Midterm Exam #1. First midterm is next Wednesday, September 23 (80 minutes!!!)

Size: px
Start display at page:

Download "Midterm Exam #1. First midterm is next Wednesday, September 23 (80 minutes!!!)"

Transcription

1 Midterm Exam #1 First midterm is next Wednesday, September 23 (80 minutes!!!) Ø Ø Units 1-5: 1D kinematics Forces and FBDs (todays lecture) Thins to brin: Pencil(s), calculator UofU ID card Ø Ø Ø Brin your U of U ID card: you will not receive a rade unless you show it upon turnin in your exam No makeups!!! (Unless you are unavailable due to University/military business or documented medical emerency come talk to me!) Cheatin: You will receive a zero and referred to the University administration may result in an E for the course and expulsion You must contact Prof. Gerton by Wednesday, September 14 if you have a conflict wit the exam times/days!!! Exam Location: SFEBB 1110 (lare lecture hall on first floor of Spencer Fox Eccles Business Buildin) Mechanics Lecture 6, Slide 1

2 Classical Mechanics Lecture 6: Friction Today's Concept: Fric%on Mechanics Lecture 6, Slide 2

3 Time spent on Prelecture #6 Averae for quiz 1 = 8.4/15 (class averae = 11.6) Averae for quiz 2 = 8.9/15 (class averae = 10.4) Mechanics Lecture 6, Slide 3

4 Unit 6 Learnin Objectives If you master this unit, you should: be able to compute the force of static friction between two objects by solvin Newton s 2 nd Law. be able to determine the maximum force that can be applied to an object before it starts to slide. be able to compute the acceleration of one object slidin over another in the presence of friction. Mechanics Lecture 6, Slide 4

5 Friction Mechanics Lecture 6, Slide 5

6 Example problem A car of mass m drives around a circular track of radius R. The coefficient of static friction between the car s tires and the road is µ s. The coefficient of kinetic friction is µ k. What is the maximum speed of the car before it starts to skid? Mechanics Lecture 6, Slide 6

7 1&2: Understand Problem & Describe Physics A car of mass m drives around a circular track of radius R. The coefficient of static friction between the car s tires and the road is µ s. The coefficient of kinetic friction is µ k. What is the maximum speed of the car before it starts to skid? 1. What kind of friction are we dealin with? 2. Between which objects does this friction act? 3. As the car oes around the track, in which direction does the friction force point? Ø Which object are we talkin about? Ø Is the car maintainin constant speed? Ø How does the situation chane if the car speeds up or slows down? 4. How is the maximum friction force related to the car s weiht? 5. Should the maximum speed depend on the car s mass? Mechanics Lecture 6, Slide 7

8 Step 2: Describe the Physics A car of mass m drives around a circular track of radius R. The coefficient of static friction between the car s tires and the road is µ s. The coefficient of kinetic friction is µ k. What is the maximum speed of the car before it starts to skid? a = v2 R f s,max = µ s N = µ s m Mechanics Lecture 6, Slide 8

9 Steps 3 & 4: Plan and Execute the Solution A car of mass m drives around a circular track of radius R. The coefficient of static friction between the car s tires and the road is µ s. The coefficient of kinetic friction is µ k. What is the maximum speed of the car before it starts to skid? The maximum possible centripetal acceleration occurs at the maximum speed, v max This is when the static friction force is maximized. a max = v2 max R A) B) v max = µ s p R v max = µ s p R f s,max = µ s N = µ s m C) v max = µ s R p D) v max = p µ s R Mechanics Lecture 6, Slide 9

10 Follow up question A car of mass m drives around a circular track of radius R. The coefficient of static friction between the car s tires and the road is µ s. The coefficient of kinetic friction is µ k. What is the force of static friction on the car when it travels at half the maximum speed? Mechanics Lecture 6, Slide 10

11 Stuff you asked about: I struled with the trionometry on the box slidin down the ramp. i thouht that this was a ood lecture, very informa%ve, but could we have an example, just one li>le example, that doesn't involve a box? this lecture was very clear thouh. y 90 θ 90-θ 90 x θ m Mechanics Lecture 6, Slide 11

12 CheckPoint: Box in Acceleratin Truck A box sits on the horizontal bed of a movin truck. Sta%c fric%on between the box and the truck keeps the box from slidin around as the truck drives. a µ S If the truck moves with constant accelera%on to the lee as shown, which of the followin diarams best describes the sta%c fric%onal force ac%n on the box: A B C Mechanics Lecture 6, Slide 12

13 Revote: Box in acceleratin truck A C B D a µ S If the truck moves with constant acceleration to the left as shown, which of the followin diarams best describes the static frictional force actin on the box: A B C ~a = ~ F net M A) The friction is causin the box to accelerate in the same direction as the truck. B) The force of friction always acts in the opposite direction of acceleration. Mechanics Lecture 6, Slide 13

14 ACT! A flower pot of mass M sits on a horizontal table. A horizontal strin havin tension T applies a force on the pot, but static friction between the pot and the table keeps the pot from movin. A C B D What is the manitude of the net force actin on the pot? A) M B) μ s M C) T D) 0 f N T W = M X Fy = Ma =0) N = M X Fx = Ma x =0) T = f Since acceleration is zero, the net force MUST be zero also! Mechanics Lecture 6, Slide 14

15 CheckPoint: Box on Table A box of mass M sits on a horizontal table. A horizontal strin havin tension T applies a force on the box, but static friction between the box and the table keeps the box from movin. What is the manitude of the static frictional force actin on the box? A C B D A) M B) µ s M f M T C) T D) 0 Apply Newton s 2 nd Law: X =0 Fx = Ma x =0) T = f Mechanics Lecture 6, Slide 15

16 CheckPoint: Box on Table A box of mass M sits on a horizontal table. A horizontal strin havin tension T applies a force on the box, but static friction between the box and the table keeps the box from movin. What is the manitude of the static frictional force actin on the box? F f T M X Fx = Ma x =0) T = F f F f depends on weiht µ s does not!!! What happens if I pull harder? As lon as v = 0: The static friction force will continue to match T until F f = µ s N. After that, F f can t increase any more: Ø T > F f and the box will accelerate! Mechanics Lecture 6, Slide 16

17 Example problem A block ( ) slides on a table pulled by a strin attached to a mass ( ) hanin over the side. The coefficient of kinetic friction between the slidin block and the table is µ k. What is the tension in the strin? Mechanics Lecture 6, Slide 17

18 CheckPoint: Blocks and Pulley A block slides on a table pulled by a strin a>ached to a hanin weiht. In Case 1 the block slides without fric%on and in Case 2 there is kine%c fric%on between the slidin block and the table. Case 1 (No Friction) Case 2 (With Friction) In which case is the tension in the strin larer? A) Case 1 B) Case 2 C) Same 64% of you ot this riht Mechanics Lecture 6, Slide 18

19 ACT: Blocks and Pulley, I A block slides on a table pulled by a strin a>ached to a hanin weiht. In Case 1 the block slides without fric%on and in Case 2 there is kine%c fric%on between the slidin block and the table. + a a is positive when accelerates downward! A C B D Case 1 (No Friction) a T + T = a 1 = a =) T = ( a) What is the tension in the strin for Case 1? A) T = 0 B) T = C) 0 < T < Mechanics Lecture 6, Slide 19

20 ACT: Blocks and Pulley, II A block slides on a table pulled by a strin a>ached to a hanin weiht. In Case 1 the block slides without fric%on and in Case 2 there is kine%c fric%on between the slidin block and the table. A C B D Case 1 (No Friction) Case 2 (With Friction) In which case is the acceleration of the blocks larer? A) Case 1 B) Case 2 C) Same Mechanics Lecture 6, Slide 20

21 CheckPoint revisited: Blocks and Pulley A C B D Case 1 (No Friction) Case 2 (With Friction) In which case is the tension in the strin larer? A) Case 1 B) Case 2 C) Same One of your answers: B) M1 will not be accelera%n as fast in case two than in case one because there is the extra force of fric%on ac%n aainst mass 1. Since the accelera%on is smaller in case two, there has to be more of a force ac%n aainst ravity, the only other possible force is Tension. Mechanics Lecture 6, Slide 21

22 ACT! A block ( ) slides on a table pulled by a strin attached to a mass ( ) hanin over the side. The coefficient of kinetic friction between the slidin block and the table is µ k. What is the tension in the strin? T 1 A C B D What is the relationship between the manitude of the tension of the strin at block 2 and the manitude of the tension in the strin at block 1? T 2 A) T 1 > T 2 B) T 1 = T 2 C) T 1 < T 2 Mechanics Lecture 6, Slide 22

23 ACT: A block ( ) slides on a table pulled by a strin attached to a mass ( ) hanin over the side. The coefficient of kinetic friction between the slidin block and the table is µ k. What is the tension in the strin? A C B D What is the relationship between the manitudes of the acceleration of the two blocks? A) a 1 = a 2 B) a 1 < a 2 C) a 1 > a 2 Mechanics Lecture 6, Slide 23

24 Back to example problem A block ( ) slides on a table pulled by a strin attached to a mass ( ) hanin over the side. The coefficient of kinetic friction between the slidin block and the table is µ k. What is the tension in the strin? Mechanics Lecture 6, Slide 24

25 1) FBD N f T T Mechanics Lecture 6, Slide 25

26 1) FBD 2) ΣF=ma f N T T N = T µ = a T = a add µ = a + a a = µ + Mechanics Lecture 6, Slide 26

27 1) FBD 2) ΣF=ma f N T T T = a a = µ + T = a T is smaller when a is bier Mechanics Lecture 6, Slide 27

Classical Mechanics Lecture 6. Today s Concept: Fric3on. Mechanics Lecture 6, Slide 1

Classical Mechanics Lecture 6. Today s Concept: Fric3on. Mechanics Lecture 6, Slide 1 Classical Mechanics Lecture 6 Today s Concept: Fric3on Mechanics Lecture 6, Slide 1 can we watch a movie in class please? More daffy duck vids...? Stuff you asked about: I know this is more of a eometrical

More information

4.3. Solving Friction Problems. Static Friction Problems. Tutorial 1 Static Friction Acting on Several Objects. Sample Problem 1.

4.3. Solving Friction Problems. Static Friction Problems. Tutorial 1 Static Friction Acting on Several Objects. Sample Problem 1. Solvin Friction Problems Sometimes friction is desirable and we want to increase the coefficient of friction to help keep objects at rest. For example, a runnin shoe is typically desined to have a lare

More information

Classical Mechanics Lecture 7

Classical Mechanics Lecture 7 Classical Mechanics Lecture 7 Today s Concepts: Work & Kine6c Energy Mechanics Lecture 7, Slide 1 Notices Midterm Exam Friday Feb 8 will cover stuff we do un6l today. 10 mul6ple choice + 2 problems, 2

More information

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions PC11 Fundamentals of Physics I Lectures 7 and 8 Motion in Two Dimensions Dr Tay Sen Chuan 1 Ground Rules Switch off your handphone and paer Switch off your laptop computer and keep it No talkin while lecture

More information

Exam 2 Phys Fall 2002 Version A. Name ID Section

Exam 2 Phys Fall 2002 Version A. Name ID Section Closed book exam - Calculators are allowed. Only the official formula sheet downloaded from the course web page can be used. You are allowed to write notes on the back of the formula sheet. Use the scantron

More information

Newton's laws of motion

Newton's laws of motion Episode No - 5 Date: 03-04-2017 Faculty: Sunil Deshpande Newton's laws of motion * A plank with a box on it at one end is slowly raised about the other end. As the anle with the horizontal slowly reaches

More information

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

More information

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2 PHYS 2211 A, B, & C Final Exam Formulæ & Constants Spring 2017 Unless otherwise directed, drag is to be neglected and all problems take place on Earth, use the gravitational definition of weight, and all

More information

SOLUTIONS TO PRACTICE PROBLEMS FOR MIDTERM I

SOLUTIONS TO PRACTICE PROBLEMS FOR MIDTERM I University of California, Berkeley Physics 7A Sprin 009 (Yury Kolomensky) SOLUTIONS TO PRACTICE PROBLEMS FOR MIDTERM I Maximum score: 100 points 1. (15 points) Race Stratey Two swimmers need to et from

More information

PHYSICS 221 SPRING EXAM 1: February 20, 2014; 8:15pm 10:15pm

PHYSICS 221 SPRING EXAM 1: February 20, 2014; 8:15pm 10:15pm PHYSICS 221 SPRING 2014 EXAM 1: February 20, 2014; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Q1. Two forces are acting on a 2.00 kg box. In the overhead view of Figure 1 only one force F 1 and the acceleration of the box are shown.

More information

Exam 2A Solution. 1. A baseball is thrown vertically upward and feels no air resistance. As it is rising

Exam 2A Solution. 1. A baseball is thrown vertically upward and feels no air resistance. As it is rising Exam 2A Solution 1. A baseball is thrown vertically upward and feels no air resistance. As it is risin Solution: Possible answers: A) both its momentum and its mechanical enery are conserved - incorrect.

More information

Physics 211 Spring 2014 Final Practice Exam

Physics 211 Spring 2014 Final Practice Exam Physics 211 Spring 2014 Final Practice Exam This exam is closed book and notes. A formula sheet will be provided for you at the end of the final exam you can download a copy for the practice exam from

More information

Classical Mechanics Lecture 7

Classical Mechanics Lecture 7 Classical Mechanics Lecture 7 UNIT 10: WORK AND ENERGY Approximate Classroom Time: Three 100 minute sessions Today s Concepts: Work & Kine6c Energy ES "Knowing is not enough; we must apply. Willing is

More information

Chapter 6. Force and Motion II

Chapter 6. Force and Motion II Chapter 6 Force and Motion II 6 Force and Motion II 2 Announcement: Sample Answer Key 3 4 6-2 Friction Force Question: If the friction were absent, what would happen? Answer: You could not stop without

More information

Physics 101: Lecture 08. Common Incorrect Forces (Spooky Rules!) Items below are NOT forces Acceleration: F Net = ma Centripetal Acceleration

Physics 101: Lecture 08. Common Incorrect Forces (Spooky Rules!) Items below are NOT forces Acceleration: F Net = ma Centripetal Acceleration Physics 101: Lecture 08 Circular Motion Review of Newton s Laws Checkpoint 4, Lecture 7 In the game of tetherball, a rope connects a ball to the top of a vertical pole as shown. In one case, a ball of

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Weight Friction Tension 07-1 1 Current assignments Thursday prelecture assignment. HW#7 due this Friday at 5 pm. 07-1 2 Summary To solve problems in mechanics,

More information

Unit 06 Examples. Stuff you asked about:

Unit 06 Examples. Stuff you asked about: Unit 06 Examples Today s Concepts: 1. Force due to gravity 2. Force due to strings 3. Force due to springs (just a little bit) Mechanics Lecture 5, Slide 1 Stuff you asked about: Can you go over all of

More information

Chapter 6. Force and Motion-II

Chapter 6. Force and Motion-II Chapter 6 Force and Motion-II 6.2 Friction Frictional Forces Friction has its basis in surfaces that are not completely smooth: Frictional Forces The static frictional force keeps an object from starting

More information

Physics 121k Exam 3 7 Dec 2012

Physics 121k Exam 3 7 Dec 2012 Answer each question and show your work. A correct answer with no supportin reasonin may receive no credit. Unless directed otherwise, please use =10.0 m/s 2. Name: 1. (15 points) An 5.0 k block, initially

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

General Physics I Spring Applying Newton s Laws

General Physics I Spring Applying Newton s Laws General Physics I Spring 2011 pplying Newton s Laws 1 Friction When you push horizontally on a heavy box at rest on a horizontal floor with a steadily increasing force, the box will remain at rest initially,

More information

Exam 1 Solutions. Kinematics and Newton s laws of motion

Exam 1 Solutions. Kinematics and Newton s laws of motion Exam 1 Solutions Kinematics and Newton s laws of motion No. of Students 80 70 60 50 40 30 20 10 0 PHY231 Spring 2012 Midterm Exam 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Raw Score 1. In which

More information

SECTION A Torque and Statics

SECTION A Torque and Statics AP Physics C Multiple Choice Practice Rotation SECTON A Torque and Statics 1. A square piece o plywood on a horizontal tabletop is subjected to the two horizontal orces shown above. Where should a third

More information

Lecture PowerPoints. Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition. Giancoli

Lecture PowerPoints. Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition. Giancoli Lecture PowerPoints Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely

More information

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor. 51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

Physics Lecture 12. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma

Physics Lecture 12. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma Physics 2514 Lecture 12 P. Gutierrez Department of Physics & Astronomy University of Oklahoma P. Gutierrez (University of Oklahoma) Physics 2514 February 21, 2011 1 / 13 Goal Goals for today s lecture:

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVRSITY OF SASKATCHWAN Department of Physics and nineerin Physics Physics 115.3 MIDTRM TST Alternative Sittin October 009 Time: 90 minutes NAM: (Last) Please Print (Given) STUDNT NO.: LCTUR SCTION (please

More information

Announcements 24 Sep 2013

Announcements 24 Sep 2013 Announcements 24 Sep 2013 1. If you have questions on exam 1 2. Newton s 2 nd Law Problems: F m a. Inclined planes b. Pulleys c. Ropes d. Friction e. Etc Remember N2 is a blueprint for obtaining a useful

More information

20. Given: m = 75 kg ; a! = 2.0 m/s 2 [up] Required: F! N Analysis:! F! y. = m a!. Choose up as the positive direction. Solution:! F! y. = m a!!

20. Given: m = 75 kg ; a! = 2.0 m/s 2 [up] Required: F! N Analysis:! F! y. = m a!. Choose up as the positive direction. Solution:! F! y. = m a!! Chapter Review, paes 100 105 Knowlede 1. (b). (a) 3. (c) 4. (a) 5. (d) 6. (a) 7. (d) 8. (c) 9. (b) 10. False. If only three force of equal manitude act on an object, the object may or may not have a non-zero

More information

(A) (B) (C) (D) None of these

(A) (B) (C) (D) None of these Exercise OBJECTIVE PROBLEMS. Action and reaction (A) act on two different objects (C) have opposite directions. Which fiure represents the correct F.B.D. of rod of mass m as shown in fiure : (B) have equal

More information

Physics 2514 Lecture 13

Physics 2514 Lecture 13 Physics 2514 Lecture 13 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/18 Goals We will discuss some examples that involve equilibrium. We then move on to a discussion

More information

w = mg Use: g = 10 m/s 2 1 hour = 60 min = 3600 sec

w = mg Use: g = 10 m/s 2 1 hour = 60 min = 3600 sec The exam is closed book and closed notes. Part I: There are 1 multiple choice questions, 1 point each. The answers for the multiple choice questions are to be placed on the SCANTRON form provided. Make

More information

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

More information

As observed from the frame of reference of the sidewalk:

As observed from the frame of reference of the sidewalk: Section 3.1: Inertial and Non-inertial Frames of Reference Tutorial 1 Practice, pae 110 1. a) When the car is movin with constant velocity, I see the ball lie still on the floor. I would see the same situation

More information

Classical Mechanics Lecture 7

Classical Mechanics Lecture 7 Classical Mechanics Lecture 7 Today s Concepts: Work & Kine6c Energy Mechanics Lecture 7, Slide 1 Karate Will not do Session 3 of Unit 8. It is a Karate thing. We will only mark Session 2 of unit 8. You

More information

Physics 201, Review 2

Physics 201, Review 2 Physics 201, Review 2 Important Notes: v This review does not replace your own preparation efforts v The review is not meant to be complete. v Exercises used in this review do not form a test problem pool.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. FLEX Physical Science AP Physics C Newton's Laws --- Conceptual Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You swing a bat and hit

More information

Physics 2211 A & B Quiz #2 Solutions Fall P sin θ = µ k P cos θ + mg

Physics 2211 A & B Quiz #2 Solutions Fall P sin θ = µ k P cos θ + mg Physics 2211 A & B Quiz #2 Solutions Fall 2016 I. (16 points) A block of mass m is sliding up a vertical wall at constant non-zero velocity v 0, due to an applied force P pushing against it at an angle

More information

Newton s Laws.

Newton s Laws. Newton s Laws http://mathsforeurope.digibel.be/images Forces and Equilibrium If the net force on a body is zero, it is in equilibrium. dynamic equilibrium: moving relative to us static equilibrium: appears

More information

Classical Mechanics Lecture 4

Classical Mechanics Lecture 4 Classical Mechanics Lecture 4 Homework 3 and Midterm Exam 1 Today's Concepts: Newton s Laws a) Acceleration is caused by forces b) Force changes momentum c) Forces always come in pairs d) Good reference

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Physics 2211 M Quiz #2 Solutions Summer 2017

Physics 2211 M Quiz #2 Solutions Summer 2017 Physics 2211 M Quiz #2 Solutions Summer 2017 I. (16 points) A block with mass m = 10.0 kg is on a plane inclined θ = 30.0 to the horizontal, as shown. A balloon is attached to the block to exert a constant

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the diagram shown, the unknown vector is 1) Diagram 1 A) B - A. B) A - B. C) A + B.

More information

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds? Newton s Laws 1 1. Define mass variable Formula S or v SI 2. Define inertia, how is inertia related to mass 3. What is a Force? variable Formula S or v SI 4. How is a Newton defined? What does a Newton

More information

Unit 08 Work and Kinetic Energy. Stuff you asked about:

Unit 08 Work and Kinetic Energy. Stuff you asked about: Unit 08 Work and Kinetic Energy Today s Concepts: Work & Kinetic Energy Work in a non-constant direction Work by springs Mechanics Lecture 7, Slide 1 Stuff you asked about: Can we go over the falling,

More information

Circular Motion.

Circular Motion. 1 Circular Motion www.njctl.org 2 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and Rotational Velocity Dynamics of UCM Vertical

More information

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks!

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks! Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 ( weeks!) Physics 101:

More information

Main points of today s lecture: Normal force Newton s 3 d Law Frictional forces: kinetic friction: static friction Examples. Physic 231 Lecture 9

Main points of today s lecture: Normal force Newton s 3 d Law Frictional forces: kinetic friction: static friction Examples. Physic 231 Lecture 9 Main points of today s lecture: Normal force Newton s 3 d Law Frictional forces: kinetic friction: static friction Examples. Physic 3 Lecture 9 f N k = µ k f N s < µ s Atwood s machine Consider the Atwood

More information

Lecture 6. Applying Newton s Laws Free body diagrams Friction

Lecture 6. Applying Newton s Laws Free body diagrams Friction Lecture 6 Applying Newton s Laws Free body diagrams Friction ACT: Bowling on the Moon An astronaut on Earth kicks a bowling ball horizontally and hurts his foot. A year later, the same astronaut kicks

More information

Circular Motion Test Review

Circular Motion Test Review Circular Motion Test Review Name: Date: 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration is equal to zero. B) No,

More information

Physics 2211 A & B Quiz #3 Solutions Fall 2016

Physics 2211 A & B Quiz #3 Solutions Fall 2016 Physics 2211 A & B Quiz #3 Solutions Fall 2016 I. (16 points) A block of mass m 1 is connected by an ideal rope passing over an ideal pulley to a block of mass m 2. The block of mass m 1 slides up a plane

More information

= 40 N. Q = 60 O m s,k

= 40 N. Q = 60 O m s,k Sample Exam #2 Technical Physics Multiple Choice ( 6 Points Each ): F app = 40 N 20 kg Q = 60 O = 0 1. A 20 kg box is pulled along a frictionless floor with an applied force of 40 N. The applied force

More information

PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010

PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010 PHYSICS 1, FALL 010 EXAM 1 Solutions WEDNESDAY, SEPTEMBER 9, 010 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In

More information

Chapter 5 Applying Newton s Laws

Chapter 5 Applying Newton s Laws Chapter 5 Applying Newton s Laws In this chapter we will introduce further applications of Newton s 1 st and 2 nd law. In summary, all of the contact forces and action-at-a-distance forces will go on the

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular motion Impulse and momentum 08-2 1 Current assignments Reading: Chapter 9 in textbook Prelecture due next Thursday HW#8 due NEXT Friday (extension!)

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM TEST Alternative Sitting October 011 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm! Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

LECTURE 12 FRICTION & SPRINGS. Instructor: Kazumi Tolich

LECTURE 12 FRICTION & SPRINGS. Instructor: Kazumi Tolich LECTURE 12 FRICTION & SPRINGS Instructor: Kazumi Tolich Lecture 12 2 Reading chapter 6-1 to 6-2 Friction n Static friction n Kinetic friction Springs Origin of friction 3 The origin of friction is electromagnetic

More information

Phys101 First Major-061 Zero Version Coordinator: Abdelmonem Monday, October 30, 2006 Page: 1

Phys101 First Major-061 Zero Version Coordinator: Abdelmonem Monday, October 30, 2006 Page: 1 Coordinator: Abdelmonem Monday, October 30, 006 Page: 1 Q1. An aluminum cylinder of density.70 g/cm 3, a radius of.30 cm, and a height of 1.40 m has the mass of: A) 6.8 kg B) 45.1 kg C) 13.8 kg D) 8.50

More information

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 6 Physics, 4 th Edition James S. Walker Chapter 6 Applications of Newton s Laws Units of Chapter 6 Frictional Forces Strings and Springs Translational Equilibrium Connected Objects

More information

Lecture 10. Example: Friction and Motion

Lecture 10. Example: Friction and Motion Lecture 10 Goals: Exploit Newton s 3 rd Law in problems with friction Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapter 7, due 2/24, Wednesday) For Tuesday: Finish reading

More information

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true?

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? Slide 1 / 30 1 car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? The car s velocity is constant The car s acceleration is constant The

More information

Announcements. If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs)

Announcements. If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs) Exam 1 scores posted on Canvas: Ø Announcements If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs) Ø Must return regrade forms before next Wednesday, October

More information

Dynamics: Forces. Lecture 7. Chapter 5. Course website:

Dynamics: Forces. Lecture 7. Chapter 5. Course website: Lecture 7 Chapter 5 Dynamics: Forces Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Some leftovers from rotational motion Ch.4 Force,

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

To study applications of Newton s Laws as they. To study conditions that establish equilibrium. To consider contact forces and the effects of

To study applications of Newton s Laws as they. To study conditions that establish equilibrium. To consider contact forces and the effects of Chap. 5: More Examples with Newton s Law Chap.5: Applying Newton s Laws To study conditions that establish equilibrium. To study applications of Newton s Laws as they apply when the net force is not zero.

More information

Name St. Mary's HS AP Physics Circular Motion HW

Name St. Mary's HS AP Physics Circular Motion HW Name St. Mary's HS AP Physics Circular Motion HW Base your answers to questions 1 and 2 on the following situation. An object weighing 10 N swings at the end of a rope that is 0.72 m long as a simple pendulum.

More information

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down) Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

More information

Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil.

Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil. Name: ID #: Section #: PART I: MULTIPLE CHOICE QUESTIONS Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil. 1. A 55.0-kg box rests on a horizontal

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Uniform Circular Motion

Uniform Circular Motion Slide 1 / 112 Uniform Circular Motion 2009 by Goodman & Zavorotniy Slide 2 / 112 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and

More information

Physics 201 Lecture 16

Physics 201 Lecture 16 Physics 01 Lecture 16 Agenda: l Review for exam Lecture 16 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of 0.350, the masses are m 1 =

More information

Cause of Friction. Friction is caused by the microscopic roughness between surfaces like two gears locking together. S. Evans

Cause of Friction. Friction is caused by the microscopic roughness between surfaces like two gears locking together. S. Evans Cause of Friction Friction is caused by the microscopic roughness between surfaces like two gears locking together. Factors Affecting Friction Factors affecting friction: 1) The condition of the surfaces

More information

SEE the list given for chapter 04 where Newton s laws were introduced.

SEE the list given for chapter 04 where Newton s laws were introduced. PH2213 : Examples from Chapter 5 : Applying Newton s Laws Key Concepts Newton s Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (left-hand side) to the motion of the object,

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Physics 2111 Unit 7. Today s Concepts: Work & Kinetic Energy Power. Mechanics Lecture 7, Slide 1

Physics 2111 Unit 7. Today s Concepts: Work & Kinetic Energy Power. Mechanics Lecture 7, Slide 1 Physics 2111 Unit 7 Today s Concepts: Work & Kinetic Energy Power Mechanics Lecture 7, Slide 1 Work-Kinetic Energy Theorem The work done by force F as it acts on an object that moves between positions

More information

Physics 207 Lecture 9. Lecture 9

Physics 207 Lecture 9. Lecture 9 Lecture 9 Today: Review session Assignment: For Thursday, Read Chapter 8, first four sections Exam Wed., Feb. 18 th from 7:15-8:45 PM Chapters 1-7 One 8½ X 11 note sheet and a calculator (for trig.) Place:

More information

Physics 211 Week 5. Work and Kinetic Energy: Block on Ramp

Physics 211 Week 5. Work and Kinetic Energy: Block on Ramp Physics 211 Week 5 Work and Kinetic Energy: Block on Ramp A block starts with a speed of 15 m/s at the bottom of a ramp that is inclined at an angle of 30 o with the horizontal. The coefficient of kinetic

More information

LECTURE 9 FRICTION & SPRINGS. Instructor: Kazumi Tolich

LECTURE 9 FRICTION & SPRINGS. Instructor: Kazumi Tolich LECTURE 9 FRICTION & SPRINGS Instructor: Kazumi Tolich Lecture 9 2 Reading chapter 6-1 to 6-2 Friction n Static friction n Kinetic friction Springs Static friction 3 Static friction is the frictional force

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

University of Alabama Department of Physics and Astronomy. PH 125 / LeClair Fall Exam III Solution

University of Alabama Department of Physics and Astronomy. PH 125 / LeClair Fall Exam III Solution University of Alabama Department of Physics and Astronomy PH 5 / LeClair Fall 07 Exam III Solution. A child throws a ball with an initial speed of 8.00 m/s at an anle of 40.0 above the horizontal. The

More information

0/20. Mon Oct :15 PM EDT. Question Points. 0/10/30/30/30/40/30/3 Total 0/20. Description

0/20. Mon Oct :15 PM EDT. Question Points. 0/10/30/30/30/40/30/3 Total 0/20. Description 1 of 6 8/24/2009 5:07 PM 0/20 Mon Oct 5 2009 10:15 PM EDT Question Points 1 2 3 4 5 6 7 0/10/30/30/30/40/30/3 Total 0/20 Description This assignment is worth 20 points. Each part is worth 1 point. Assume

More information

Chapter 5/6: Newton s Laws Review

Chapter 5/6: Newton s Laws Review Chapter 5/6: Newton s Laws Review ConcepTest 5.1a Newton s First Law I A book is lying at rest on a table. The book will remain there at rest because: 1) there is a net force but the book has too much

More information

PH 2213 : Chapter 05 Homework Solutions

PH 2213 : Chapter 05 Homework Solutions PH 2213 : Chapter 05 Homework Solutions Problem 5.4 : The coefficient of static friction between hard rubber and normal street pavement is about 0.90. On how steep a hill (maximum angle) can you leave

More information

Chapter 6. Applications of Newton s Laws

Chapter 6. Applications of Newton s Laws Chapter 6 Applications of Newton s Laws P. Lam 7_11_2018 Learning Goals for Chapter 5 Learn how to apply Newton s First Law & Second Law. Understand the cause of apparent weight and weightlessness Learn

More information

161 Spring 2018 Exam 2 Version B Name: No cell phones or electronic devices (except scientific calculators). = 4 3 = = =

161 Spring 2018 Exam 2 Version B Name: No cell phones or electronic devices (except scientific calculators). = 4 3 = = = 161 Spring 2018 Exam 2 Version B Name: No cell phones or electronic devices (except scientific calculators). = 4 3 = = = = 4 = hh = = ± 4 2 = 2 = = 2 1609 m = 1 mi 12 in = 1 ft 60 s = 1 min 1000 g = 1

More information

Physics 111: Mechanics Lecture 9

Physics 111: Mechanics Lecture 9 Physics 111: Mechanics Lecture 9 Bin Chen NJIT Physics Department Circular Motion q 3.4 Motion in a Circle q 5.4 Dynamics of Circular Motion If it weren t for the spinning, all the galaxies would collapse

More information

Chapter 6. Force and Motion-II (Friction, Drag, Circular Motion)

Chapter 6. Force and Motion-II (Friction, Drag, Circular Motion) Chapter 6 Force and Motion-II (Friction, Drag, Circular Motion) 6.2 Frictional Force: Motion of a crate with applied forces There is no attempt at sliding. Thus, no friction and no motion. NO FRICTION

More information

AP Mechanics Summer Assignment

AP Mechanics Summer Assignment 2012-2013 AP Mechanics Summer Assignment To be completed in summer Submit for grade in September Name: Date: Equations: Kinematics (For #1 and #2 questions: use following equations only. Need to show derivation

More information

Chap. 4: Newton s Law of Motion

Chap. 4: Newton s Law of Motion Chap. 4: Newton s Law of Motion And Chap.5 Applying Newton s Laws (more examples) Force; Newton s 3 Laws; Mass and Weight Free-body Diagram (1D) Free-body Diagram (1D, 2 Bodies) Free-body Diagram (2D)

More information

Classical Mechanics Lecture 3

Classical Mechanics Lecture 3 Classical Mechanics Lecture 3 Today's Concepts: Newton s Laws a) Accelera=on is caused by forces b) Force changes momentum c) Forces always come in pairs d) Good reference frames Mechanics Lecture 3, Slide

More information

PHYSICS 111 SPRING EXAM 1: February 6, 2017; 8:15pm - 9:45pm

PHYSICS 111 SPRING EXAM 1: February 6, 2017; 8:15pm - 9:45pm PHYSICS 111 SPRING 2018 EXAM 1: February 6, 2017; 8:15pm - 9:45pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 20 multiple-choice questions plus 1 extra credit question,

More information