FORCES IN ONE DIMENSION

Size: px
Start display at page:

Download "FORCES IN ONE DIMENSION"

Transcription

1 Suppleental Proble ORCES I OE DIMESIO 1. You and your bike have a cobined a of 80 k. How uch brakin force ha to be applied to low you fro a velocity of 5 / to a coplete top in? vf vi 0.0 / 5.0 / a t t f.5 / a i 80k (.5 / ) 00. Before openin hi parachute, a ky diver with a a of 90.0 k experience an upward force fro air reitance of 150. a. What force i actin on the ky diver? ravity 90.0 k 9.8 /k 880 downward air reitance ravity 150 ( 880 ) 73 Ν 730 downward b. What i the ky diver acceleration? a k 8.1 / 8.1 / downward 3. A lare helicopter i ued to a heat pup to the roof of a new buildin. The a of the helicopter i k and the a of the heat pup i 1500 k. a. How uch force ut the air exert on the helicopter to the heat pup with an acceleration of 1.5 /? Teacher Support overcoe ravity a ( k) (1.5 / ) ( k )(9.8 /k) upward b. Two chain connected to the load each can withtand a tenion of 15,000. Can the load be afely ed at 1.5 /? load overcoe ravity a ( k) (1.5 ) ( k) (9.8 K) The load can be afely ed becaue the total force on the chain i le than their cobined capability of In a lab experient, you attach a.0-k weiht to a prin. You the and weiht with a contant readin of.5. a. What i the value and direction of the acceleration on the weiht? ravity.5 (.0 k) (9.8 k).9 upward a.9.0 k 1.4 / b. How far do you the weiht in the firt.0- interval? 1 x fxivit at 0 (0 /) (.0 ) 1 (1.4 / )(.0 ).8 Chapter 4 orce in One Dienion 3 Copyriht Glencoe/McGraw-Hill, a diviion of The McGraw-Hill Copanie, Inc.

2 Suppleental Proble Teacher Support continued 5. A a lare jet flie at a contant altitude, it enine produce a forward thrut of The a of the plane i k. a. What i the forward acceleration of the plane, inorin air reitance? a a k 3. / b. How uch upward force ut the air exert on the plane when it i flyin horizontally? Becaue the plane i not chanin altitude, 0, o ravity ravity (.6105 k)( 9.8 / k) Two ae are tied to a rope on a pulley, a hown below. a. When the yte i releaed fro thi poition, what i the acceleration of the.0-k a? -lare -all lare all (.00 k)(9.8 /k) (0.80 k)(9.8 /k) 11.8 downward a k 4. / downward b. How lon doe it take for the.0-k a to fall to the floor? 1 Solve x f xi vit at for t while x i 0, v i 0 / t x a ()(1.5 ) 4. / A an i tandin on a inide an airplane. When the airplane i travelin horizontally (in other word, the vertical acceleration of the plane i zero) the read What i the vertical acceleration of the plane in each of the followin ituation? a. When the read a a a (9.8 /k)( ) / Chapter 4 orce in One Dienion Copyriht Glencoe/McGraw-Hill, a diviion of The McGraw-Hill Copanie, Inc. 4

3 Suppleental Proble Teacher Support continued b. When the read a a a (9.8 /k)( ) / 8. An airboat lide acro the urface of the water on a cuhion of air. Perfor the followin calculation for a boat in which the a of the boat and paener i 450 k. a. If there i no friction, how uch force ut the propeller fan exert on the air to accelerate the boat at 5.0 /? a (450 k)(5.00 / ).103 b. What i the upward force exerted by the air cuhion on the boat? ravity (450k) ( 9.80 / ) A olf ball with a a of 45 i truck by a club, leavin the tee with a peed of k/h. The period of acceleration wa a. What i the averae acceleration on the ball a it wa truck (in / )? vf vi a, where vi 0 k/h t h (1.810 k/h) 1 K 3600 a 1 (0.50 ) / / b. What i the force exerted on the club? a 1 k (45 ) 5 ( / ) c. What i the force exerted on the club by the ball? ball club A packae of intruent i attached to a heliu-filled weather balloon that exert an upward force of 45. a. If the intruent packae weih 10.0 k, will the balloon be able to it? a a k 4.5 / The balloon cannot the packae becaue the upward acceleration i le than the downward acceleration of ravity, 9.8 /. Alternative calculation: ravity (10.0 k)(9.8 /K) 98.0, which exceed the upward force b. What i the upward acceleration if the intruent weih.0 k? Chapter 4 orce in One Dienion 5 Copyriht Glencoe/McGraw-Hill, a diviion of The McGraw-Hill Copanie, Inc.

4 Suppleental Proble Teacher Support continued ravity a 45 (.0 k) (9.8 /K) 5.4 a k 13 / upward 11. A 1-k block it on a table. A 10.0-k block it on top of the 1-k block. If there i nothin on top of the 10.0-k block, what i the force that the table exert on the 1-k block? table block 1 block (1 k)(9.8 /k) (10.0 k)(9.8 /k) 0 1. A 9.7-k box experience a force of 41 while it i bein ed. What i the acceleration of the box? a a k 4. / 13. A rope can withtand of tenion. If the rope i bein ued to pull a 10.0-k packae acro a frictionle urface, what i the reatet acceleration that will not break the rope? a a k / 14. A k weiht i attached to a prin. ind the readin on the for each of the followin ituation. a. When the i not ovin. (0.100 k)(9.8 /k) 0.98 b. When the accelerate at.4 / in the horizontal direction. The vertical coponent of the acceleration i zero, o the readin on the i calculated the ae way a when the i not ovin. (0.100 k)(9.8 /k ) A penny i dropped fro the top of a tall tower. The tower, however, i not located on Earth. The penny ha a a of.5 and experience a ravitational force of a. What i the ravitational field on thi pla? a k 11 / b. After 1.00, the penny ha a velocity of 10.1 /. Auin the force exerted on the penny by air reitance i unifor and independent of peed, what i the anitude of the force of air reitance on the penny? a ( ) a a a a a, where v t v t Chapter 4 orce in One Dienion Copyriht Glencoe/McGraw-Hill, a diviion of The McGraw-Hill Copanie, Inc. 6

5 Suppleental Proble Teacher Support continued vf vi t 0.08 (0.005 k) 10.1 / 0.0 / The air reitance i in the oppoite direction fro the force of ravity and the penny otion, a it hould be. 16. The cobined a of a led and it rider i 46.4 k. The led i pulled acro a frozen lake o that the force of friction between the led and the ice i very all. Auin that friction between the led and the ice i neliible, what force i required to accelerate the led at 3.45 /? a (46.4 k)(3.45 / ) Chapter 4 orce in One Dienion 7 Copyriht Glencoe/McGraw-Hill, a diviion of The McGraw-Hill Copanie, Inc.

N N N ( N

N N N ( N Copyriht Glencoe/McGraw-Hill, a division of The McGraw-Hill Copanies, Inc. Chapter 4 1. You and your bike have a cobined ass of 80 k. How uch brakin force has to be applied to slow you fro a velocity of

More information

Physics 20 Lesson 17 Elevators and Inclines

Physics 20 Lesson 17 Elevators and Inclines Phic 0 Leon 17 Elevator and Incline I. Vertical force Tenion Suppoe we attach a rope to a teel ball and hold the ball up b the rope. There are two force actin on the ball: the force due to ravit and the

More information

4 Study Guide. Forces in One Dimension Vocabulary Review

4 Study Guide. Forces in One Dimension Vocabulary Review Date Period Name CHAPTER 4 Study Guide Forces in One Dimension Vocabulary Review Write the term that correctly completes the statement. Use each term once. agent force Newton s second law apparent weight

More information

Application of Newton s Laws. F fr

Application of Newton s Laws. F fr Application of ewton Law. A hocey puc on a frozen pond i given an initial peed of 0.0/. It lide 5 before coing to ret. Deterine the coefficient of inetic friction ( μ between the puc and ice. The total

More information

Example 1: Example 1: Example 2: a.) the elevator is at rest. Example 2: Example 2: c.) the elevator accelerates downward at 1.

Example 1: Example 1: Example 2: a.) the elevator is at rest. Example 2: Example 2: c.) the elevator accelerates downward at 1. Exaple 1: 60 kg, v 1 100 N (wet), v 2 220 N (eat), a? Exaple 1: wo force parallel to the ground act upon a box with a a of 60 kg. One force i directed wet and ha a trength of 100 N. he other force i directed

More information

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object.

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object. Chapter 4 orce and ewton Law of Motion Goal for Chapter 4 to undertand what i force to tudy and apply ewton irt Law to tudy and apply the concept of a and acceleration a coponent of ewton Second Law to

More information

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1)

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1) Seat: PHYS 1500 (Fall 006) Exa #, V1 Nae: 5 pt 1. Two object are oving horizontally with no external force on the. The 1 kg object ove to the right with a peed of 1 /. The kg object ove to the left with

More information

Physics 20 Lesson 16 Friction

Physics 20 Lesson 16 Friction Phyic 0 Leon 16 riction In the previou leon we learned that a rictional orce i any orce that reit, retard or ipede the otion o an object. In thi leon we will dicu how riction reult ro the contact between

More information

Physics 6A. Practice Midterm #2 solutions

Physics 6A. Practice Midterm #2 solutions Phyic 6A Practice Midter # olution 1. A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward at acceleration a. If 3 of the car

More information

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy Phyic 0 Leon 8 Siple Haronic Motion Dynaic & Energy Now that we hae learned about work and the Law of Coneration of Energy, we are able to look at how thee can be applied to the ae phenoena. In general,

More information

PHYSICS 151 Notes for Online Lecture 2.3

PHYSICS 151 Notes for Online Lecture 2.3 PHYSICS 151 Note for Online Lecture.3 riction: The baic fact of acrocopic (everda) friction are: 1) rictional force depend on the two aterial that are liding pat each other. bo liding over a waed floor

More information

Name: Answer Key Date: Regents Physics. Energy

Name: Answer Key Date: Regents Physics. Energy Nae: Anwer Key Date: Regent Phyic Tet # 9 Review Energy 1. Ue GUESS ethod and indicate all vector direction.. Ter to know: work, power, energy, conervation of energy, work-energy theore, elatic potential

More information

What Are Newton's Laws of Motion?

What Are Newton's Laws of Motion? Phyic Review What Are Newton' Law of Motion? Intel Corporation or it ubidiarie in the U.S. and other countrie. orce Puh or Pull that act between two bodie Tenion Gravitational force rictional force Air

More information

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice Midter # olution or apu Learning Aitance Service at USB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward

More information

Prof. Dr. Ibraheem Nasser Examples_6 October 13, Review (Chapter 6)

Prof. Dr. Ibraheem Nasser Examples_6 October 13, Review (Chapter 6) Prof. Dr. Ibraheem Naer Example_6 October 13, 017 Review (Chapter 6) cceleration of a loc againt Friction (1) cceleration of a bloc on horizontal urface When body i moving under application of force P,

More information

SPH4U/SPH3UW Unit 2.3 Applying Newton s Law of Motion Page 1 of 7. Notes

SPH4U/SPH3UW Unit 2.3 Applying Newton s Law of Motion Page 1 of 7. Notes SPH4U/SPH3UW Unit.3 Appling Newton Law of Motion Page 1 of 7 Note Phic Tool Bo Solving Newton Law of Motion Proble o Read quetion to enure full undertanding o Draw and label a ree Bod Diagra o Separate

More information

Physics Sp Exam #3 Name:

Physics Sp Exam #3 Name: Phyic 160-0 Sp. 017 Exa #3 Nae: 1) In electrodynaic, a agnetic field produce a force on a oving charged particle that i alway perpendicular to the direction the particle i oving. How doe thi force affect

More information

Exam 2A Solution. 1. A baseball is thrown vertically upward and feels no air resistance. As it is rising

Exam 2A Solution. 1. A baseball is thrown vertically upward and feels no air resistance. As it is rising Exam 2A Solution 1. A baseball is thrown vertically upward and feels no air resistance. As it is risin Solution: Possible answers: A) both its momentum and its mechanical enery are conserved - incorrect.

More information

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4.

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4. Chapter 5 Newton Law Practice Proble Solution Student Textbook page 163 1. Frae the Proble - Draw a free body diagra of the proble. - The downward force of gravity i balanced by the upward noral force.

More information

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv PHYS : Solution to Chapter 6 Home ork. RASONING a. The work done by the gravitational orce i given by quation 6. a = (F co θ). The gravitational orce point downward, oppoite to the upward vertical diplacement

More information

Physics 30 Lesson 3 Impulse and Change in Momentum

Physics 30 Lesson 3 Impulse and Change in Momentum Phyic 30 Leon 3 Ipule and Change in Moentu I. Ipule and change in oentu According to Newton nd Law of Motion (Phyic Principle 1 on the Data Sheet), to change the otion (i.e. oentu) of an object an unbalanced

More information

PHYSICS 211 MIDTERM II 12 May 2004

PHYSICS 211 MIDTERM II 12 May 2004 PHYSIS IDTER II ay 004 Exa i cloed boo, cloed note. Ue only your forula heet. Write all wor and anwer in exa boolet. The bac of page will not be graded unle you o requet on the front of the page. Show

More information

Physics Sp Exam #4 Name:

Physics Sp Exam #4 Name: Phyic 160-0 Sp. 017 Ea #4 Nae: 1) A coputer hard dik tart ro ret. It peed up with contant angular acceleration until it ha an angular peed o 700 rp. I it coplete 150 revolution while peeding up, what i

More information

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr Flipping Phyic Lecture Note: Introduction to Acceleration with Priu Brake Slaing Exaple Proble a Δv a Δv v f v i & a t f t i Acceleration: & flip the guy and ultiply! Acceleration, jut like Diplaceent

More information

As observed from the frame of reference of the sidewalk:

As observed from the frame of reference of the sidewalk: Section 3.1: Inertial and Non-inertial Frames of Reference Tutorial 1 Practice, pae 110 1. a) When the car is movin with constant velocity, I see the ball lie still on the floor. I would see the same situation

More information

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example)

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example) Newton Law of Motion Moentu and Energy Chapter -3 Second Law of Motion The acceleration of an object i directly proportional to the net force acting on the object, i in the direction of the net force,

More information

Practice Midterm #1 Solutions. Physics 6A

Practice Midterm #1 Solutions. Physics 6A Practice Midter # Solution Phyic 6A . You drie your car at a peed of 4 k/ for hour, then low down to k/ for the next k. How far did you drie, and what wa your aerage peed? We can draw a iple diagra with

More information

AP Physics Momentum AP Wrapup

AP Physics Momentum AP Wrapup AP Phyic Moentu AP Wrapup There are two, and only two, equation that you get to play with: p Thi i the equation or oentu. J Ft p Thi i the equation or ipule. The equation heet ue, or oe reaon, the ybol

More information

Physics 6A. Practice Final (Fall 2009) solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Final (Fall 2009) solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice inal (all 009) olution or Capu Learning Aitance Service at UCSB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train

More information

SPH3UW/SPH4UI Unit 2.4 Friction Force Page 1 of 8. Notes. : The kind of friction that acts when a body slides over a surface. Static Friction Force, f

SPH3UW/SPH4UI Unit 2.4 Friction Force Page 1 of 8. Notes. : The kind of friction that acts when a body slides over a surface. Static Friction Force, f SPH3UW/SPH4UI Unit 2.4 Friction Force Page o 8 ote Phyic Tool Box Kinetic Friction Force, : The ind o riction that act when a body lide over a urace. Static Friction Force, : Friction orce when there i

More information

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1 PART III Problem Problem1 A computer dik tart rotating from ret at contant angular acceleration. If it take 0.750 to complete it econd revolution: a) How long doe it take to complete the firt complete

More information

Systems of Masses. 1. Ignoring friction, calculate the acceleration of the system below and the tension in the rope. and (4.0)(9.80) 39.

Systems of Masses. 1. Ignoring friction, calculate the acceleration of the system below and the tension in the rope. and (4.0)(9.80) 39. Systes of Masses. Ignoring friction, calculate the acceleration of the syste below and the tension in the rope. Drawing individual free body diagras we get 4.0kg 7.0kg g 9.80 / s a?? g and g (4.0)(9.80)

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineering Mechanic Lecture 14: Plane motion of rigid bodie: Force and acceleration Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: hakil@me.buet.ac.bd, hakil6791@gmail.com

More information

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is.

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is. Chapter 6 1. The greatet deceleration (of magnitude a) i provided by the maximum friction force (Eq. 6-1, with = mg in thi cae). Uing ewton econd law, we find a = f,max /m = g. Eq. -16 then give the hortet

More information

Work and Energy Problems

Work and Energy Problems 06-08- orce F o trength 0N act on an object o a 3kg a it ove a ditance o 4. I F i perpendicular to the 4 diplaceent, the work done i equal to: Work and Energy Proble a) 0J b) 60J c) 80J d) 600J e) 400J

More information

Review: Advanced Applications of Newton's Laws

Review: Advanced Applications of Newton's Laws Review: Advanced Applications of Newton's Laws 1. The free-body diagram of a wagon being pulled along a horizontal surface is best represented by a. A d. D b. B e. E c. C 2. The free-body diagram of a

More information

ANALYZE In all three cases (a) (c), the reading on the scale is. w = mg = (11.0 kg) (9.8 m/s 2 ) = 108 N.

ANALYZE In all three cases (a) (c), the reading on the scale is. w = mg = (11.0 kg) (9.8 m/s 2 ) = 108 N. Chapter 5 1. We are only concerned with horizontal forces in this problem (ravity plays no direct role). We take East as the +x direction and North as +y. This calculation is efficiently implemented on

More information

v 24 m a = 5.33 Δd = 100 m[e] m[e] m[e] Δd = 550 m[e] BLM 2-6: Chapter 2 Test/Assessment Δd = + 10 s [E] uuv a = (10 0) s uuv a = (20 0)s

v 24 m a = 5.33 Δd = 100 m[e] m[e] m[e] Δd = 550 m[e] BLM 2-6: Chapter 2 Test/Assessment Δd = + 10 s [E] uuv a = (10 0) s uuv a = (20 0)s BLM -6: Chapter Tet/Aeent. (a) D (b) Δd (0 ) ( 0 [E]) + 0 ( 0 [E]) ( 30 + 0) + 0 [E] Δd 00 [E] + 00 [E] + 50 [E] Δd 550 [E] (c) Refer to the calculation below. A) B) uu (0 0) [E] a [E] (0 0) uu (0 0) [E]

More information

(A) (B) (C) (D) None of these

(A) (B) (C) (D) None of these Exercise OBJECTIVE PROBLEMS. Action and reaction (A) act on two different objects (C) have opposite directions. Which fiure represents the correct F.B.D. of rod of mass m as shown in fiure : (B) have equal

More information

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration.

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration. Chapter 3 Motion in a Plane Practice Proble Solution Student Textbook page 80 1. Frae the Proble - Sketch and label a diagra of the otion. 40 v(/) 30 0 10 0 4 t () - The equation of otion apply to the

More information

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard 3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honor Phyic Impule-Momentum Theorem Spring, 2017 Intruction: Complete the following workheet. Show all of you work. Name: Anwer Key Mr. Leonard 1. A 0.500 kg ball i dropped

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. FLEX Physical Science AP Physics C Newton's Laws --- Conceptual Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You swing a bat and hit

More information

Newton's laws of motion

Newton's laws of motion Episode No - 5 Date: 03-04-2017 Faculty: Sunil Deshpande Newton's laws of motion * A plank with a box on it at one end is slowly raised about the other end. As the anle with the horizontal slowly reaches

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVRSITY OF SASKATCHWAN Department of Physics and nineerin Physics Physics 115.3 MIDTRM TST Alternative Sittin October 009 Time: 90 minutes NAM: (Last) Please Print (Given) STUDNT NO.: LCTUR SCTION (please

More information

PROBLEM 8.6 SOLUTION. FBD block (Impending motion up) = N. = tan (0.25) (a) (Note: For minimum P, P^ Then. = ( N)sin β = 14.

PROBLEM 8.6 SOLUTION. FBD block (Impending motion up) = N. = tan (0.25) (a) (Note: For minimum P, P^ Then. = ( N)sin β = 14. PROBLEM 8.6 Knowing that the coefficient of friction between the 25-kg block and the incline i μ =.25, determine (a) the mallet value of P required to tart the block moving up the incline, (b) the correponding

More information

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Unit III Review Solutions

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Unit III Review Solutions Pearon Phyic Level 0 Unit III Circular Motion, Work, and Energy: Unit III Review Solution Student Book page 6 9 Vocabulary. artificial atellite: a huan-ade object in orbit around a celetial body axi of

More information

Understanding 19. (a) If they both hit the ground at the same time, the object with the greater mass has a larger crosssectional

Understanding 19. (a) If they both hit the ground at the same time, the object with the greater mass has a larger crosssectional Chapter 4 Review, paes 198 203 Knowlede 1. (c) 2. (b) 3. (a) 4. (d) 5. (a) 6. (b) 7. (d) 8. (c) 9. (c) 10. (d) 11. (c) 12. (a) (iii) (b) (i) (c) (iv) (d) (ii) 13. A force field is a reion of space surroundin

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

4 Conservation of Momentum

4 Conservation of Momentum hapter 4 oneration of oentu 4 oneration of oentu A coon itake inoling coneration of oentu crop up in the cae of totally inelatic colliion of two object, the kind of colliion in which the two colliding

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVRSITY OF SASKATCHWAN Department of Physics and nineerin Physics Physics 115.3 MIDTRM TST October 3, 009 Time: 90 minutes NAM: (Last) Please Print (Given) STUDNT NO.: LCTUR SCTION (please check): 01

More information

An Accelerating Hockey Puck

An Accelerating Hockey Puck Example 5.1 An Accelerating Hockey Puck A hockey puck having a mass of 0.30 kg slides on the frictionless, horizontal surface of an ice rink. Two hockey sticks strike the puck simultaneously, exerting

More information

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

More information

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D)

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D) ATTENTION: All Diviion 01 tudent, START HERE. All Diviion 0 tudent kip the firt 10 quetion, begin on # 11. 1. Approxiately how any econd i it until the PhyicBowl take place in the year 109? 10 (B) 7 10

More information

PHY 171 Practice Test 3 Solutions Fall 2013

PHY 171 Practice Test 3 Solutions Fall 2013 PHY 171 Practice et 3 Solution Fall 013 Q1: [4] In a rare eparatene, And a peculiar quietne, hing One and hing wo Lie at ret, relative to the ground And their wacky hairdo. If hing One freeze in Oxford,

More information

Released Test Questions Science 8

Released Test Questions Science 8 LIFORNI STNRS TEST G R E Released Test Questions Science 1 istance (eters) 55 50 45 40 35 30 25 20 15 10 5 The raph below shows the oveent of an object at several points in tie. Object Moveent 0 5 10 15

More information

Frictional Forces. Friction has its basis in surfaces that are not completely smooth: 1/29

Frictional Forces. Friction has its basis in surfaces that are not completely smooth: 1/29 Frictional Force Friction ha it bai in urface that are not completely mooth: 1/29 Microcopic Friction Surface Roughne Adheion Magnified ection of a polihed teel urface howing urface irregularitie about

More information

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h)

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h) Phy 5 - Fall 206 Extra credit review eion - Verion A KEY Thi i an extra credit review eion. t will be worth 30 point of extra credit. Dicu and work on the problem with your group. You may ue your text

More information

EF 151 Final Exam, Spring, 2009 Page 2 of 10. EF 151 Final Exam, Spring, 2009 Page 1 of 10. Name: Section: sina ( ) ( )( ) 2. a b c = = cosc.

EF 151 Final Exam, Spring, 2009 Page 2 of 10. EF 151 Final Exam, Spring, 2009 Page 1 of 10. Name: Section: sina ( ) ( )( ) 2. a b c = = cosc. EF 5 Final Exam, Spring, 9 Page of EF 5 Final Exam, Spring, 9 Page of Name: Section: Guideline: Aume 3 ignificant figure for all given number unle otherwie tated Show all of your work no work, no credit

More information

PSI AP Physics C Kinematics 2D. Multiple Choice Questions

PSI AP Physics C Kinematics 2D. Multiple Choice Questions PSI AP Physics C Kinematics D Multiple Choice Questions 1. A tennis ball is thrown off a cliff 10 m above the round with an initial horizontal velocity of 5 m/s as shown above. The time between the ball

More information

Conservation of Energy

Conservation of Energy Add Iportant Conervation of Energy Page: 340 Note/Cue Here NGSS Standard: HS-PS3- Conervation of Energy MA Curriculu Fraework (006):.,.,.3 AP Phyic Learning Objective: 3.E.., 3.E.., 3.E..3, 3.E..4, 4.C..,

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1 Fig. 5 shows a block of mass 10 kg at rest on a rough horizontal floor. A light string, at an angle of 30 to the vertical, is attached to the block. The tension in the string is 50 N. The block is in

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

Physics Exam 3 Formulas

Physics Exam 3 Formulas Phyic 10411 Exam III November 20, 2009 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam i cloed book, and you may have only pen/pencil and a calculator (no tored equation or

More information

CHAPTER 4 FORCES AND NEWTON'S LAWS OF MOTION

CHAPTER 4 FORCES AND NEWTON'S LAWS OF MOTION CHAPTER 4 ORCES AND NEWTON'S LAWS O MOTION CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION When the car come to a udden halt, the upper part of the bod continue forward (a predicted b Newton' firt law)

More information

Dynamics - Midterm Exam Type 1

Dynamics - Midterm Exam Type 1 Dynaics - Midter Exa 06.11.2017- Type 1 1. Two particles of ass and 2 slide on two vertical sooth uides. They are connected to each other and to the ceilin by three sprins of equal stiffness and of zero

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

y scalar component x scalar component A. 770 m 250 m file://c:\users\joe\desktop\physics 2A\PLC Assignments - F10\2a_PLC7\index.

y scalar component x scalar component A. 770 m 250 m file://c:\users\joe\desktop\physics 2A\PLC Assignments - F10\2a_PLC7\index. Page 1 of 6 1. A certain string just breaks when it is under 400 N of tension. A boy uses this string to whirl a 10-kg stone in a horizontal circle of radius 10. The boy continuously increases the speed

More information

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5.

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5. Seat: PHYS 500 (Fall 0) Exa #, V 5 pt. Fro book Mult Choice 8.6 A tudent lie on a very light, rigid board with a cale under each end. Her feet are directly over one cale and her body i poitioned a hown.

More information

PHYSICS LAB Experiment 5 Fall 2004 FRICTION

PHYSICS LAB Experiment 5 Fall 2004 FRICTION FRICTION In thi experiment we will meaure the effect of friction on the motion of a body in contact with a particular urface. When a body lide or roll over another, it motion i oppoed by the force of friction

More information

1.1 Speed and Velocity in One and Two Dimensions

1.1 Speed and Velocity in One and Two Dimensions 1.1 Speed and Velocity in One and Two Dienion The tudy of otion i called kineatic. Phyic Tool box Scalar quantity ha agnitude but no direction,. Vector ha both agnitude and direction,. Aerage peed i total

More information

Summary. Chapter summary. Teaching Tip CHAPTER 4

Summary. Chapter summary. Teaching Tip CHAPTER 4 Chapter summary Teaching Tip Ask students to prepare a concept map for the chapter. The concept map should include most of the vocabulary terms, along with other integral terms or concepts. CHAPTER 4 Summary

More information

Motion Along a Line. Readings: Chapter 6 (2. nd edition)

Motion Along a Line. Readings: Chapter 6 (2. nd edition) Newton Second Law: Motion Along a Line Reading: Chapter 6 (2 nd edition) 1 1) Object a a particle 2) Identify all the force 3) Find the force (vector u of all individual force) 4) Introduce convenient

More information

Physics 111 P 2 A = P 1. A + mg = P 1. A + ρ( AΔh)g. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468.

Physics 111 P 2 A = P 1. A + mg = P 1. A + ρ( AΔh)g. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. ics Announcements day, ember 11, 011 C5: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Wednesday, 8-9 pm in NSC 118/119 Sunday,

More information

SPH3U Practice Test. True/False Indicate whether the statement is true or false.

SPH3U Practice Test. True/False Indicate whether the statement is true or false. True/False Indicate whether the statement is true or false. 1. The reason your head feels like it jerks backward when pulling away from a stop sign is best explained by Newton's First Law. 2. An airplane

More information

Midterm Exam #1. First midterm is next Wednesday, September 23 (80 minutes!!!)

Midterm Exam #1. First midterm is next Wednesday, September 23 (80 minutes!!!) Midterm Exam #1 First midterm is next Wednesday, September 23 (80 minutes!!!) Ø Ø Units 1-5: 1D kinematics Forces and FBDs (todays lecture) Thins to brin: Pencil(s), calculator UofU ID card Ø Ø Ø Brin

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

1. The property of matter that causes an object to resist changes in its state of motion is called:

1. The property of matter that causes an object to resist changes in its state of motion is called: SPH3U Exa Review 1. The property of atter that causes an object to resist changes in its state of otion is called: A. friction B. inertia C. the noral force D. tension 1. The property of atter that causes

More information

Prince Sultan University Physics Department First Semester 2012 /2013. PHY 105 First Major Exam Allowed Time: 60 min

Prince Sultan University Physics Department First Semester 2012 /2013. PHY 105 First Major Exam Allowed Time: 60 min Prince Sultan University Physics Department First Semester 01 /01 PHY 105 First Major Exam Allowed Time: 60 min Student Name: 1. Write your name in the specified space NOW.. Any paper without name will

More information

Newton s Laws & Inclined Planes

Newton s Laws & Inclined Planes GP: ewton Law & Inclined Plane Phyic Mcutt Date: Period: ewton Law & Inclined Plane The ormal orce, Static and Kinetic rictional orce The normal orce i the perpendicular orce that a urace exert on an object.

More information

MEI Mechanics 1. Applying Newton s second law along a line

MEI Mechanics 1. Applying Newton s second law along a line MEI Mechanics 1 Applying Newton s second law along a line Chapter assessment 1. (a) The following two questions are about the motion of a car of mass 1500 kg, travelling along a straight, horizontal road.

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

5.5. Collisions in Two Dimensions: Glancing Collisions. Components of momentum. Mini Investigation

5.5. Collisions in Two Dimensions: Glancing Collisions. Components of momentum. Mini Investigation Colliion in Two Dienion: Glancing Colliion So ar, you have read aout colliion in one dienion. In thi ection, you will exaine colliion in two dienion. In Figure, the player i lining up the hot o that the

More information

Part I: Multiple-Choice

Part I: Multiple-Choice Part I: Multiple-Choice Circle your anwer to each quetion. Any other ark will not be given credit. Each ultiple-choice quetion i worth point for a total of 0 point. 1. The dead-quiet caterpillar drive

More information

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics)

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics) Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics) Instructions: Pick the best answer available for Part A. Show all your work for each question in Part B Part A: Multiple-Choice 1. Inertia

More information

Unit 5 Forces I- Newtonʼ s First & Second Law

Unit 5 Forces I- Newtonʼ s First & Second Law Unit 5 orces I- Newtonʼ s irst & Second Law Unit is the NEWTON(N) Is by definition a push or a pull Does force need a Physical contact? Can exist during physical contact(tension, riction, Applied orce)

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

HW9.2: SHM-Springs and Pendulums

HW9.2: SHM-Springs and Pendulums HW9.: SHM-Sprin and Pendulum T S m T P Show your wor clearly on a eparate pae. Mae a etch o the problem. Start each olution with a undamental concept equation written in ymbolic ariable. Sole or the unnown

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.0T Fall Term 2004 Problem Set 3: Newton's Laws of Motion, Motion: Force, Mass, and Acceleration, Vectors in Physics Solutions Problem

More information

DYNAMICS OF ROTATIONAL MOTION

DYNAMICS OF ROTATIONAL MOTION DYNAMICS OF ROTATIONAL MOTION 10 10.9. IDENTIFY: Apply I. rad/rev SET UP: 0 0. (400 rev/min) 419 rad/ 60 /min EXECUTE: 0 419 rad/ I I (0 kg m ) 11 N m. t 800 EVALUATE: In I, mut be in rad/. 10.. IDENTIFY:

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

(C) 7 s. (C) 13 s. (C) 10 m

(C) 7 s. (C) 13 s. (C) 10 m NAME: Ms. Dwarka, Principal Period: #: WC Bryant HS Ms. Simonds, AP Science Base your answers to questions 1 throuh 3 on the position versus time raph below which shows the motion of a particle on a straiht

More information

Physics 11 Comprehensive Exam Preparation

Physics 11 Comprehensive Exam Preparation Physics 11 Comprehensive Exam Preparation Kinematics 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

= 40 N. Q = 60 O m s,k

= 40 N. Q = 60 O m s,k Sample Exam #2 Technical Physics Multiple Choice ( 6 Points Each ): F app = 40 N 20 kg Q = 60 O = 0 1. A 20 kg box is pulled along a frictionless floor with an applied force of 40 N. The applied force

More information

PHYSICS - CLUTCH CH 04: INTRO TO FORCES (DYNAMICS)

PHYSICS - CLUTCH CH 04: INTRO TO FORCES (DYNAMICS) !! www.clutchprep.com FORCE, APPLIED FORCE, TENSION A force is either a push or a pull. Unit = ( ) - We ll represent all forces as a We ll refer to generic forces as forces. - Usually on an object by a

More information

Physics 23 Exam 2 March 3, 2009

Physics 23 Exam 2 March 3, 2009 Use the following to answer question 1: A stationary 4-kg shell explodes into three pieces. Two of the fragments have a mass of 1 kg each and move along the paths shown with a speed of 10 m/s. The third

More information

4.3. Solving Friction Problems. Static Friction Problems. Tutorial 1 Static Friction Acting on Several Objects. Sample Problem 1.

4.3. Solving Friction Problems. Static Friction Problems. Tutorial 1 Static Friction Acting on Several Objects. Sample Problem 1. Solvin Friction Problems Sometimes friction is desirable and we want to increase the coefficient of friction to help keep objects at rest. For example, a runnin shoe is typically desined to have a lare

More information

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105 Coordinator: Dr. W. L-Basheer Monday, March 16, 2015 Page: 1 Q1. 70 N block and a 35 N block are connected by a massless inextendable string which is wrapped over a frictionless pulley as shown in Figure

More information

AP Homework 4.1. Name: Date: Class Period:

AP Homework 4.1. Name: Date: Class Period: AP Homework 4.1 Name: Date: Class Period: (1) A 75.0-kg wrecking ball hangs from a uniform heavy-duty chain having a mass of 26.0 kg. (a) Find the maximum and minimum tension in the chain. (b) What is

More information