principia Mathematica in 1687. In this work, he proposed three laws of motion based on the concept of FORCE. A force is a push or a

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

More information

Chap. 4: Newton s Law of Motion

Chap. 4: Newton s Law of Motion Chap. 4: Newton s Law of Motion And Chap.5 Applying Newton s Laws (more examples) Force; Newton s 3 Laws; Mass and Weight Free-body Diagram (1D) Free-body Diagram (1D, 2 Bodies) Free-body Diagram (2D)

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

Part I: Mechanics. Chapter 2 Inertia & Newton s First Law of Motion. Aristotle & Galileo. Lecture 2

Part I: Mechanics. Chapter 2 Inertia & Newton s First Law of Motion. Aristotle & Galileo. Lecture 2 Lecture 2 Part I: Mechanics Chapter 2 Inertia & Newton s First Law of Motion Some material courtesy Prof. A. Garcia, SJSU Aristotle & Galileo Aristotle was great philosopher but not such a good scientist.

More information

Four naturally occuring forces

Four naturally occuring forces Forces System vs Environment: system the object the force is applied to environment the world around the object that exerts the force Type Forces: Contact is applied by touching Long range exerted without

More information

Chapter 5. Force and Motion I

Chapter 5. Force and Motion I Chapter 5. Force and Motion I Newton s Laws Concepts of Mass and Force Newton s Three Laws But first, let s review the last lecture.. Physics, Page 1 Summary of the last lecture 1. Projectile Motion x

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

Lecture 6. Applying Newton s Laws Free body diagrams Friction

Lecture 6. Applying Newton s Laws Free body diagrams Friction Lecture 6 Applying Newton s Laws Free body diagrams Friction ACT: Bowling on the Moon An astronaut on Earth kicks a bowling ball horizontally and hurts his foot. A year later, the same astronaut kicks

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

Newton s Laws Student Success Sheets (SSS)

Newton s Laws Student Success Sheets (SSS) --- Newton s Laws unit student success sheets--- Page 1 Newton s Laws Student Success Sheets (SSS) HS-PS2-1 HS-PS2-2 NGSS Civic Memorial High School - Physics Concept # What we will be learning Mandatory

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

PHYSICS 231 Laws of motion PHY 231

PHYSICS 231 Laws of motion PHY 231 PHYSICS 231 Laws of motion 1 Newton s Laws First Law: If the net force exerted on an object is zero the object continues in its original state of motion; if it was at rest, it remains at rest. If it was

More information

Main points of today s lecture: Normal force Newton s 3 d Law Frictional forces: kinetic friction: static friction Examples. Physic 231 Lecture 9

Main points of today s lecture: Normal force Newton s 3 d Law Frictional forces: kinetic friction: static friction Examples. Physic 231 Lecture 9 Main points of today s lecture: Normal force Newton s 3 d Law Frictional forces: kinetic friction: static friction Examples. Physic 3 Lecture 9 f N k = µ k f N s < µ s Atwood s machine Consider the Atwood

More information

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: No Push No Go No Push No Stop No Push No Speed Up No Push No Slow Down

More information

Physics for Scientists and Engineers. Chapter 5 Force and Motion

Physics for Scientists and Engineers. Chapter 5 Force and Motion Physics for Scientists and Engineers Chapter 5 Force and Motion Spring, 2008 Ho Jung Paik Force Forces are what cause any change in the velocity of an object The net force is the vector sum of all the

More information

for any object. Note that we use letter, m g, meaning gravitational

for any object. Note that we use letter, m g, meaning gravitational Lecture 4. orces, Newton's Second Law Last time we have started our discussion of Newtonian Mechanics and formulated Newton s laws. Today we shall closely look at the statement of the second law and consider

More information

Chapter 5 Newton s Laws of Motion. What determines acceleration on objects?

Chapter 5 Newton s Laws of Motion. What determines acceleration on objects? Chapter 5 Newton s Laws of Motion What determines acceleration on objects? 1 Units of Chapter 5 Force and Mass Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The

More information

Force, Friction & Gravity Notes

Force, Friction & Gravity Notes Force, Friction & Gravity Notes Key Terms to Know Speed: The distance traveled by an object within a certain amount of time. Speed = distance/time Velocity: Speed in a given direction Acceleration: The

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow Based on Knight 3 rd edition Ch. 5, pgs. 116-133 Section 5.1 A force is a push or a pull What is a force? What is a force? A force

More information

Physics 12 Unit 2: Vector Dynamics

Physics 12 Unit 2: Vector Dynamics 1 Physics 12 Unit 2: Vector Dynamics In this unit you will extend your study of forces. In particular, we will examine force as a vector quantity; this will involve solving problems where forces must be

More information

A. true. 6. An object is in motion when

A. true. 6. An object is in motion when 1. The SI unit for speed is A. Miles per hour B. meters per second 5. Frictional forces are greatest when both surfaces are rough. A. true B. false 2. The combination of all of the forces acting on an

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Newton s third law Examples Isaac Newton s work represents one of the greatest contributions to science ever made by an individual.

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Newton s Laws Forces Mass and Weight Serway and Jewett 5.1 to 5.6 Practice: Chapter 5, Objective Questions 2, 11 Conceptual Questions 7, 9, 19, 21 Problems 2, 3, 7, 13 Newton s

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14 Agenda Today: Homework Quiz, Chapter 4 (Newton s Laws) Thursday: Applying Newton s Laws Start reading Chapter 5 Chapter 3, Problem 28 A ball with a horizontal speed of 1.25 m/s rolls off a bench 1.00 m

More information

ConcepTest 3.7a Punts I

ConcepTest 3.7a Punts I ConcepTest 3.7a Punts I Which of the 3 punts has the longest hang time? 1 2 3 4) all have the same hang time h ConcepTest 3.7a Punts I Which of the 3 punts has the longest hang time? 1 2 3 4) all have

More information

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow. POGIL: Newton s First Law of Motion and Statics Name Purpose: To become familiar with the forces acting on an object at rest Part 1: Net Force Model: Read the following carefully and study the diagrams

More information

Physics 2A Chapter 4: Forces and Newton s Laws of Motion

Physics 2A Chapter 4: Forces and Newton s Laws of Motion Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will

More information

Properties of Motion. Force. Examples of Forces. Basics terms and concepts. Isaac Newton

Properties of Motion. Force. Examples of Forces. Basics terms and concepts. Isaac Newton Properties of Motion It took about 2500 years to different generations of philosophers, mathematicians and astronomers to understand Aristotle's theory of Natural Motion and Violent Motion: Falling bodies

More information

Lecture 6. > Forces. > Newton's Laws. > Normal Force, Weight. (Source: Serway; Giancoli) Villacorta-DLSUM-BIOPHY1-L Term01

Lecture 6. > Forces. > Newton's Laws. > Normal Force, Weight. (Source: Serway; Giancoli) Villacorta-DLSUM-BIOPHY1-L Term01 Lecture 6 > Forces > Newton's Laws > Normal Force, Weight (Source: Serway; Giancoli) 1 Dynamics > Knowing the initial conditions of moving objects can predict the future motion of the said objects. > In

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron. Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i Dynamic equilibrium: object moves with constant velocity in a straight line. We note that F net a s are both vector quantities, so in terms of their components, (F net ) x = i (F i ) x = 0, a x = i (a

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Book page 44-47 NETON S LAS OF MOTION INERTIA Moving objects have inertia a property of all objects to resist a change in motion Mass: a measure of a body s inertia Two types of mass: - inertial mass m

More information

A hockey puck slides on ice at constant velocity. What is the net force acting on the puck?

A hockey puck slides on ice at constant velocity. What is the net force acting on the puck? A hockey puck slides on ice at constant velocity. What is the net force acting on the puck? A. Something more than its weight B. Equal to its weight C. Something less than its weight but more than zero

More information

Newton s 3 rd Law. The Nature of Force. Matthew W. Milligan

Newton s 3 rd Law. The Nature of Force. Matthew W. Milligan Newton s 3 rd Law The Nature of Force Forces Dynamics I. Laws of Motion: 1 & 2 - inertia, force, mass - weight II. Law 3 - interaction & nature of force - types of force: normal, friction - air resistance,

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Chapter 4: Newton's Laws of Motion

Chapter 4: Newton's Laws of Motion Chapter 4 Lecture Chapter 4: Newton's Laws of Motion Goals for Chapter 4 To understand force either directly or as the net force of multiple components. To study and apply Newton's first law. To study

More information

Force mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects.

Force mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects. VISUAL PHYSICS ONLINE DYNAMICS TYPES O ORCES 1 Electrostatic force orce mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects. AB A

More information

5 th Grade Force and Motion Study Guide

5 th Grade Force and Motion Study Guide Name: Date of Test: Vocabulary 5 th Grade Force and Motion Study Guide Motion- a change in position relative to a point of reference, a change in speed, or a change in distance. Point of Reference (Reference

More information

1N the force that a 100g bar of chocolate exerts on your hand.

1N the force that a 100g bar of chocolate exerts on your hand. Forces: - - > cause change in motions Newton's first law = law of inertia In absence of a net external force acting upon it, a body will either remain at rest or continue in its rectilinear uniform motion.

More information

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion Integrated Science Unit 8 FORCES I. Newton s Laws of Motion A. Newton s First Law Sir Isaac Newton 1643 1727 Lincolnshire, England 1. An object at rest remains at rest, and an object in motion maintains

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Newton s First Law. Newton s Second Law 9/29/11

Newton s First Law. Newton s Second Law 9/29/11 Newton s First Law Any object remains at constant velocity unless acted upon by a net force. AND In order for an object to accelerate, there must be a net force acting on it. Constant velocity could mean

More information

Ch 6 Using Newton s Laws. Applications to mass, weight, friction, air resistance, and periodic motion

Ch 6 Using Newton s Laws. Applications to mass, weight, friction, air resistance, and periodic motion Ch 6 Using Newton s Laws Applications to mass, weight, friction, air resistance, and periodic motion Newton s 2 nd Law Applied Galileo hypothesized that all objects gain speed at the same rate (have the

More information

Chapter 7 Newton s Third Law

Chapter 7 Newton s Third Law Chapter 7 Newton s Third Law Chapter Goal: To use Newton s third law to understand interacting objects. Slide 7-2 Chapter 7 Preview Slide 7-3 Chapter 7 Preview Slide 7-4 Chapter 7 Preview Slide 7-6 Chapter

More information

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of

More information

Newton s First Law and IRFs

Newton s First Law and IRFs Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

More information

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge HSC PHYSICS ONLINE DYNAMICS TYPES O ORCES Electrostatic force (force mediated by a field - long range: action at a distance) the attractive or repulsion between two stationary charged objects. AB A B BA

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Unit 4 Forces (Newton s Laws)

Unit 4 Forces (Newton s Laws) Name: Pd: Date: Unit Forces (Newton s Laws) The Nature of Forces force A push or pull exerted on an object. newton A unit of measure that equals the force required to accelerate kilogram of mass at meter

More information

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications Chapters 5-6 Dynamics: orces and Newton s Laws of Motion. Applications That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal,

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

Conceptual Physics Fundamentals. Chapter 3: EQUILIBRIUM AND LINEAR MOTION

Conceptual Physics Fundamentals. Chapter 3: EQUILIBRIUM AND LINEAR MOTION Conceptual Physics Fundamentals Chapter 3: EQUILIBRIUM AND LINEAR MOTION This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass A Measure of Inertia Net Force The

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Chapter 4. Forces and Newton s Laws of Motion. F=ma; gravity

Chapter 4. Forces and Newton s Laws of Motion. F=ma; gravity Chapter 4 Forces and Newton s Laws of Motion F=ma; gravity 0) Background Galileo inertia (horizontal motion) constant acceleration (vertical motion) Descartes & Huygens Conservation of momentum: mass x

More information

Concept of Force and Newton s Laws of Motion

Concept of Force and Newton s Laws of Motion Concept of Force and Newton s Laws of Motion 8.01 W02D2 Chapter 7 Newton s Laws of Motion, Sections 7.1-7.4 Chapter 8 Applications of Newton s Second Law, Sections 8.1-8.4.1 Announcements W02D3 Reading

More information

Chapter 4. The Laws of Motion. Dr. Armen Kocharian

Chapter 4. The Laws of Motion. Dr. Armen Kocharian Chapter 4 The Laws of Motion Dr. Armen Kocharian Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

More information

Chapter 4. Forces in One Dimension

Chapter 4. Forces in One Dimension Chapter 4 Forces in One Dimension Chapter 4 Forces in One Dimension In this chapter you will: *VD Note Use Newton s laws to solve problems. Determine the magnitude and direction of the net force that causes

More information

Newton. Galileo THE LAW OF INERTIA REVIEW

Newton. Galileo THE LAW OF INERTIA REVIEW Galileo Newton THE LAW OF INERTIA REVIEW 1 MOTION IS RELATIVE We are moving 0 m/s and 30km/s Find the resultant velocities MOTION IS RELATIVE Position versus Time Graph. Explain how the car is moving.

More information

Mass & Weight. weight a force acting on a body due to the gravitational attraction pulling that body to another. NOT constant.

Mass & Weight. weight a force acting on a body due to the gravitational attraction pulling that body to another. NOT constant. Mass & Weight mass how much stuff a body has. Doesn t change. Is responsible for the inertial properties of a body. The greater the mass, the greater the force required to achieve some acceleration: Fnet

More information

FORCES. Force. Combining Forces

FORCES. Force. Combining Forces FORCES Force A force is a push or pull upon an object resulting from the object's interaction with another object. The unit of force is the newton (N) 1 newton is the force required to accelerate a mass

More information

LECTURE 11 FRICTION AND DRAG

LECTURE 11 FRICTION AND DRAG LECTURE 11 FRICTION AND DRAG 5.5 Friction Static friction Kinetic friction 5.6 Drag Terminal speed Penguins travel on ice for miles by sliding on ice, made possible by small frictional force between their

More information

Lecture Notes Chapter 5 Friction

Lecture Notes Chapter 5 Friction Lecture Notes Chapter 5 Friction NORMAL FORCES When an object rests on a surface, the surface exerts a normal force on the object, keeping it from accelerating downward. A normal force is perpendicular

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

Chapter 5 Lecture. Pearson Physics. Newton's Laws of Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 5 Lecture. Pearson Physics. Newton's Laws of Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 5 Lecture Pearson Physics Newton's Laws of Motion Prepared by Chris Chiaverina Chapter Contents Newton's Laws of Motion Applying Newton's Laws Friction Newton's Laws of Motion Two of the most important

More information

Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends on the amount of (a type of ) acting on it.

Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends on the amount of (a type of ) acting on it. Forces 12.1 Name 1 A is a push or a pull that on an. How do forces affect the motion of an object? Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends

More information

Thursday February 8. Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final.

Thursday February 8. Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final. Assignment 4 due Friday like almost every Friday Pre-class due 15min before class like every class Help Room: Here, 6-9pm Wed/Thurs SI: Morton 222, M&W 7:15-8:45pm Office Hours: 204 EAL, 10-11am Wed or

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

More information

PHYSICS. Chapter 7 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 7 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 7 Lecture RANDALL D. KNIGHT Chapter 7 Newton s Third Law IN THIS CHAPTER, you will use Newton s third law to understand how objects

More information

Chapter 4. Forces and Mass. Classical Mechanics. Forces. Newton s First Law. Fundamental (Field) Forces. Contact and Field Forces

Chapter 4. Forces and Mass. Classical Mechanics. Forces. Newton s First Law. Fundamental (Field) Forces. Contact and Field Forces Chapter 4 Classical Mechanics Forces and Mass does not apply for very tiny objects (< atomic sizes) objects moving near the speed of light Newton s First Law Forces If the net force!f exerted on an object

More information

Physics 1A Lecture 4B. "Fig Newton: The force required to accelerate a fig inches per second. --J. Hart

Physics 1A Lecture 4B. Fig Newton: The force required to accelerate a fig inches per second. --J. Hart Physics 1A Lecture 4B "Fig Newton: The force required to accelerate a fig 39.37 inches per second. --J. Hart Types of Forces There are many types of forces that we will apply in this class, let s discuss

More information

Aristotle, Galileo, and Newton It took about 2000 years to develop the modern understanding of the relationships between force and motion.

Aristotle, Galileo, and Newton It took about 2000 years to develop the modern understanding of the relationships between force and motion. Aristotle, Galileo, and Newton It took about 2000 years to develop the modern understanding of the relationships between force and motion. Aristotle, Galileo, and Newton Aristotle Aristotle made scientific

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

WHICH OF THE FOLLOWING IS AN EXAMPLE OF A CONTACT FORCE? A. ELECTRICAL FORCE B. APPLIED FORCE C. GRAVITATIONAL FORCE D.

WHICH OF THE FOLLOWING IS AN EXAMPLE OF A CONTACT FORCE? A. ELECTRICAL FORCE B. APPLIED FORCE C. GRAVITATIONAL FORCE D. WHICH OF THE FOLLOWING IS AN EXAMPLE OF A CONTACT FORCE? A. ELECTRICAL FORCE B. APPLIED FORCE C. GRAVITATIONAL FORCE D. MAGNETIC FORCE WHICH TWO MEASUREMENTS ARE NEEDED TO DETERMINE THE SPEED OF AN OBJECT?

More information

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow Section 7.1 Based on Knight 3 rd edition Ch. 7, pgs. 167-184 When a hammer hits a nail, it exerts a forward force on the nail At

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Observation #1 An object at rest remains at rest, unless something makes it move. Observation #2 A object in motion continues in motion with constant velocity, unless something

More information

What changes in space as opposed to being on the Earth? How does this affect mass? Is the car is in equilibrium? Where will the forces act?

What changes in space as opposed to being on the Earth? How does this affect mass? Is the car is in equilibrium? Where will the forces act? Quest Chapter 05 1 How would your mass change if you took a trip to the space station? 1. decreases; you weigh less. 2. increases; you weigh more. 3. no change in mass 2 (part 1 of 3) You are driving a

More information

Physics Lecture 13. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma

Physics Lecture 13. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma Physics 2514 Lecture 13 P. Gutierrez Department of Physics & Astronomy University of Oklahoma P. Gutierrez (University of Oklahoma) Physics 2514 February 23, 2011 1 / 14 Goal Goals for today s lecture:

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

Chapter 6. Dynamics I: Motion Along a Line

Chapter 6. Dynamics I: Motion Along a Line Chapter 6. Dynamics I: Motion Along a Line This chapter focuses on objects that move in a straight line, such as runners, bicycles, cars, planes, and rockets. Gravitational, tension, thrust, friction,

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

Chapter 4 Thrills and Chills >600 N If your weight is 600 N (blue vector), then the bathroom scale would have to be providing a force of greater than 600 N (red vector). Another way of looking at the situation

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics FORCES Forces Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics Inertia Tendency of an object to remain in the same state of motion. Resists a change in motion.

More information