Discrete-Time Signals and Systems. Introduction to Discrete-Time Systems. What is a Signal? What is a System? Analog and Digital Signals.

Size: px
Start display at page:

Download "Discrete-Time Signals and Systems. Introduction to Discrete-Time Systems. What is a Signal? What is a System? Analog and Digital Signals."

Transcription

1 Discrete-Time Signls nd Systems Introduction to Discrete-Time Systems Dr. Deep Kundur University of Toronto Reference: Sections. -.4 of John G. Prokis nd Dimitris G. Mnolkis, Signl Processing: Principles, Algorithms, nd Applictions, 4th edition, 007. Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems / 34. Signls, Systems nd Signl Processing Wht is Signl? Wht is System? nd Signls. Clssifiction of Signls Signl: ny physicl untity tht vries with time, spce, or ny other independent vrible or vribles Exmples: pressure s function of ltitude, sound s function of time, color s function of spce,... x(t) = cos(πt), x(t) = 4 t + t 3, x(m, n) = (m + n) System: physicl device tht performs n opertion on Exmples: nlog mplifier, noise cnceler, communiction chnnel, trnsistor,... y(t) = 4x(t), dy(t) dt + 3y(t) = dx(t) dt + 6x(t), y(n) y(n ) = 3 + x(n ) nlog = continuous-time + continuous mplitude digitl = discrete-time + discrete mplitude continuous-time discrete-time continuous mplitude discrete mplitude x(t) x(t) t x[n] x[n] n 0 n t Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 3 / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 4 / 34

2 nd Signls. Clssifiction of Signls nd Systems. Clssifiction of Signls s re fundmentlly significnt becuse we must interfce with the rel world which is nlog by nture. s re importnt becuse they fcilitte the use of digitl processing (DSP) systems, which hve prcticl nd performnce dvntges for severl pplictions. nlog system = nlog input + nlog output dvntges: esy to interfce to rel world, do not need A/D or D/A converters, speed not dependent on clock rte digitl system = digitl input + digitl output dvntges: re-configurbility using softwre, greter control over ccurcy/resolution, predictble nd reproducible behvior Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 5 / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 6 / 34. Clssifiction of Signls Deterministic vs. Rndom Signls Wht is pure freuency? Deterministic : ny tht cn be uniuely described by n explicit mthemticl expression, tble of dt, or well-defined rule pst, present nd future vlues of the re known precisely without ny uncertinty Rndom : ny tht lcks uniue nd explicit mthemticl expression nd thus evolves in time in n unpredictble mnner it my not be possible to ccurtely describe the the deterministic model of the my be too complicted to be of use. x (t) = A cos(ωt + θ) = A cos(πft + θ), t R nlog, A x (t) A nd < t < A = mplitude Ω = freuency in rd/s F = freuency in Hz (or cycles/s); note: Ω = πf θ = phse in rd Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 7 / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 8 / 34

3 Continuous-time Sinusoids Sinusoids x (t) = A cos(ωt + θ) = A cos(πft + θ),. For F R, x (t) is periodic t R i.e., there exists Tp R + such tht x (t) = x (t + T p ). distinct freuencies result in distinct sinusoids i.e., for F F, A cos(πf t + θ) A cos(πf t + θ) 3. incresing freuency results in n increse in the rte of oscilltion of the sinusoid i.e., for F < F, A cos(πf t + θ) hs lower rte of oscilltion thn A cos(πf t + θ) = A cos(ωn + θ) = A cos(πfn + θ), n Z discrete-time (not digitl), A x (t) A nd n Z A = mplitude ω = freuency in rd/smple f = freuency in cycles/smple; note: ω = πf θ = phse in rd Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 9 / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 0 / 34 Sinusoids Sinusoids = A cos(ωn + θ) = A cos(πfn + θ), n Z. is periodic only if its freuency f is rtionl number Note: rtionl number is of the form k k for k, k Z periodic discrete-time sinusoids: = cos( 4 7 πn), = sin( π 5 n + 3) periodic discrete-time sinusoids: = cos( 4 7 n), = sin( πn + 3) = A cos(ωn + θ) = A cos(πfn + θ), n Z. rdin freuencies seprted by n integer multiple of π re identicl or cyclic freuencies seprted by n integer multiple re identicl 3. lowest rte of oscilltion is chieved for ω = kπ nd highest rte of oscilltion is chieved for ω = (k + )π, for k Z subseuently, this corresponds to lowest rte for f = k (integer) nd highest rte for f = k+ (hlf integer), for k Z; see Figure.3.4 of text. Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems / 34

4 Complex Exponentils Complex Exponentils e jφ = cos(φ) + j sin(φ) Euler s reltion cos(φ) = ejφ +e jφ sin(φ) = ejφ e jφ j Continuous-time: : A e j(ωt+θ) = A e j(πft+θ) A e j(ωn+θ) = A e j(πfn+θ) where j Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 3 / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 4 / 34 Periodicity: Continuous-time Periodicity: x(t) = x(t + T ), T R + A e j(πft+θ) j(πf (t+t )+θ) = A e e jπft e jθ = e jπft e jπft e jθ = e jπft e jπk = = e jπft, k Z T = k F k Z T 0 = F, k = sgn(f ) = x(n + N), N Z + A e j(πfn+θ) j(πf (n+n)+θ) = A e e jπfn e jθ = e jπfn e jπfn e jθ = e jπfn e jπk = = e jπfn, k Z f = k N k Z N 0 = k f, min k Z such tht k f Z + Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 5 / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 6 / 34

5 Uniueness: Continuous-time Uniueness: Let f = f 0 + k where k Z, For F F, A cos(πf t + θ) A cos(πf t + θ) except t discrete points in time. x (n) = A e j(πf n+θ) = A e j(π(f 0+k)n+θ) = A e j(πf 0n+θ) e j(πkn) = x 0 (n) = x 0 (n) Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 7 / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 8 / 34 Uniueness: Hrmoniclly Relted Complex Exponentils Therefore, dst-time sinusoids re uniue for f [0, ). For ny sinusoid with f [0, ), f 0 [0, ) such tht x (n) = A e j(πf n+θ) = A e j(πf 0n+θ) = x 0 (n). Exmple: A dst-time sinusoid with freuency f = 4.56 is the sme s dst-time sinusoid with freuency f 0 = = Exmple: A dst-time sinusoid with freuency f = 7 is the 8 sme s dst-time sinusoid with freuency f 0 = 7 + =. 8 8 Figure.4.5 of text Hrmoniclly relted s k (t) = e jkω0t = e jπkf0t, (cts-time) k = 0, ±, ±,... Scientific Designtion Freuency (Hz) k for F 0 = 8.76 C C C C C C C Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 9 / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 0 / 34

6 Hrmoniclly Relted Complex Exponentils Scientific Designtion Freuency (Hz) k for F 0 = 8.76 C C C C4 (middle C) C C C C Hrmoniclly Relted Complex Exponentils Wht does the fmily of hrmoniclly relted sinusoids s k (t) hve in common? Hrmoniclly relted s k (t) = e jkω0t = e jπ(kf0)t, (cts-time) k = 0, ±, ±,... fund. period: T 0,k = cyclic freuency = kf 0 period: T k = ny integer multiple of T 0 common period: T = k T 0,k = F 0 C C C3 C4 C5 C6 C7 C8 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems / 34 Hrmoniclly Relted Complex Exponentils Hrmoniclly Relted Complex Exponentils Cse: For periodicity, select f 0 = N where N Z: Hrmoniclly relted s k (n) = e jπkf0n = e jπkn/n, (dts-time) k = 0, ±, ±,... There re only N distinct dst-time hrmonics: s k (n), k = 0,,,..., N. s k+n (n) = e jπ(k+n)n/n = e jπkn/n e jπnn/n = e jπkn/n = e jπkn/n = s k (n) Therefore, there re only N distinct dst-time hrmonics: s k (n), k = 0,,,..., N. Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 3 / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 4 / 34

7 -to- Conversion -to- Conversion Smpler Quntizer Smpler Quntizer Smpling: conversion from cts-time to dst-time by tking smples t discrete time instnts E.g., uniform smpling: = x (nt ) where T is the smpling period nd n Z Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 5 / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 6 / 34 -to- Conversion -to- Conversion Smpler Quntizer Smpler Quntizer Quntiztion: conversion from dst-time cts-vlued to dst-time dst-vlued untiztion error: e (n) = x (n) for ll n Z Coding: representtion of ech dst-vlue x (n) by b-bit binry seuence e.g., if for ny n, x (n) {0,,..., 6, 7}, then the coder my use the following mpping to code the untized mplitude: Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 7 / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 8 / 34

8 -to- Conversion Smpling Theorem Smpler Quntizer If the highest freuency contined in n nlog x (t) is F mx = B nd the is smpled t rte Exmple coder: F s > F mx = B then x (t) cn be exctly recovered from its smple vlues using the interpoltion function g(t) = sin(πbt) πbt Note: F N = B = F mx is clled the Nyuist rte. Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 9 / 34 Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 30 / 34 Smpling Theorem Smpling Period = T = F s = Smpling Freuency Therefore, given the interpoltion reltion, x (t) cn be written s x (t) = x (t) = n= n= x (nt )g(t nt ) g(t nt ) where x (nt ) = ; clled bndlimited interpoltion. See Figure.4.6 of text. Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 3 / 34 -to- Conversion originl/bndlimited interpolted 0 n Common interpoltion pproches: bndlimited interpoltion, zero-order hold, liner interpoltion, higher-order interpoltion techniues, e.g., using splines In prctice, chep interpoltion long with smoothing filter is employed. Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 3 / 34

9 -to- Conversion -to- Conversion originl/bndlimited interpolted originl/bndlimited interpolted liner interpoltion zero-order hold -3T t -T -T 0 T T 3T -3T t -T -T 0 T T 3T Common interpoltion pproches: bndlimited interpoltion, zero-order hold, liner interpoltion, higher-order interpoltion techniues, e.g., using splines In prctice, chep interpoltion long with smoothing filter is employed. Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 33 / 34 Common interpoltion pproches: bndlimited interpoltion, zero-order hold, liner interpoltion, higher-order interpoltion techniues, e.g., using splines In prctice, chep interpoltion long with smoothing filter is employed. Dr. Deep Kundur (University of Toronto) Introduction to Discrete-Time Systems 34 / 34

Chapter 1. Chapter 1 1

Chapter 1. Chapter 1 1 Chpter Chpter : Signls nd Systems... 2. Introduction... 2.2 Signls... 3.2. Smpling... 4.2.2 Periodic Signls... 0.2.3 Discrete-Time Sinusoidl Signls... 2.2.4 Rel Exponentil Signls... 5.2.5 Complex Exponentil

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Introduction Moslem Amiri, Václav Přenosil Embedded Systems Laboratory Faculty of Informatics, Masaryk University Brno, Czech Republic amiri@mail.muni.cz prenosil@fi.muni.cz February

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

Chapter 5 : Continuous Random Variables

Chapter 5 : Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 216 Néhémy Lim Chpter 5 : Continuous Rndom Vribles Nottions. N {, 1, 2,...}, set of nturl numbers (i.e. ll nonnegtive integers); N {1, 2,...}, set of ll

More information

X Z Y Table 1: Possibles values for Y = XZ. 1, p

X Z Y Table 1: Possibles values for Y = XZ. 1, p ECE 534: Elements of Informtion Theory, Fll 00 Homework 7 Solutions ll by Kenneth Plcio Bus October 4, 00. Problem 7.3. Binry multiplier chnnel () Consider the chnnel Y = XZ, where X nd Z re independent

More information

Note 12. Introduction to Digital Control Systems

Note 12. Introduction to Digital Control Systems Note Introduction to Digitl Control Systems Deprtment of Mechnicl Engineering, University Of Ssktchewn, 57 Cmpus Drive, Ssktoon, SK S7N 5A9, Cnd . Introduction A digitl control system is one in which the

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

15. Quantisation Noise and Nonuniform Quantisation

15. Quantisation Noise and Nonuniform Quantisation 5. Quntistion Noise nd Nonuniform Quntistion In PCM, n nlogue signl is smpled, quntised, nd coded into sequence of digits. Once we hve quntised the smpled signls, the exct vlues of the smpled signls cn

More information

Simple Harmonic Motion I Sem

Simple Harmonic Motion I Sem Simple Hrmonic Motion I Sem Sllus: Differentil eqution of liner SHM. Energ of prticle, potentil energ nd kinetic energ (derivtion), Composition of two rectngulr SHM s hving sme periods, Lissjous figures.

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Construction of Gauss Quadrature Rules

Construction of Gauss Quadrature Rules Jim Lmbers MAT 772 Fll Semester 2010-11 Lecture 15 Notes These notes correspond to Sections 10.2 nd 10.3 in the text. Construction of Guss Qudrture Rules Previously, we lerned tht Newton-Cotes qudrture

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Deprtment 8.044 Sttisticl Physics I Spring Term 03 Problem : Doping Semiconductor Solutions to Problem Set # ) Mentlly integrte the function p(x) given in

More information

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes Jim Lmbers MAT 169 Fll Semester 2009-10 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of

More information

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba.

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba. Jim Lmbers MAT 28 Spring Semester 29- Lecture 7 Notes These notes correspond to Section 3.2 in Stewrt nd Section 7.2 in Mrsden nd Tromb. Line Integrls Recll from single-vrible clclus tht if constnt force

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

NUMERICAL INTEGRATION

NUMERICAL INTEGRATION NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls

More information

(4.1) D r v(t) ω(t, v(t))

(4.1) D r v(t) ω(t, v(t)) 1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

The graphs of Rational Functions

The graphs of Rational Functions Lecture 4 5A: The its of Rtionl Functions s x nd s x + The grphs of Rtionl Functions The grphs of rtionl functions hve severl differences compred to power functions. One of the differences is the behvior

More information

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 2-5pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of

More information

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Expectation and Variance

Expectation and Variance Expecttion nd Vrince : sum of two die rolls P(= P(= = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 P(=2) = 1/36 P(=3) = 1/18 P(=4) = 1/12 P(=5) = 1/9 P(=7) = 1/6 P(=13) =? 2 1/36 3 1/18 4 1/12 5 1/9 6 5/36 7 1/6

More information

ENGI 9420 Lecture Notes 7 - Fourier Series Page 7.01

ENGI 9420 Lecture Notes 7 - Fourier Series Page 7.01 ENGI 940 ecture Notes 7 - Fourier Series Pge 7.0 7. Fourier Series nd Fourier Trnsforms Fourier series hve multiple purposes, including the provision of series solutions to some liner prtil differentil

More information

8 Laplace s Method and Local Limit Theorems

8 Laplace s Method and Local Limit Theorems 8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved

More information

4. Approximation of continuous time systems with discrete time systems

4. Approximation of continuous time systems with discrete time systems 4. Approximtion of continuous time systems with iscrete time systems A. heory (it helps if you re the course too) he continuous-time systems re replce by iscrete-time systems even for the processing of

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction Lesson : Logrithmic Functions s Inverses Prerequisite Skills This lesson requires the use of the following skills: determining the dependent nd independent vribles in n exponentil function bsed on dt from

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

Optimization Lecture 1 Review of Differential Calculus for Functions of Single Variable.

Optimization Lecture 1 Review of Differential Calculus for Functions of Single Variable. Optimiztion Lecture 1 Review of Differentil Clculus for Functions of Single Vrible http://users.encs.concordi.c/~luisrod, Jnury 14 Outline Optimiztion Problems Rel Numbers nd Rel Vectors Open, Closed nd

More information

7 - Continuous random variables

7 - Continuous random variables 7-1 Continuous rndom vribles S. Lll, Stnford 2011.01.25.01 7 - Continuous rndom vribles Continuous rndom vribles The cumultive distribution function The uniform rndom vrible Gussin rndom vribles The Gussin

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

Ordinary differential equations

Ordinary differential equations Ordinry differentil equtions Introduction to Synthetic Biology E Nvrro A Montgud P Fernndez de Cordob JF Urchueguí Overview Introduction-Modelling Bsic concepts to understnd n ODE. Description nd properties

More information

19 Optimal behavior: Game theory

19 Optimal behavior: Game theory Intro. to Artificil Intelligence: Dle Schuurmns, Relu Ptrscu 1 19 Optiml behvior: Gme theory Adversril stte dynmics hve to ccount for worst cse Compute policy π : S A tht mximizes minimum rewrd Let S (,

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph.

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph. nlyzing Dmped Oscilltions Prolem (Medor, exmple 2-18, pp 44-48): Determine the eqution of the following grph. The eqution is ssumed to e of the following form f ( t) = K 1 u( t) + K 2 e!"t sin (#t + $

More information

We will see what is meant by standard form very shortly

We will see what is meant by standard form very shortly THEOREM: For fesible liner progrm in its stndrd form, the optimum vlue of the objective over its nonempty fesible region is () either unbounded or (b) is chievble t lest t one extreme point of the fesible

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

The usual algebraic operations +,, (or ), on real numbers can then be extended to operations on complex numbers in a natural way: ( 2) i = 1

The usual algebraic operations +,, (or ), on real numbers can then be extended to operations on complex numbers in a natural way: ( 2) i = 1 Mth50 Introduction to Differentil Equtions Brief Review of Complex Numbers Complex Numbers No rel number stisfies the eqution x =, since the squre of ny rel number hs to be non-negtive. By introducing

More information

Integrals - Motivation

Integrals - Motivation Integrls - Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is non-liner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but

More information

221B Lecture Notes WKB Method

221B Lecture Notes WKB Method Clssicl Limit B Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using

More information

New data structures to reduce data size and search time

New data structures to reduce data size and search time New dt structures to reduce dt size nd serch time Tsuneo Kuwbr Deprtment of Informtion Sciences, Fculty of Science, Kngw University, Hirtsuk-shi, Jpn FIT2018 1D-1, No2, pp1-4 Copyright (c)2018 by The Institute

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

Review of basic calculus

Review of basic calculus Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below

More information

#6A&B Magnetic Field Mapping

#6A&B Magnetic Field Mapping #6A& Mgnetic Field Mpping Gol y performing this lb experiment, you will: 1. use mgnetic field mesurement technique bsed on Frdy s Lw (see the previous experiment),. study the mgnetic fields generted by

More information

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function?

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function? Mth 125 Summry Here re some thoughts I ws hving while considering wht to put on the first midterm. The core of your studying should be the ssigned homework problems: mke sure you relly understnd those

More information

Acceptance Sampling by Attributes

Acceptance Sampling by Attributes Introduction Acceptnce Smpling by Attributes Acceptnce smpling is concerned with inspection nd decision mking regrding products. Three spects of smpling re importnt: o Involves rndom smpling of n entire

More information

Tests for the Ratio of Two Poisson Rates

Tests for the Ratio of Two Poisson Rates Chpter 437 Tests for the Rtio of Two Poisson Rtes Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson

More information

Bridging the gap: GCSE AS Level

Bridging the gap: GCSE AS Level Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions

More information

Joint distribution. Joint distribution. Marginal distributions. Joint distribution

Joint distribution. Joint distribution. Marginal distributions. Joint distribution Joint distribution To specify the joint distribution of n rndom vribles X 1,...,X n tht tke vlues in the smple spces E 1,...,E n we need probbility mesure, P, on E 1... E n = {(x 1,...,x n ) x i E i, i

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Applications of Bernoulli s theorem. Lecture - 7

Applications of Bernoulli s theorem. Lecture - 7 Applictions of Bernoulli s theorem Lecture - 7 Prcticl Applictions of Bernoulli s Theorem The Bernoulli eqution cn be pplied to gret mny situtions not just the pipe flow we hve been considering up to now.

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

A New Grey-rough Set Model Based on Interval-Valued Grey Sets

A New Grey-rough Set Model Based on Interval-Valued Grey Sets Proceedings of the 009 IEEE Interntionl Conference on Systems Mn nd Cybernetics Sn ntonio TX US - October 009 New Grey-rough Set Model sed on Intervl-Vlued Grey Sets Wu Shunxing Deprtment of utomtion Ximen

More information

COMPUTER SCIENCE TRIPOS

COMPUTER SCIENCE TRIPOS CST.2011.2.1 COMPUTER SCIENCE TRIPOS Prt IA Tuesdy 7 June 2011 1.30 to 4.30 COMPUTER SCIENCE Pper 2 Answer one question from ech of Sections A, B nd C, nd two questions from Section D. Submit the nswers

More information

Indefinite Integral. Chapter Integration - reverse of differentiation

Indefinite Integral. Chapter Integration - reverse of differentiation Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

1 Probability Density Functions

1 Probability Density Functions Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our

More information

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

Pavel Rytí. November 22, 2011 Discrete Math Seminar - Simon Fraser University

Pavel Rytí. November 22, 2011 Discrete Math Seminar - Simon Fraser University Geometric representtions of liner codes Pvel Rytí Deprtment of Applied Mthemtics Chrles University in Prgue Advisor: Mrtin Loebl November, 011 Discrete Mth Seminr - Simon Frser University Bckground Liner

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction Ttr Mt. Mth. Publ. 44 (29), 159 168 DOI: 1.2478/v1127-9-56-z t m Mthemticl Publictions A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES Miloslv Duchoň Peter Mličký ABSTRACT. We present Helly

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

Scientific notation is a way of expressing really big numbers or really small numbers.

Scientific notation is a way of expressing really big numbers or really small numbers. Scientific Nottion (Stndrd form) Scientific nottion is wy of expressing relly big numbers or relly smll numbers. It is most often used in scientific clcultions where the nlysis must be very precise. Scientific

More information

The mth Ratio Convergence Test and Other Unconventional Convergence Tests

The mth Ratio Convergence Test and Other Unconventional Convergence Tests The mth Rtio Convergence Test nd Other Unconventionl Convergence Tests Kyle Blckburn My 14, 2012 Contents 1 Introduction 2 2 Definitions, Lemms, nd Theorems 2 2.1 Defintions.............................

More information

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES DOIG PHYSICS WITH MATLAB MATHEMATICAL ROUTIES COMPUTATIO OF OE-DIMESIOAL ITEGRALS In Cooper School of Physics, University of Sydney in.cooper@sydney.edu.u DOWLOAD DIRECTORY FOR MATLAB SCRIPTS mth_integrtion_1d.m

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil

More information

38 Riemann sums and existence of the definite integral.

38 Riemann sums and existence of the definite integral. 38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the x-xis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These

More information

NOTES ON HILBERT SPACE

NOTES ON HILBERT SPACE NOTES ON HILBERT SPACE 1 DEFINITION: by Prof C-I Tn Deprtment of Physics Brown University A Hilbert spce is n inner product spce which, s metric spce, is complete We will not present n exhustive mthemticl

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Intuitionistic Fuzzy Lattices and Intuitionistic Fuzzy Boolean Algebras

Intuitionistic Fuzzy Lattices and Intuitionistic Fuzzy Boolean Algebras Intuitionistic Fuzzy Lttices nd Intuitionistic Fuzzy oolen Algebrs.K. Tripthy #1, M.K. Stpthy *2 nd P.K.Choudhury ##3 # School of Computing Science nd Engineering VIT University Vellore-632014, TN, Indi

More information

Computational Fluid Dynamics. Lecture 6

Computational Fluid Dynamics. Lecture 6 omputtionl Fluid Dynmics Lecture 6 Spce differencing errors. ψ ψ + = 0 Seek trveling wve solutions. e ( t) ik k is wve number nd is frequency. =k is dispersion reltion. where is phse speed. =, true solution

More information

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning Solution for Assignment 1 : Intro to Probbility nd Sttistics, PAC lerning 10-701/15-781: Mchine Lerning (Fll 004) Due: Sept. 30th 004, Thursdy, Strt of clss Question 1. Bsic Probbility ( 18 pts) 1.1 (

More information

CS667 Lecture 6: Monte Carlo Integration 02/10/05

CS667 Lecture 6: Monte Carlo Integration 02/10/05 CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of

More information

Lecture 20: Numerical Integration III

Lecture 20: Numerical Integration III cs4: introduction to numericl nlysis /8/0 Lecture 0: Numericl Integrtion III Instructor: Professor Amos Ron Scribes: Mrk Cowlishw, Yunpeng Li, Nthnel Fillmore For the lst few lectures we hve discussed

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

A recursive construction of efficiently decodable list-disjunct matrices

A recursive construction of efficiently decodable list-disjunct matrices CSE 709: Compressed Sensing nd Group Testing. Prt I Lecturers: Hung Q. Ngo nd Atri Rudr SUNY t Bufflo, Fll 2011 Lst updte: October 13, 2011 A recursive construction of efficiently decodble list-disjunct

More information

Realistic Method for Solving Fully Intuitionistic Fuzzy. Transportation Problems

Realistic Method for Solving Fully Intuitionistic Fuzzy. Transportation Problems Applied Mthemticl Sciences, Vol 8, 201, no 11, 6-69 HKAR Ltd, wwwm-hikricom http://dxdoiorg/10988/ms20176 Relistic Method for Solving Fully ntuitionistic Fuzzy Trnsporttion Problems P Pndin Deprtment of

More information

Orthogonal Polynomials and Least-Squares Approximations to Functions

Orthogonal Polynomials and Least-Squares Approximations to Functions Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

dt. However, we might also be curious about dy

dt. However, we might also be curious about dy Section 0. The Clculus of Prmetric Curves Even though curve defined prmetricly my not be function, we cn still consider concepts such s rtes of chnge. However, the concepts will need specil tretment. For

More information

R. I. Badran Solid State Physics

R. I. Badran Solid State Physics I Bdrn Solid Stte Physics Crystl vibrtions nd the clssicl theory: The ssmption will be mde to consider tht the men eqilibrim position of ech ion is t Brvis lttice site The ions oscillte bot this men position

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall)

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall) Green s functions 3. G(t, τ) nd its derivtives G (k) t (t, τ), (k =,..., n 2) re continuous in the squre t, τ t with respect to both vribles, George Green (4 July 793 3 My 84) In 828 Green privtely published

More information

Tutorial 4. b a. h(f) = a b a ln 1. b a dx = ln(b a) nats = log(b a) bits. = ln λ + 1 nats. = log e λ bits. = ln 1 2 ln λ + 1. nats. = ln 2e. bits.

Tutorial 4. b a. h(f) = a b a ln 1. b a dx = ln(b a) nats = log(b a) bits. = ln λ + 1 nats. = log e λ bits. = ln 1 2 ln λ + 1. nats. = ln 2e. bits. Tutoril 4 Exercises on Differentil Entropy. Evlute the differentil entropy h(x) f ln f for the following: () The uniform distribution, f(x) b. (b) The exponentil density, f(x) λe λx, x 0. (c) The Lplce

More information

QUADRATURE is an old-fashioned word that refers to

QUADRATURE is an old-fashioned word that refers to World Acdemy of Science Engineering nd Technology Interntionl Journl of Mthemticl nd Computtionl Sciences Vol:5 No:7 011 A New Qudrture Rule Derived from Spline Interpoltion with Error Anlysis Hdi Tghvfrd

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

Purpose of the experiment

Purpose of the experiment Newton s Lws II PES 6 Advnced Physics Lb I Purpose of the experiment Exmine two cses using Newton s Lws. Sttic ( = 0) Dynmic ( 0) fyi fyi Did you know tht the longest recorded flight of chicken is thirteen

More information

z TRANSFORMS z Transform Basics z Transform Basics Transfer Functions Back to the Time Domain Transfer Function and Stability

z TRANSFORMS z Transform Basics z Transform Basics Transfer Functions Back to the Time Domain Transfer Function and Stability TRASFORS Trnsform Bsics Trnsfer Functions Bck to the Time Domin Trnsfer Function nd Stility DSP-G 6. Trnsform Bsics The definition of the trnsform for digitl signl is: -n X x[ n is complex vrile The trnsform

More information

Arithmetic Mean Derivative Based Midpoint Rule

Arithmetic Mean Derivative Based Midpoint Rule Applied Mthemticl Sciences, Vol. 1, 018, no. 13, 65-633 HIKARI Ltd www.m-hikri.com https://doi.org/10.1988/ms.018.858 Arithmetic Men Derivtive Bsed Midpoint Rule Rike Mrjulis 1, M. Imrn, Symsudhuh Numericl

More information

Math 31S. Rumbos Fall Solutions to Assignment #16

Math 31S. Rumbos Fall Solutions to Assignment #16 Mth 31S. Rumbos Fll 2016 1 Solutions to Assignment #16 1. Logistic Growth 1. Suppose tht the growth of certin niml popultion is governed by the differentil eqution 1000 dn N dt = 100 N, (1) where N(t)

More information

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs Pre-Session Review Prt 1: Bsic Algebr; Liner Functions nd Grphs A. Generl Review nd Introduction to Algebr Hierrchy of Arithmetic Opertions Opertions in ny expression re performed in the following order:

More information

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr Lecture #1 Progrm 1. Bloch solutions. Reciprocl spce 3. Alternte derivtion of Bloch s theorem 4. Trnsforming the serch for egenfunctions nd eigenvlues from solving PDE to finding the e-vectors nd e-vlues

More information