LECTURE 12 FRICTION & SPRINGS. Instructor: Kazumi Tolich

Size: px
Start display at page:

Download "LECTURE 12 FRICTION & SPRINGS. Instructor: Kazumi Tolich"

Transcription

1 LECTURE 12 FRICTION & SPRINGS Instructor: Kazumi Tolich

2 Lecture 12 2 Reading chapter 6-1 to 6-2 Friction n Static friction n Kinetic friction Springs

3 Origin of friction 3 The origin of friction is electromagnetic attraction force between molecules/atoms of one surface to these of another in close contact. The microscopic contacting surface area increases when the normal force increases due to the flattening of the tips. Polished steel surface

4 Static friction 4 Static friction is the frictional force that prevents surfaces in contact from sliding. The direction of the static friction is anti-parallel to the force trying to slide the object relative to the surface.

5 Static friction: 2 5 While the object is not sliding on a surface, the magnitude of the static friction equals the magnitude of the force trying to slide the object until it reaches the maximum value given by f s,max = µ s N µ s is the coefficient of static friction (dimensionless). N is the magnitude of the normal force by one surface on the other. f s FBD of the block N F mg

6 Clicker question: 1 & 2

7 Demo: 1 7 Four surface incline Demonstration of various materials with different coefficients of static friction

8 Example: 1 8 Hopping into your Porsche, you floor it and accelerate at a = 12 m/s 2 without spinning the tires. Determine the minimum coefficient of static friction between the tires and the road needed to make this possible.

9 Kinetic friction 9 Kinetic friction is the frictional force that opposes sliding motion. The direction of the kinetic friction is anti-parallel to the velocity of the sliding object relative to the surface. The magnitude of the kinetic friction is given by f k = µ k N µ k is the coefficient of kinetic friction (dimensionless). N is the magnitude of the normal force by one surface on the other. Kinetic friction is independent of the relative speed of the surfaces or the area of contact between the surfaces.

10 Demo: 2 10 Contact area and kinetic friction

11 Example: 2 11 A 0.11-kg hockey puck whose initial speed was 6.0 m/s slides on the ice for 15.0 m before it stops. a) What was the magnitude of the frictional force on the puck during the sliding? b) What was the coefficient of friction between the puck and the ice?

12 Static vs. kinetic frictions 12 For any given contacting surfaces, µ k is usually less than or equal to µ s. You have to push harder to get an object to begin sliding than to keep it sliding at constant speed. f s,max = µ s N f k = µ k N

13 Example: 3 13 A crate with a mass of m = 45 kg is placed on an inclined ramp. When the angle the ramp makes with the horizontal is increased to θ = 23, the crate begins to slide downward. a) What is the coefficient of static friction between the crate and the ramp? b) At what angle does the crate begin to slide if its mass is doubled?

14 Demo 3 14 Incline with Sliding Blocks (with Tacky Wax) Demonstration of various surfaces with different coefficients of static friction. Coefficient of static friction can be measured by the maximum angle without the block sliding. Max static friction: f s BR, max = µ s N BR N BR f s BR in x-dir: f s BR, max W BE sinθ = 0 in y-dir: N BR W BE cosθ = 0 +y +x θ µ s = tanθ θ W BE

15 Spring force 15 Force exerted by a compressed or stretched spring obey Hook s law. F x = kx - : the direction of force is opposite from the displacement of the end of the spring. This type force is called restoring force. k: force constant for stiffness of the spring x: the displacement of the end of the spring.

16 Demo: 4 16 Hook s Law

17 Example: 4 17 A backpack weighing w = 52.0 N rests on a table. A spring with a force constant of k = 150 N/m is attached to the backpack and pulled horizontally. If the spring is pulled until it stretches x = 2.00 cm and the pack remains at rest, what is the force of friction exerted on the backpack by the table?

18 Example: 5 18 A spring with a force constant of k = 120 N/m is used to push a 0.27-kg block of wood against a wall, as shown. Find the minimum compression of the spring needed to keep the block from falling, given that the coefficient of static friction between the block and the wall is µ s = 0.46.

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich LECTURE 12 FRICTION, STRINGS & SPRINGS Instructor: Kazumi Tolich Lecture 12 2! Reading chapter 6-1 to 6-4! Friction " Static friction " Kinetic friction! Strings! Pulleys! Springs Origin of friction 3!!

More information

LECTURE 9 FRICTION & SPRINGS. Instructor: Kazumi Tolich

LECTURE 9 FRICTION & SPRINGS. Instructor: Kazumi Tolich LECTURE 9 FRICTION & SPRINGS Instructor: Kazumi Tolich Lecture 9 2 Reading chapter 6-1 to 6-2 Friction n Static friction n Kinetic friction Springs Static friction 3 Static friction is the frictional force

More information

Introduction to Mechanics Friction Examples Friction Springs

Introduction to Mechanics Friction Examples Friction Springs Introduction to Mechanics Friction Examples Friction Springs Lana Sheridan De Anza College Mar 7, 2018 Last time kinetic and static friction friction examples Overview one more friction example springs

More information

Cause of Friction. Friction is caused by the microscopic roughness between surfaces like two gears locking together. S. Evans

Cause of Friction. Friction is caused by the microscopic roughness between surfaces like two gears locking together. S. Evans Cause of Friction Friction is caused by the microscopic roughness between surfaces like two gears locking together. Factors Affecting Friction Factors affecting friction: 1) The condition of the surfaces

More information

There are two main types of friction:

There are two main types of friction: Section 4.15: Friction Friction is needed to move. Without friction, a car would sit in one spot spinning its tires, and a person would not be able to step forward. However, the motion of an object along

More information

Work and Energy. Work and Energy

Work and Energy. Work and Energy 1. Work as Energy Transfer Work done by a constant force (scalar product) Work done by a varying force (scalar product & integrals). Kinetic Energy Work-Energy Theorem Work by a Baseball Pitcher A baseball

More information

Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion

Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion 1. A baseball player slides into home base with an initial speed of 7.90 m/s. If the coefficient of kinetic friction between the

More information

Forces on an inclined plane. And a little friction too

Forces on an inclined plane. And a little friction too Forces on an inclined plane And a little friction too The Takeaway } You should be able to: } 2.2.2 Identify the forces acting on an object } Forces on non-horizontal surfaces } Including Friction } 2.2.8

More information

Help Desk: 9:00-5:00 Monday-Thursday, 9:00-noon Friday, in the lobby of MPHY.

Help Desk: 9:00-5:00 Monday-Thursday, 9:00-noon Friday, in the lobby of MPHY. Help Desk: 9:00-5:00 Monday-Thursday, 9:00-noon Friday, in the lobby of MPHY. SI (Supplemental Instructor): Thomas Leyden (thomasleyden@tamu.edu) 7:00-8:00pm, Sunday/Tuesday/Thursday, MPHY 333 Chapter

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

SPH3U1 - Dynamics Problems Set 3

SPH3U1 - Dynamics Problems Set 3 SPH3U1 - Dynamics Problems Set 3 Problems 1. A force of 1.2 N [ ] is applied to an object of mass 1.5 kg. It accelerates at 0.50 m/s 2 [ ] along a surface. Determine the force of friction that is acting

More information

Lecture 6. Applying Newton s Laws Free body diagrams Friction

Lecture 6. Applying Newton s Laws Free body diagrams Friction Lecture 6 Applying Newton s Laws Free body diagrams Friction ACT: Bowling on the Moon An astronaut on Earth kicks a bowling ball horizontally and hurts his foot. A year later, the same astronaut kicks

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

Bell Ringer: What is Newton s 3 rd Law? Which force acts downward? Which force acts upward when two bodies are in contact?

Bell Ringer: What is Newton s 3 rd Law? Which force acts downward? Which force acts upward when two bodies are in contact? Bell Ringer: What is Newton s 3 rd Law? Which force acts downward? Which force acts upward when two bodies are in contact? Does the moon attract the Earth with the same force that the Earth attracts the

More information

Friction Can Be Rough

Friction Can Be Rough 8.1 Observe and Find a Pattern Friction Can Be Rough Perform the following experiment: Rest a brick on a rough surface. Tie a string around the brick and attach a large spring scale to it. Pull the scale

More information

Chapter 13. Simple Harmonic Motion

Chapter 13. Simple Harmonic Motion Chapter 13 Simple Harmonic Motion Hooke s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring A large k indicates a stiff spring and a small

More information

4.4. Friction and Inclines

4.4. Friction and Inclines 4.4. Friction and Inclines Frictional Forces Friction has its basis in surfaces that are not completely smooth. This roughness causes resistance to horizontal motion. Even smooth surfaces have a certain

More information

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

More information

Physics Exam #1 review

Physics Exam #1 review Physics 1010 Exam #1 review General Test Information 7:30 tonight in this room (G1B20). Closed book. Single 3x5 note card with own notes written on it allowed. Calculators are allowed (no memory usage).

More information

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

More information

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song Physics 12 Inclined Planes Push it Up Song 1 Bell Work A box is pushed up a ramp at constant velocity. Draw a neatly labeled FBD showing all of the forces acting on the box. direction of motion θ F p F

More information

The magnitude of this force is a scalar quantity called weight.

The magnitude of this force is a scalar quantity called weight. Everyday Forces has direction The gravitational force (F g ) exerted on the ball by Earth is a vector directed toward the center of the earth. The magnitude of this force is a scalar quantity called weight.

More information

2. Kinetic friction - The force that acts against an object s motion. - Occurs once static friction has been overcome and object is moving

2. Kinetic friction - The force that acts against an object s motion. - Occurs once static friction has been overcome and object is moving Section 2.14: Friction Friction is needed to move. Without friction, a car would sit in one spot spinning its tires, and a person would not be able to step forward. However, the motion of an object along

More information

for any object. Note that we use letter, m g, meaning gravitational

for any object. Note that we use letter, m g, meaning gravitational Lecture 4. orces, Newton's Second Law Last time we have started our discussion of Newtonian Mechanics and formulated Newton s laws. Today we shall closely look at the statement of the second law and consider

More information

PH201 Chapter 5 Solutions

PH201 Chapter 5 Solutions PH201 Chapter 5 Solutions 5.4. Set Up: For each object use coordinates where +y is upward. Each object has Call the objects 1 and 2, with and Solve: (a) The free-body diagrams for each object are shown

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Physics Mechanics. Lecture 11 Newton s Laws - part 2

Physics Mechanics. Lecture 11 Newton s Laws - part 2 Physics 170 - Mechanics Lecture 11 Newton s Laws - part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of

More information

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion Tue Sept 15 Assignment 4 Friday Pre-class Thursday Lab - Print, do pre-lab Closed toed shoes Exam Monday Oct 5 7:15-9:15 PM email me if class conflict or extended time Dynamics - Newton s Laws of Motion

More information

Lecture 4. Newton s 3rd law and Friction

Lecture 4. Newton s 3rd law and Friction Lecture 4 Newton s 3rd law and Friction Newtons First Law or Law of Inertia If no net external force is applied to an object, its velocity will remain constant ("inert"). OR A body cannot change its state

More information

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension)

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension) Force 10/01/2010 = = Friction Force (Weight) (Tension), coefficient of static and kinetic friction MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236 2008 midterm posted for practice. Help sessions Mo, Tu

More information

4. The diagram below shows a 4.0-kilogram object accelerating at 10. meters per second 2 on a rough horizontal surface.

4. The diagram below shows a 4.0-kilogram object accelerating at 10. meters per second 2 on a rough horizontal surface. 1. An 8.0-newton wooden block slides across a horizontal wooden floor at constant velocity. What is the magnitude of the force of kinetic friction between the block and the floor? A) 2.4 N B) 3.4 N C)

More information

LECTURE 11 FRICTION AND DRAG

LECTURE 11 FRICTION AND DRAG LECTURE 11 FRICTION AND DRAG 5.5 Friction Static friction Kinetic friction 5.6 Drag Terminal speed Penguins travel on ice for miles by sliding on ice, made possible by small frictional force between their

More information

Announcements 24 Sep 2013

Announcements 24 Sep 2013 Announcements 24 Sep 2013 1. If you have questions on exam 1 2. Newton s 2 nd Law Problems: F m a. Inclined planes b. Pulleys c. Ropes d. Friction e. Etc Remember N2 is a blueprint for obtaining a useful

More information

Inclined Planes. Physics is infamous for sliding blocks down inclined planes. How boring! Why do we study it?

Inclined Planes. Physics is infamous for sliding blocks down inclined planes. How boring! Why do we study it? Inclined Planes Physics is infamous for sliding blocks down inclined planes How boring! Why do we study it? Many things we do involve inclines. Boxes are an easy way to simplify many complex objects. My

More information

Introduction to Friction YouTube is a wonderful resource for physics videos

Introduction to Friction YouTube is a wonderful resource for physics videos Happy Valentine s Day http://www.youtube.com/ watch?v=rzehncbu1_g Introduction to Friction YouTube is a wonderful resource for physics videos (in addition to other fun/silly stuff) Main Ideas in Class

More information

Dynamics Notes 1 Newton s Laws

Dynamics Notes 1 Newton s Laws Dynamics Notes 1 Newton s Laws In 1665 Sir Isaac Newton formulated three laws that dictate the motion of objects. These three laws are universal and apply to all forces in the universe. Newton s 1 st Law:

More information

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. 1. Which statement describes the gravitational force and the electrostatic force between two charged particles? A) The gravitational force may be either attractive or repulsive, whereas the electrostatic

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Topic: Force PHYSICS 231

Topic: Force PHYSICS 231 Topic: Force PHYSICS 231 Current Assignments Homework Set 2 due this Thursday, Jan 27, 11 pm Reading for next week: Chapters 10.1-6,10.10,8.3 2/1/11 Physics 231 Spring 2011 2 Key Concepts: Force Free body

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

Dynamics-Friction. 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface?

Dynamics-Friction. 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface? 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface? Base your answers to questions 2 and 3 on the information A student and the waxed skis she

More information

Isaac Newton ( )

Isaac Newton ( ) Isaac Newton (1642-1727) In the beginning of 1665 I found the rule for reducing any degree of binomial to a series. The same year in May I found the method of tangents and in November the method of fluxions

More information

Course Name : Physics I Course # PHY 107. Lecture-5 : Newton s laws - Part Two

Course Name : Physics I Course # PHY 107. Lecture-5 : Newton s laws - Part Two Course Name : Physics I Course # PHY 107 Lecture-5 : Newton s laws - Part Two Abu Mohammad Khan Department of Mathematics and Physics North South University https://abukhan.weebly.com Copyright: It is

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam.

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam. Reminder: Exam this Sunday Nov. 9. Chapters 5. 5.4, 3.4,.0, 6, 7. Time: 6:0 7:30 PM Look up locations online. Bring calculator and formula sheet. If you have a conflict, you should have already requested

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

Friction (static & Kinetic) Review

Friction (static & Kinetic) Review Friction (static & Kinetic) Review 1. Sand is often placed on an icy road because the sand A) decreases the coefficient of friction between the tires of a car and the road B) increases the coefficient

More information

Consider the case of a 100 N. mass on a horizontal surface as shown below:

Consider the case of a 100 N. mass on a horizontal surface as shown below: 1.9.1 Introduction The study of friction is called: The force of friction is defined as: The force of friction acting between two surfaces has three properties: i) ii) iii) Consider the case of a 100 N.

More information

General Physics I Forces

General Physics I Forces General Physics I Forces Dynamics Isaac Newton (1643-1727) published Principia Mathematica in 1687. In this work, he proposed three laws of motion based on the concept of FORCE. A force is a push or a

More information

Study Questions/Problems Week 4

Study Questions/Problems Week 4 Study Questions/Problems Week 4 Chapter 6 treats many topics. I have selected on average less than three problems from each topic. I suggest you do them all. Likewise for the Conceptual Questions and exercises,

More information

Concept of Force and Newton s Laws of Motion

Concept of Force and Newton s Laws of Motion Concept of Force and Newton s Laws of Motion 8.01 W02D2 Chapter 7 Newton s Laws of Motion, Sections 7.1-7.4 Chapter 8 Applications of Newton s Second Law, Sections 8.1-8.4.1 Announcements W02D3 Reading

More information

Chapter 6 Applications of Newton s Laws. Copyright 2010 Pearson Education, Inc.

Chapter 6 Applications of Newton s Laws. Copyright 2010 Pearson Education, Inc. Chapter 6 Applications of Newton s Laws Units of Chapter 6 Frictional Forces Strings and Springs Translational Equilibrium Connected Objects Circular Motion 6-1 Frictional Forces Friction has its basis

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion. The Laws of motion Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

More information

Static and Kinetic Friction. Section 5.1 Friction. Example 5.1. Is the normal force always. equal to µmg? Is the frictional force always

Static and Kinetic Friction. Section 5.1 Friction. Example 5.1. Is the normal force always. equal to µmg? Is the frictional force always Section 5.1 Friction Static and Kinetic Friction Friction is an electromagnetic phenomenon: molecular attraction between surfaces Extreme example: Gecko foot Two kinds of friction: Static Friction: a force

More information

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

More information

Get Solution of These Packages & Learn by Video Tutorials on FRICTION

Get Solution of These Packages & Learn by Video Tutorials on  FRICTION 1. FRICTION : When two bodies are kept in contact, electromagnetic forces act between the charged particles (molecules) at the surfaces of the bodies. Thus, each body exerts a contact force of the other.

More information

1) caused by the interaction of 2 + objects. 2) opposite (opposes) motion. 3) Types Kinetic, static, sliding, rolling

1) caused by the interaction of 2 + objects. 2) opposite (opposes) motion. 3) Types Kinetic, static, sliding, rolling Friction: 1) caused by the interaction of 2 + objects 2) opposite (opposes) motion 3) Types Kinetic, static, sliding, rolling 4) size determined by: nature of surfaces force pushing surfaces together frictional

More information

2. A 10 kg box is being pushed by a 100 N force 30 above the horizontal. The acceleration of the box is 5 m/s 2. What is the value of µ k?

2. A 10 kg box is being pushed by a 100 N force 30 above the horizontal. The acceleration of the box is 5 m/s 2. What is the value of µ k? Physics Whiteboard Forces with Friction 1. A 70 kg block is being pushed across a tabletop with a constant force of 350 N exerted in the direction of travel. If the coefficient of kinetic friction (µ k

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Announcements 23 Sep 2014

Announcements 23 Sep 2014 Announcements 23 Sep 2014 1. After today, just one more lecture of new material before Exam 1!! a. Exam 1: Oct 2 Oct 7 (2 pm) in the Testing Center, late fee after Oct 6 2 pm b. Exam review sessions by

More information

Physics Lecture 13. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma

Physics Lecture 13. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma Physics 2514 Lecture 13 P. Gutierrez Department of Physics & Astronomy University of Oklahoma P. Gutierrez (University of Oklahoma) Physics 2514 February 23, 2011 1 / 14 Goal Goals for today s lecture:

More information

Chapter 6. Force and Motion-II

Chapter 6. Force and Motion-II Chapter 6 Force and Motion-II 6.2 Friction Frictional Forces Friction has its basis in surfaces that are not completely smooth: Frictional Forces The static frictional force keeps an object from starting

More information

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

More information

Announcements. There will still be a WebAssign due this Friday, the last before the midterm.

Announcements. There will still be a WebAssign due this Friday, the last before the midterm. Announcements THERE WILL BE NO CLASS THIS FRIDAY, MARCH 5 (We are 1 full lecture ahead of the syllabus, so we will still have review/problem solving on March 7 and 9). There will still be a WebAssign due

More information

Newton s First Law. Newton s Second Law 9/29/11

Newton s First Law. Newton s Second Law 9/29/11 Newton s First Law Any object remains at constant velocity unless acted upon by a net force. AND In order for an object to accelerate, there must be a net force acting on it. Constant velocity could mean

More information

Dynamics Review Outline

Dynamics Review Outline Dynamics Review Outline 2.1.1-C Newton s Laws of Motion 2.1 Contact Forces First Law (Inertia) objects tend to remain in their current state of motion (at rest of moving at a constant velocity) until acted

More information

2. Mass, Force and Acceleration

2. Mass, Force and Acceleration . Mass, Force and Acceleration [This material relates predominantly to modules ELP034, ELP035].1 ewton s first law of motion. ewton s second law of motion.3 ewton s third law of motion.4 Friction.5 Circular

More information

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Let vector a! = 4î + 3 ĵ and vector b! = î + 2 ĵ (or b! = î + 4 ĵ ). What is the

More information

Static and Kinetic Friction

Static and Kinetic Friction Dual-Range Force Sensor Computer 12 If you try to slide a heavy box resting on the floor, you may find it difficult to get the box moving. Static friction is the force that counters your force on the box.

More information

Free Body Diagram Practice

Free Body Diagram Practice Name: Free Body Diagram Practice Per: Read each scenario and draw a diagram of the forces acting upon the object(s). 1. A book is at rest on a table top. Diagram the forces acting on the book. 2. A girl

More information

I. What are forces? A. Characteristics:

I. What are forces? A. Characteristics: Chapter 5: forces I. What are forces? A. Characteristics: 1. Forces result from the interaction of objects. A FORCE is a push or a pull that one object exerts on another. 2. How are forces measured: a.

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Mini Exam # 1. You get them back in the the recitation section for which you are officially enrolled.

Mini Exam # 1. You get them back in the the recitation section for which you are officially enrolled. Mini Exam # 1 You get them back in the the recitation section for which you are officially enrolled. One third of you did very well ( 18 points out of 20). The average was 13.4. If you stay in average,

More information

5. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

5. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. The greatest increase in the inertia of an object would be produced by increasing the A) mass of the object from 1.0 kg to 2.0 kg B) net force applied to the object from 1.0 N to 2.0 N C) time that

More information

24/06/13 Forces ( F.Robilliard) 1

24/06/13 Forces ( F.Robilliard) 1 R Fr F W 24/06/13 Forces ( F.Robilliard) 1 Mass: So far, in our studies of mechanics, we have considered the motion of idealised particles moving geometrically through space. Why a particular particle

More information

An Accelerating Hockey Puck

An Accelerating Hockey Puck Example 5.1 An Accelerating Hockey Puck A hockey puck having a mass of 0.30 kg slides on the frictionless, horizontal surface of an ice rink. Two hockey sticks strike the puck simultaneously, exerting

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

Examples Newton's Laws and Friction

Examples Newton's Laws and Friction Examples Newton's Laws and Friction 1. A 10.0 kg box is sitting on a table. (A) If a 49 N force is required to overcome friction and start the block moving, calculate the coefficient of static friction.

More information

Isaac Newton. What is a force? Newton s Three Laws of Motion. What is the acceleration of the car?

Isaac Newton. What is a force? Newton s Three Laws of Motion. What is the acceleration of the car? Aim: What did Isaac Newton teach us about motion? Do Now: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes

More information

General Physics I Spring Forces and Newton s Laws of Motion

General Physics I Spring Forces and Newton s Laws of Motion General Physics I Spring 2011 Forces and Newton s Laws of Motion 1 Forces and Interactions The central concept in understanding why things move is force. If a tractor pushes or pulls a trailer, the tractor

More information

66 Chapter 6: FORCE AND MOTION II

66 Chapter 6: FORCE AND MOTION II Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans:

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans: Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Applying Newton s Laws

Applying Newton s Laws Applying Newton s Laws Free Body Diagrams Draw and label the forces acting on the object. Examples of forces: weight, normal force, air resistance, friction, applied forces (like a push or pull) Velocity

More information

Chapter 5 Gravitation Chapter 6 Work and Energy

Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 (5.6) Newton s Law of Universal Gravitation (5.7) Gravity Near the Earth s Surface Chapter 6 (today) Work Done by a Constant Force Kinetic Energy,

More information

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

More information

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge HSC PHYSICS ONLINE DYNAMICS TYPES O ORCES Electrostatic force (force mediated by a field - long range: action at a distance) the attractive or repulsion between two stationary charged objects. AB A B BA

More information

What factors affect friction?

What factors affect friction? Friction What factors affect friction? What factors affect friction? Survey says: Surface texture Surface material Surface area Speed of slide Mass Weight Angle of surface Normal Force What really affects

More information

+F N = -F g. F g = m٠a g

+F N = -F g. F g = m٠a g Force Normal = F N Force Normal (or the Normal Force, abbreviated F N ) = F N = The contact force exerted by a surface on an object. The word Normal means perpendicular to Therefore, the Normal Force is

More information

1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to

1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to 1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to A) 9.2 10 12 s B) 8.3 10 14 s C) 1.6 10 16 s D) 4.4 10 17 s E) 2.7

More information

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Q1. Two forces are acting on a 2.00 kg box. In the overhead view of Figure 1 only one force F 1 and the acceleration of the box are shown.

More information

Newton s First Law and IRFs

Newton s First Law and IRFs Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

More information

Physics 207 Lecture 7. Lecture 7

Physics 207 Lecture 7. Lecture 7 Lecture 7 "Professor Goddard does not know the relation between action and reaction and the need to have something better than a vacuum against which to react. He seems to lack the basic knowledge ladled

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information