NOTES ON HILBERT SPACE

Size: px
Start display at page:

Download "NOTES ON HILBERT SPACE"

Transcription

1 NOTES ON HILBERT SPACE 1 DEFINITION: by Prof C-I Tn Deprtment of Physics Brown University A Hilbert spce is n inner product spce which, s metric spce, is complete We will not present n exhustive mthemticl discussion of this subject Rther, by using exmples nd nlogies, hopefully you will feel more t ese with Hilbert spce t the end of this short discussion 11 REMARKS: (1) Consider the spce of functions, {f : [, b] C}, where f is squre-integrble complex-vlued function on the rel intervl [,b], ie, f(x) 2 < (1) This spce will be denoted s L 2 One cn directly verify tht L 2 is complex vector spce, ie, f nd g L 2, then αf + βg L 2 for α nd β, etc We will return to clrify in wht sense one cn visulize function s vector (2) By introducing dot-product, f g f (x)g(x) (2) this complex vector spce becomes n inner product spce This inner product provides us with positive definite norm for ech vector, ( f = 0 if nd only if f = 0) (3) Define distnce between two functions by f f f (3) d(f,g) f g (4) This turns L 2 into metric spce We shll explin the fct tht L 2 is Hilbert spce next 2 I Hilbert Spce is Complete 21 COMMENTS: (1) In deling with rel numbers, it is nturl to first strt working with integers One then finds tht one needs rtionls, nd finlly irrtionls To formlly introduce irrtionls, 1

2 one cn first introduce notion of distnce, d(x, y), between two numbers x nd y, which of course cn be chosen to be the bsolute vlue x y (With notion of distnce, the spce of numbers becomes metric spce ) Now one cn tlk bout n infinite sequence of numbers, eg, {3, 31, 314, 3141, 31415, } Note tht (i) the differences between ny pirs of numbers further down the sequence become smller nd smller (This is n exmple of Cuchy sequence ) (ii) As finite decimls, every term in the sequence is rtionl number Now, s you cn guess, the limit of this sequence is π, nd it is not rtionl number (2) A metric spce is not complete if it contins Cuchy sequences whose limit points re not contined in the spce As the exmple bove shows, the spce of rtionl numbers, with the usul notion of distnce, is not complete metric spce By including ll irrtionls, the spce of ll rel numbers is complete Mthemticlly, one sttes tht the rel numbers, R, is the completion of the set of rtionl numbers (3) We ll gree irrtionl numbers exist nd they must be included in ny sensible usge of numbers However, for physics, it is lso cler tht, for given problem, it is sufficient to work with rtionls only, eg by greeing to lwys work to the twentieth decimls Another wy of stting this fct is tht one cn lwys pproximte n irrtionl number by rtionl number to ny degree of ccurcy one desires Mthemticlly, one sttes tht the set of rtionl numbers is dense in R (4) It is mthemticl fct tht the spce L 2, defined by 1, s metric spce with distnce between functions f nd g defined by f g, iscomplete Tht is, the limiting function of ny Cuchy sequence of functions in L 2 is lso in L 2 Therefore, L 2 is Hilbert spce, which will lso be denoted by H 1 [Note: The nottion H 2 will be used to denote the Hilbert spce of L 2 functions defined over (, ) ] (5) Let us clrify the sitution by drwing n nlogy with the cse of rel numbers The role of rtionls is now plyed by continuous functions on the intervl [,b] However, the condition of squre-integrbility, 1, is much less stringent thn continuity Mny functions which re not continuous nevertheless stisfy 1 It cn be shown tht these dditionl functions cn lwys be thought of s limits of Cuchy sequences of continuous functions We complete L 2 by dding to the set of continuous functions these limiting points Tht is: L 2 is the completion of the spce of continuous functions on the intervl [,b], with respect to distnce defined by d(f,g) f g (6) Just like the sitution with rel numbers, ny function f L 2 cn lwys be pproximted by continuous functions, to ny desired degree of ccurcy Mthemticlly, one sttes tht the set of continuous functions on [,b] is dense in L 2 (7) Let us end with n exmple using Fourier series Let us consider L 2 defined over the intervl [ π, π] Consider periodic function f(x) Assume tht f(x) is continuous nd differentible except t point x o [ π, π], where f(x) hs finite discontinuity Let us 2

3 consider the following sequence of functions, {S(x)},N = 0,1,2,, defined by S(x) = 1 2π N n N n e ınx (5) where π n = 1 2π π n e nπx f(x) (6) for ll integers n Note tht ech {S(x)} is continuous t {S(x)} where f(x) hs discontinuity For ny smll number ɛ, we cn lwys choose N lrge enough so tht f {S(x)} <ɛ forn N (7) Tht is, to the ccurcy ɛ, f cn be pproximted by continuous function, {S(x)}, lthough f(x) is not The set of {S(x)} is Cuchy sequence Therefore, the spce of continuous functions is not complete However, the spce L 2 is Indeed, it is precisely in the sense of 7 tht we understnd the sttement tht every periodic function of period 2π cn be represented by Fourier series): with n given by 6 f(x) = 1 2π N n N n e ınx (8) 3 Stndrd Complete Orthonorml Bsis for H 1 31 DEFINITION: A system of functions, {φ n (x)}, defined on [,b] is sid to be n orthonorml system if φ n(x)φ m (x) =δ n,m (9) 32 DEFINITION: A system of functions, {φ n (x)}, defined on [,b] nd belonging to L 2, is sid to be complete if there exists no functions different from zero in L 2 which is orthogonl to ll functions φ n (x) Without loss of generlity, let us now shift the intervl [,b] to [-L/2, L/2] Consider the set of bsis functions, {U n (x)}, <n<, defined by U n (x) 1 L e 2πnx L (10) 3

4 We hve previously pointed out tht this set forms n orthonorml set: U n(x)u m (x) = 1 L e 2π(n m)x L = δ n,m (11) For ech function F in L 2, consider the Fourier series representtion F(x) = C n U n (x) (12) C n = U n(x)f(x) (13) The fct tht ny function in L 2 cn be expnded in this bsis cn be used to show tht this set is complete By substituting 10 into 12, one finds tht the completeness cn be expressed mthemticlly s 33 COMMENTS: U n(x)u n (x )= 1 L e 2πın(x x) L = δ(x x ) (14) (1) This set of complete orthonorml bsis functions will be referred to s our stndrd bsis In terms of this stndrd bsis, every function f cn be expnded s in 12 Insted of writing out 12 explicitly, we cn lso represent the function f by column vector, with components:,c n,,c 2,C 1,C o,c 1,C 2, C n C 2 C 1 C o C 1 C 2 C n Tht is, in this bsis, we cn ssocite function with vector with infinite mny components In this representtion, one sees function s column vector, just like the sitution with finite dimensionl vector spce (15) 4

5 (2) To drw closer nlogy with our stndrd representtion for finite dimensionl vector spce, let s re-write the inner-product, 2, nd the norm, 4, s follows: Consider two functions, F (x) nd F (x), described by components F (x) nd F (x) respectively in this stndrd bsis It follows from 11 tht F F F (x)f (x) = f 2 f f = C nc n C n 2 (3) In this representtion, the vector nture of the spce is mnifest! Insted of representing vector by its components, one cn lso represent function, f(x), by n bstrct vector in Dirc nottion, f If we first introduce Dirc nottion for our stndrd bsis vectors: { U n }, <n<, 8 cn be written s: with f = The orthonormlity condition in Dirc nottion becomes (16) C n U n, (17) C n = U n F (18) U n U m = δ n,m (19) We will shortly show tht the completeness condition in Dirc nottion is U n U n = Î (20) You should now compre these representtions with those for finite dimensionl vector spce, nd convince yourself tht these two sets re formlly identicl (4) You should lso convince yourself tht every liner opertor on L 2, ˆM : L 2 L 2, cn be ssocited with n infinite by infinite mtrix s follows: ˆM = M m,n U m U n (21) m= Wht is the form of the mtrix {M m,n } for the momentum opertor ˆp = ı h x? 34 Coordinte Bsis for H 1 It is convenient to formlly define set of bsis vectors, { x }, lbelled by continuous index,x [, b], stisfying Dirc-delt orthonormlity condition s follows: Orthonormlity : x x δ(x x ) (22) 5

6 In terms of this bsis, it is now possible to express ech bstrct vector f in H 1 s Coordinte Representtion : f F (x) x (23) It follows from 22 nd 23 tht f(x) cn be recovered by dotting br vector x into Eq 23, ie, f(x) = x f (24) Tht is, we hve chieved representtion where the originl function f(x) inl 2 now ppers s components of the bstrct vector f in coordinte bsis In prticulr, the inner product of two vectors, f nd g, through 24 nd 23, is f g f (x)g(x )= f (x)g(x) (25) in greement with the originl definition, 23 Since every vector in cn be expressed by 23, they form complete bsis: Completeness : x x = Î (26) 35 COMMENTS: (1) We clim tht x o is n eigenstte of our position opertor, ˆx, ie, ˆx x o = x o x o (27) for x o [, b] Eq 27 follows if one writes down the components of x o, ie, x o = δ(x x o ) x (28) Tht is, δ(x x o ) is the coordinte wvefunction for the eigenvector of ˆx with n eigenvlue x o, ˆxδ(x x o )=x o δ(x x o ) By pplying 24 to 28, one simply reproduces the orthogonlity condition, 22 (2) In this representtion, every liner opertor cn be expressed s ˆx = ˆM = M(x, x ) x M(x, x ) x = M(x, x ) x x (29) This representtion follows by considering ˆM = Î ˆMÎ nd using 26 twice For instnce, xδ(x x ) x x, ˆp = { ı hδ(x x ) x } x x (30) Whenever M(x, x ) is proportionl to δ(x x ), the opertor ˆM will be clled locl opertor Insted of double-sum, Eq 30, one hs single-sum representtion: ˆx = x x x, ˆp = 6 { ı h } x x (31) x

7 For locl opertors, one often simply writes down the mtrix M(x, x ) for the opertor M, ˆx xδ(x x ) ˆp { ı hδ(x x ) x } (32) Better yet, one cn drop the δ(x x ) fctor entirely ˆx x ˆp { ı h x } (33) if it is understood tht one is deling with locl opertor! For instnce, insted of writing out ˆp f = explicitly, it is much simpler to ccept the nottion { ı hδ(x x ) x }f(x ) x (34) ˆpf(x) = ı h f(x) (35) x [Convince yourself tht the Hmiltonin opertor Ĥ is locl in coordinte representtion, nd mke sure you understnd the proper interprettion of the expression ı h (x,t) t = Ĥ(x, t) ] (3) Lstly, let s return to our stndrd bsis, {U N (x)} It is cler tht the bstrct vector, U N, is given by U N = U N (x) x U N (x) = x U N (36) With this understnding, by sndwiching 20 between x nd x, it leds to 14, which proves 20, s promised 7

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

Abstract inner product spaces

Abstract inner product spaces WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the

More information

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f 1. Appliction of functionl nlysis to PEs 1.1. Introduction. In this section we give little introduction to prtil differentil equtions. In prticulr we consider the problem u(x) = f(x) x, u(x) = x (1) where

More information

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015 Advnced Clculus: MATH 410 Uniform Convergence of Functions Professor Dvid Levermore 11 December 2015 12. Sequences of Functions We now explore two notions of wht it mens for sequence of functions {f n

More information

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar) Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

The Henstock-Kurzweil integral

The Henstock-Kurzweil integral fculteit Wiskunde en Ntuurwetenschppen The Henstock-Kurzweil integrl Bchelorthesis Mthemtics June 2014 Student: E. vn Dijk First supervisor: Dr. A.E. Sterk Second supervisor: Prof. dr. A. vn der Schft

More information

Main topics for the First Midterm

Main topics for the First Midterm Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 2-3, Sections 4.1-4.8, nd Sections 5.1-5.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the

More information

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

More information

Math 270A: Numerical Linear Algebra

Math 270A: Numerical Linear Algebra Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

Properties of the Riemann Integral

Properties of the Riemann Integral Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University Februry 15, 2018 Outline 1 Some Infimum nd Supremum Properties 2

More information

Lecture 1: Introduction to integration theory and bounded variation

Lecture 1: Introduction to integration theory and bounded variation Lecture 1: Introduction to integrtion theory nd bounded vrition Wht is this course bout? Integrtion theory. The first question you might hve is why there is nything you need to lern bout integrtion. You

More information

Lecture 19: Continuous Least Squares Approximation

Lecture 19: Continuous Least Squares Approximation Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for

More information

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1 Tor Kjellsson Stockholm University Chpter 5 5. Strting with the following informtion: R = m r + m r m + m, r = r r we wnt to derive: µ = m m m + m r = R + µ m r, r = R µ m r 3 = µ m R + r, = µ m R r. 4

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

11 An introduction to Riemann Integration

11 An introduction to Riemann Integration 11 An introduction to Riemnn Integrtion The PROOFS of the stndrd lemms nd theorems concerning the Riemnn Integrl re NEB, nd you will not be sked to reproduce proofs of these in full in the exmintion in

More information

Math 61CM - Solutions to homework 9

Math 61CM - Solutions to homework 9 Mth 61CM - Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Chapter 3. Vector Spaces

Chapter 3. Vector Spaces 3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce

More information

Chapter 3 Polynomials

Chapter 3 Polynomials Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1. 398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts

More information

Quantum Physics II (8.05) Fall 2013 Assignment 2

Quantum Physics II (8.05) Fall 2013 Assignment 2 Quntum Physics II (8.05) Fll 2013 Assignment 2 Msschusetts Institute of Technology Physics Deprtment Due Fridy September 20, 2013 September 13, 2013 3:00 pm Suggested Reding Continued from lst week: 1.

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemann is the Mann! (But Lebesgue may besgue to differ.) Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

More information

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS Throughout, we let [, b] be bounded intervl in R. C 2 ([, b]) denotes the spce of functions with derivtives of second order continuous up to the endpoints. Cc 2

More information

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions Quntum Mechnics Qulifying Exm - August 016 Notes nd Instructions There re 6 problems. Attempt them ll s prtil credit will be given. Write on only one side of the pper for your solutions. Write your lis

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Recitation 3: More Applications of the Derivative

Recitation 3: More Applications of the Derivative Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech

More information

Chapter 6. Infinite series

Chapter 6. Infinite series Chpter 6 Infinite series We briefly review this chpter in order to study series of functions in chpter 7. We cover from the beginning to Theorem 6.7 in the text excluding Theorem 6.6 nd Rbbe s test (Theorem

More information

Review of Riemann Integral

Review of Riemann Integral 1 Review of Riemnn Integrl In this chpter we review the definition of Riemnn integrl of bounded function f : [, b] R, nd point out its limittions so s to be convinced of the necessity of more generl integrl.

More information

7.2 Riemann Integrable Functions

7.2 Riemann Integrable Functions 7.2 Riemnn Integrble Functions Theorem 1. If f : [, b] R is step function, then f R[, b]. Theorem 2. If f : [, b] R is continuous on [, b], then f R[, b]. Theorem 3. If f : [, b] R is bounded nd continuous

More information

Lecture 3. Limits of Functions and Continuity

Lecture 3. Limits of Functions and Continuity Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

Notes on length and conformal metrics

Notes on length and conformal metrics Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued

More information

Chapter 3 The Schrödinger Equation and a Particle in a Box

Chapter 3 The Schrödinger Equation and a Particle in a Box Chpter 3 The Schrödinger Eqution nd Prticle in Bo Bckground: We re finlly ble to introduce the Schrödinger eqution nd the first quntum mechnicl model prticle in bo. This eqution is the bsis of quntum mechnics

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

8 Laplace s Method and Local Limit Theorems

8 Laplace s Method and Local Limit Theorems 8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved

More information

The Dirac distribution

The Dirac distribution A DIRAC DISTRIBUTION A The Dirc distribution A Definition of the Dirc distribution The Dirc distribution δx cn be introduced by three equivlent wys Dirc [] defined it by reltions δx dx, δx if x The distribution

More information

Fourier series. Preliminary material on inner products. Suppose V is vector space over C and (, )

Fourier series. Preliminary material on inner products. Suppose V is vector space over C and (, ) Fourier series. Preliminry mteril on inner products. Suppose V is vector spce over C nd (, ) is Hermitin inner product on V. This mens, by definition, tht (, ) : V V C nd tht the following four conditions

More information

221B Lecture Notes WKB Method

221B Lecture Notes WKB Method Clssicl Limit B Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

c n φ n (x), 0 < x < L, (1) n=1

c n φ n (x), 0 < x < L, (1) n=1 SECTION : Fourier Series. MATH4. In section 4, we will study method clled Seprtion of Vribles for finding exct solutions to certin clss of prtil differentil equtions (PDEs. To do this, it will be necessry

More information

Separation of Variables in Linear PDE

Separation of Variables in Linear PDE Seprtion of Vribles in Liner PDE Now we pply the theory of Hilbert spces to liner differentil equtions with prtil derivtives (PDE). We strt with prticulr exmple, the one-dimensionl (1D) wve eqution 2 u

More information

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

STUDY GUIDE FOR BASIC EXAM

STUDY GUIDE FOR BASIC EXAM STUDY GUIDE FOR BASIC EXAM BRYON ARAGAM This is prtil list of theorems tht frequently show up on the bsic exm. In mny cses, you my be sked to directly prove one of these theorems or these vrints. There

More information

Chapter 6. Riemann Integral

Chapter 6. Riemann Integral Introduction to Riemnn integrl Chpter 6. Riemnn Integrl Won-Kwng Prk Deprtment of Mthemtics, The College of Nturl Sciences Kookmin University Second semester, 2015 1 / 41 Introduction to Riemnn integrl

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

Orthogonal Polynomials

Orthogonal Polynomials Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils

More information

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60. Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

More information

Analytical Methods Exam: Preparatory Exercises

Analytical Methods Exam: Preparatory Exercises Anlyticl Methods Exm: Preprtory Exercises Question. Wht does it men tht (X, F, µ) is mesure spce? Show tht µ is monotone, tht is: if E F re mesurble sets then µ(e) µ(f). Question. Discuss if ech of the

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 2-5pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of

More information

MAA 4212 Improper Integrals

MAA 4212 Improper Integrals Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly well-defined, is too restrictive for mny purposes; there re functions which

More information

Math Theory of Partial Differential Equations Lecture 2-9: Sturm-Liouville eigenvalue problems (continued).

Math Theory of Partial Differential Equations Lecture 2-9: Sturm-Liouville eigenvalue problems (continued). Mth 412-501 Theory of Prtil Differentil Equtions Lecture 2-9: Sturm-Liouville eigenvlue problems (continued). Regulr Sturm-Liouville eigenvlue problem: d ( p dφ ) + qφ + λσφ = 0 ( < x < b), dx dx β 1 φ()

More information

Hilbert Spaces. Chapter Inner product spaces

Hilbert Spaces. Chapter Inner product spaces Chpter 4 Hilbert Spces 4.1 Inner product spces In the following we will discuss both complex nd rel vector spces. With L denoting either R or C we recll tht vector spce over L is set E equipped with ddition,

More information

Quantum Physics I (8.04) Spring 2016 Assignment 8

Quantum Physics I (8.04) Spring 2016 Assignment 8 Quntum Physics I (8.04) Spring 206 Assignment 8 MIT Physics Deprtment Due Fridy, April 22, 206 April 3, 206 2:00 noon Problem Set 8 Reding: Griffiths, pges 73-76, 8-82 (on scttering sttes). Ohnin, Chpter

More information

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ), 1. Guss-Jcobi qudrture nd Legendre polynomils Simpson s rule for evluting n integrl f(t)dt gives the correct nswer with error of bout O(n 4 ) (with constnt tht depends on f, in prticulr, it depends on

More information

1 1D heat and wave equations on a finite interval

1 1D heat and wave equations on a finite interval 1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer pprox.- energy surfces 2. Men-field (Hrtree-Fock) theory- orbitls 3. Pros nd cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usully does HF-how? 6. Bsis sets nd nottions 7. MPn,

More information

k and v = v 1 j + u 3 i + v 2

k and v = v 1 j + u 3 i + v 2 ORTHOGONAL FUNCTIONS AND FOURIER SERIES Orthogonl functions A function cn e considered to e generliztion of vector. Thus the vector concets like the inner roduct nd orthogonlity of vectors cn e extended

More information

Homework 11. Andrew Ma November 30, sin x (1+x) (1+x)

Homework 11. Andrew Ma November 30, sin x (1+x) (1+x) Homewor Andrew M November 3, 4 Problem 9 Clim: Pf: + + d = d = sin b +b + sin (+) d sin (+) d using integrtion by prts. By pplying + d = lim b sin b +b + sin (+) d. Since limits to both sides, lim b sin

More information

Lesson 1: Quadratic Equations

Lesson 1: Quadratic Equations Lesson 1: Qudrtic Equtions Qudrtic Eqution: The qudrtic eqution in form is. In this section, we will review 4 methods of qudrtic equtions, nd when it is most to use ech method. 1. 3.. 4. Method 1: Fctoring

More information

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,

More information

THE QUADRATIC RECIPROCITY LAW OF DUKE-HOPKINS. Circa 1870, G. Zolotarev observed that the Legendre symbol ( a p

THE QUADRATIC RECIPROCITY LAW OF DUKE-HOPKINS. Circa 1870, G. Zolotarev observed that the Legendre symbol ( a p THE QUADRATIC RECIPROCITY LAW OF DUKE-HOPKINS PETE L CLARK Circ 1870, Zolotrev observed tht the Legendre symbol ( p ) cn be interpreted s the sign of multipliction by viewed s permuttion of the set Z/pZ

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

More information

Inner-product spaces

Inner-product spaces Inner-product spces Definition: Let V be rel or complex liner spce over F (here R or C). An inner product is n opertion between two elements of V which results in sclr. It is denoted by u, v nd stisfies:

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Numerical Methods I Orthogonal Polynomials

Numerical Methods I Orthogonal Polynomials Numericl Methods I Orthogonl Polynomils Aleksndr Donev Cournt Institute, NYU 1 donev@cournt.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fll 2014 Nov 6th, 2014 A. Donev (Cournt Institute) Lecture IX

More information

MA Handout 2: Notation and Background Concepts from Analysis

MA Handout 2: Notation and Background Concepts from Analysis MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,

More information

Construction of Gauss Quadrature Rules

Construction of Gauss Quadrature Rules Jim Lmbers MAT 772 Fll Semester 2010-11 Lecture 15 Notes These notes correspond to Sections 10.2 nd 10.3 in the text. Construction of Guss Qudrture Rules Previously, we lerned tht Newton-Cotes qudrture

More information

The Banach algebra of functions of bounded variation and the pointwise Helly selection theorem

The Banach algebra of functions of bounded variation and the pointwise Helly selection theorem The Bnch lgebr of functions of bounded vrition nd the pointwise Helly selection theorem Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto Jnury, 015 1 BV [, b] Let < b. For f

More information

LECTURE. INTEGRATION AND ANTIDERIVATIVE.

LECTURE. INTEGRATION AND ANTIDERIVATIVE. ANALYSIS FOR HIGH SCHOOL TEACHERS LECTURE. INTEGRATION AND ANTIDERIVATIVE. ROTHSCHILD CAESARIA COURSE, 2015/6 1. Integrtion Historiclly, it ws the problem of computing res nd volumes, tht triggered development

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS 3 DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS This chpter summrizes few properties of Cli ord Algebr nd describe its usefulness in e ecting vector rottions. 3.1 De nition of Associtive

More information

Functional Analysis I Solutions to Exercises. James C. Robinson

Functional Analysis I Solutions to Exercises. James C. Robinson Functionl Anlysis I Solutions to Exercises Jmes C. Robinson Contents 1 Exmples I pge 1 2 Exmples II 5 3 Exmples III 9 4 Exmples IV 15 iii 1 Exmples I 1. Suppose tht v α j e j nd v m β k f k. with α j,

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

1 The Lagrange interpolation formula

1 The Lagrange interpolation formula Notes on Qudrture 1 The Lgrnge interpoltion formul We briefly recll the Lgrnge interpoltion formul. The strting point is collection of N + 1 rel points (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ), with x

More information

arxiv:math/ v2 [math.ho] 16 Dec 2003

arxiv:math/ v2 [math.ho] 16 Dec 2003 rxiv:mth/0312293v2 [mth.ho] 16 Dec 2003 Clssicl Lebesgue Integrtion Theorems for the Riemnn Integrl Josh Isrlowitz 244 Ridge Rd. Rutherford, NJ 07070 jbi2@njit.edu Februry 1, 2008 Abstrct In this pper,

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

Riemann Integrals and the Fundamental Theorem of Calculus

Riemann Integrals and the Fundamental Theorem of Calculus Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE HANS RINGSTRÖM. Questions nd exmples In the study of Fourier series, severl questions rise nturlly, such s: () (2) re there conditions on c n, n Z, which ensure

More information

221A Lecture Notes WKB Method

221A Lecture Notes WKB Method A Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using ψ x, t = e

More information

MATRICES AND VECTORS SPACE

MATRICES AND VECTORS SPACE MATRICES AND VECTORS SPACE MATRICES AND MATRIX OPERATIONS SYSTEM OF LINEAR EQUATIONS DETERMINANTS VECTORS IN -SPACE AND -SPACE GENERAL VECTOR SPACES INNER PRODUCT SPACES EIGENVALUES, EIGENVECTORS LINEAR

More information

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 6

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 6 Msschusetts Institute of Technology Quntum Mechnics I (8.) Spring 5 Solutions to Problem Set 6 By Kit Mtn. Prctice with delt functions ( points) The Dirc delt function my be defined s such tht () (b) 3

More information

A recursive construction of efficiently decodable list-disjunct matrices

A recursive construction of efficiently decodable list-disjunct matrices CSE 709: Compressed Sensing nd Group Testing. Prt I Lecturers: Hung Q. Ngo nd Atri Rudr SUNY t Bufflo, Fll 2011 Lst updte: October 13, 2011 A recursive construction of efficiently decodble list-disjunct

More information

ENGI 9420 Lecture Notes 7 - Fourier Series Page 7.01

ENGI 9420 Lecture Notes 7 - Fourier Series Page 7.01 ENGI 940 ecture Notes 7 - Fourier Series Pge 7.0 7. Fourier Series nd Fourier Trnsforms Fourier series hve multiple purposes, including the provision of series solutions to some liner prtil differentil

More information

Continuous Quantum Systems

Continuous Quantum Systems Chpter 8 Continuous Quntum Systems 8.1 The wvefunction So fr, we hve been tlking bout finite dimensionl Hilbert spces: if our system hs k qubits, then our Hilbert spce hs n dimensions, nd is equivlent

More information