H NMR Studies of Molecular Dynamics. Basis Seminar on June 25th by Cornelius Friedrichs

Size: px
Start display at page:

Download "H NMR Studies of Molecular Dynamics. Basis Seminar on June 25th by Cornelius Friedrichs"

Transcription

1 2 H NMR Studies of Molecular Dynamics Basis Seminar on June 25th by Cornelius Friedrichs

2 Outline 1. IntroducDon to 2 H nuclei 2. MoDons 3. SimulaDon of 2 H spectra 4. Line shape analysis in 1D spectra 5. 2D spectra of deuterium 2

3 Comparing 1 H and 2 H proper%es 1 H 2 H atomic composidon atomic weight natural abundance spin u u % 0.015% gyromagnedc rado! 1 H = "107 rad s#t! 2 H = "107 rad s#t 3

4 Spin ProperDes Nuclei with spin possess an assymmetric charge I > 1 2 distribudon quadrupolar moment, which is Q = 2.8!10 "31 m 2 very small compared to other nuclei! Q = 140 " 220kHz for other nuclei the quadrupolar frequency is in the range of MHz 4

5 GyromagneDc RaDo Dipole dipole interacdons are propordonal to the product of the gammas for interacdng nuclei:! DD " # I # S dipole dipole interacdon very small for two 2 H (range of 100Hz) Quadrupolar interacdons are much stronger than dipole dipole interacdons 2 H solid state spectra are governed by quadrupolar interacdons 5

6 2 H for dynamic Studies Advantages: 1. quadrupolar interacdon endrely intramolecular 2. deuterons give very unique informadon 3. depending on the applied technique, the dynamic range is 10MHz to 1Hz 4. low natural abundance opens the possibility of selecdvity 6

7 How to describe MoDon? Markov model: hopping or exchange between N discrete sites!"#$$%&'!(%)*! +*,%-*&.*!(%)* hopping between very sharp and deep potendal wells no diffusion within the wells MoDons in solids are best described by an autocorreladon funcdon G: # & G (! ) = f ( t) f ( t +! ) G! $ % ' (!! c : "#$$%&'()#*!()+% ( ) = exp "!! c 7

8 SimulaDon of MoDons To analyse a concrete spectrum one has to know what modons occure within the spectrum Comparing experimental to simulated data is a common pracdce to calculate modonal parameters 8

9 Theory Stuff The Dme evoludon of the transversal magnedsadon M is given by a differendal equadon: +!,",t ( ) dm + dt = M + ( $1 i! (",#) + T ) 2 To include modons one has to add the exchange magne DzaDon between the N sites as a result of molecular hopping:! ij = " -1 c, ij p j! p : "#$%$&'(#)!#*!+'&', j j 9

10 Theory Stuff The equadon becomes then: dm + dt = M + ( i! + T "1 2 + #) The soludon of this equadon is averaged over all possible molecular orientadons: 2! $ 0! $ 0 M + = 1 M + 8! 2 0 (",#)L (",#,t )sin(" )d"d# ( ) = exp i#!," L!,",t ( )t + T 2 $1 t + % ( ) 10

11 Theory Stuff The FID is propordonal to the Dme dependent transversal magnedsadon: FID t N! i ( ) = M + i ( t) Combining the two equadons leads to: FID( t) = 1 2! & 0! & 0 ( ) ij sin (# ) % p 8! 2 j " L #,$,t d#d$ i, j 11

12 MoDonal Regimes DefiniDon of the rate constant: k = 1! c Assuming two hopping sites with frequency difference,!" one can disdnguish three kinds of modons 1. fast exchange limit: k!!" 2. intermediate exchange region: k! "# 3. slow exchange limit: k!!" 12

13 2 H Solid Echo In solids it is useful to apply the solid echo puls sequence 13

14 Factors Spectra depend on the orientadon (anisotropy parameter) and the shape (asymmetry parameter) of the spin interacdon tensors η Q = V yy V xx V zz! Q = 3 4 eqeq!! = 0.0! = 0.3! =

15 WebLab for 1D Spectra WebLab is an internet based simuladon socware where one can calculate spectra with different modon sites. Screen shots from WebLab 15

16 Cone Angle Dependence Two site hopping! = 40! = 60! = 80 16

17 Rate Constant Dependence Two site hopping k = 10kHz k = 10 3 khz k = 10 5 khz 17

18 Echo Time Dependence Two site hopping in the intermediate regime at 1000kHz! = 10µs! = 50µs! = 100µs 18

19 LimitaDons Line shape analysis has some limitadons 1. usually there are several fits 2. in complex systems there may be distribudons of correladon Dmes 3. Markov model is not sufficient for broad and shallow wells (no descrete sites) 19

20 2 H 2D NMR To get more informadon about slow modons (range of ms and slower) one can apply mulddimensional exchange experiments. 20

21 The Puls Sequence To obtain pure absorpdon spectra one has to record two datasets (quadrature detecdon) The transversal magnedzadon acer the sequence is then for both datasets: "#!!M + = M + 0 sin (! 1 )sin(! 2 )sin(! 3 )cos(" 1 t 1 )cos(" 2 t ) 2! $#!!M = M sin (! 0 4 1)sin( 2! 2 )sin( 2! 3 )sin(" 1 t 1 )sin " 2 t 2 sin (! 2 )sin(! ) 3 = 3 sin ( 2! 4 2 )sin( 2! ) 3 ( ) for! 2 =! 3 =

22 MoDons in 2D Spectra If a spin with frequency performs a modon, the! 1 frequencyacer the mixing Dme will change to a new! m value.! 2! 1 "! 2 for! c <! m This means that cross peaks appear in the spectrum If is much greater than there will be no exchange! c! m and all intensity is located on the diagonal! 1 =!! 2 for!! c m 22

23 Further Feature In 1D Spektra one only sees modons reladve to the Principal Axis Frame which is not known. 2D Spektra contain informadons about the Euler Angles ( ) for the transformadon of the modon.!!"!""!# The shape of the correlated spectrum gives informadon about the Euler Angels of the modon 23

24 WebLab for 2D Spectra WebLab can also calculate 2D spectra Screen shot from WebLab 24

25 Line Shapes in 2D Spectra If the asymmetry parameter there are simple! = 0 shapes that define the modon angle.! = 0! = 20! = 45! = 70! = 90 25

26 Asymmetry Dependence The asymmetry parameter may be and the spectra! > 0 change their shapes. is constant during a reorientadon. η! = 0! = 0.2! = 0.4! = 0.6! = 0.8! = 1 26

27 Angle Dependence For the asymmetry parameters the angles and! > 0 α γ become important! 1 =! 2 = 0.2! = 45! = 0! = 20! = 45! = 70! = 90 27

28 Conclusions The big goal of 2 H NMR for modons is the wide frequency range Line shape analyses are sufficient for simple systems For more complex systems one has to use other models Other techiques (not mendoned here) give further informadon about modon 2D NMR is a good tool to get the geometries of modons 28

29 Literature IntroducDon to Solid State NMR Spectroscopy by M. Duer, 1st EdiDon, Blackwell, 2004 MulDdimensional Solid State NMR by H. W. Spiess and K. Schmidt Rohr, 1st EdiDon, Academic Press, 1994 H. W. Spiess, Advances in Polymer Science, 1985, 66, hip://weblab.mpip mainz.mpg.de/weblab41/ weblab.html 29

30 Thanks for your aiendon!... my guess: 3 : 1 30

David Bowman and Seppo Pen<la ORNL

David Bowman and Seppo Pen<la ORNL Chaos in Gravo- Magneto UCN Traps David Bowman and Seppo Pen

More information

Chem8028(1314) - Spin Dynamics: Spin Interactions

Chem8028(1314) - Spin Dynamics: Spin Interactions Chem8028(1314) - Spin Dynamics: Spin Interactions Malcolm Levitt see also IK m106 1 Nuclear spin interactions (diamagnetic materials) 2 Chemical Shift 3 Direct dipole-dipole coupling 4 J-coupling 5 Nuclear

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

Solid-state NMR of spin > 1/2

Solid-state NMR of spin > 1/2 Solid-state NMR of spin > 1/2 Nuclear spins with I > 1/2 possess an electrical quadrupole moment. Anisotropic Interactions Dipolar Interaction 1 H- 1 H, 1 H- 13 C: typically 50 khz Anisotropy of the chemical

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei : An introduction to Solid State NMR spectroscopy Dr. Susanne Causemann (Solid State NMR specialist/ researcher) Interaction between nuclear spins and applied magnetic fields B 0 application of a static

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

Spin Interactions. Giuseppe Pileio 24/10/2006

Spin Interactions. Giuseppe Pileio 24/10/2006 Spin Interactions Giuseppe Pileio 24/10/2006 Magnetic moment µ = " I ˆ µ = " h I(I +1) " = g# h Spin interactions overview Zeeman Interaction Zeeman interaction Interaction with the static magnetic field

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

NMR Studies of Polyethylene: Towards the Organization of Semi Crystalline Polymers

NMR Studies of Polyethylene: Towards the Organization of Semi Crystalline Polymers NMR Studies of Polyethylene: Towards the Organization of Semi Crystalline Polymers Yefeng Yao, Robert Graf, Hans Wolfgang Spiess Max-Planck-Institute for Polymer Research, Mainz, Germany Leibniz Institut

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

8 NMR Interactions: Dipolar Coupling

8 NMR Interactions: Dipolar Coupling 8 NMR Interactions: Dipolar Coupling 8.1 Hamiltonian As discussed in the first lecture, a nucleus with spin I 1/2 has a magnetic moment, µ, associated with it given by µ = γ L. (8.1) If two different nuclear

More information

B! D (*) π + π - l - ν and prospects for measuring related decay modes

B! D (*) π + π - l - ν and prospects for measuring related decay modes B! D (*) π + π - l - ν and prospects for measuring related decay modes Bob Kowalewski University of Victoria on behalf of the BaBar CollaboraDon 28 March 2017 Kowalewski - Nagoya 2017 1 Thank you to the

More information

Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange

Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange A McDermott, Columbia University Winter School in Biomolecular NMR, Stowe VT January 20-23 2008 Effects on NMR Spectra: Local,

More information

K ex. Conformational equilibrium. equilibrium K B

K ex. Conformational equilibrium. equilibrium K B Effects of Chemical Exchange on NMR Spectra Chemical exchange refers to any yprocess in which a nucleus exchanges between two or more environments in which its NMR parameters (e.g. chemical shift, scalar

More information

Galaxies Astro 530 Prof. Jeff Kenney. CLASS 23 April 18, 2018 Luminosity FuncDons in Galaxies

Galaxies Astro 530 Prof. Jeff Kenney. CLASS 23 April 18, 2018 Luminosity FuncDons in Galaxies Galaxies Astro 530 Prof. Jeff Kenney CLASS 23 April 18, 2018 Luminosity FuncDons in Galaxies 1 IntroducDon to LFs Galaxies have huge range of luminosity & mass : ~10 6 (M B - 7 to - 23) The Luminosity

More information

Journal of the Korean Magnetic Resonance Society 2003, 7, Kwangju, , KOREA Received September 29, 2003

Journal of the Korean Magnetic Resonance Society 2003, 7, Kwangju, , KOREA Received September 29, 2003 Journal of the Korean Magnetic Resonance Society 2003, 7, 80-88 11 B Nuclear Magnetic Resonance Study of Calcium-hexaborides B. J. Mean 1, K. H. Lee 1, K. H. Kang 1, Moohee Lee 1*, J.S. Lee 2, and B. K.

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2 Hand 13 CNMR

Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2 Hand 13 CNMR Hyperfine Interact DOI 10.1007/s10751-014-1081-0 Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2 Hand 13 CNMR M. Mizuno M. Chizuwa T. Umiyama Y. Kumagai T.

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

Center for Sustainable Environmental Technologies, Iowa State University

Center for Sustainable Environmental Technologies, Iowa State University NMR Characterization of Biochars By Catherine Brewer Center for Sustainable Environmental Technologies, Iowa State University Introduction Nuclear magnetic resonance spectroscopy (NMR) uses a very strong

More information

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in: Solution Set Hand out:.. Hand in:.. Repetition. The magnetization moves adiabatically during the application of an r.f. pulse if it is always aligned along the effective field axis. This behaviour is observed

More information

Relaxation. Ravinder Reddy

Relaxation. Ravinder Reddy Relaxation Ravinder Reddy Relaxation What is nuclear spin relaxation? What causes it? Effect on spectral line width Field dependence Mechanisms Thermal equilibrium ~10-6 spins leads to NMR signal! T1 Spin-lattice

More information

Spin-spin coupling I Ravinder Reddy

Spin-spin coupling I Ravinder Reddy Spin-spin coupling I Ravinder Reddy Spin-interactions External interactions Magnetic field Bo, RF field B1 Internal Interactions Molecular motions Exchange Chemical shifts J-coupling Spin Diffusion Dipolar

More information

6 NMR Interactions: Zeeman and CSA

6 NMR Interactions: Zeeman and CSA 6 NMR Interactions: Zeeman and CSA 6.1 Zeeman Interaction Up to this point, we have mentioned a number of NMR interactions - Zeeman, quadrupolar, dipolar - but we have not looked at the nature of these

More information

Galaxies Astro 530 Fall 2015

Galaxies Astro 530 Fall 2015 Galaxies Astro 530 Fall 2015 Prof. Jeff Kenney CLASS 12 October 12, 2015 EllipDcal Galaxies: Structure, KinemaDcs, Orbits 1 Midterm exam next Monday Oct 19 Covers up thru lecture of Oct 5 and HW5 (thru

More information

NMR Relaxation and Molecular Dynamics

NMR Relaxation and Molecular Dynamics Ecole RMN Cargese Mars 2008 NMR Relaxation and Molecular Dynamics Martin Blackledge IBS Grenoble Carine van Heijenoort ICSN, CNRS Gif-sur-Yvette Solution NMR Timescales for Biomolecular Motion ps ns µs

More information

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy INTRODUCTION TO Magnetic Resonance Spectroscopy ESR, NMR, NQR D. N. SATHYANARAYANA Formerly, Chairman Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore % I.K. International

More information

Solid state 13 Cand 1 H MAS NMR investigations of C 60 (ferrocene-d 10 ) 2 complex

Solid state 13 Cand 1 H MAS NMR investigations of C 60 (ferrocene-d 10 ) 2 complex Spectroscopy 17 (2003) 39 44 39 IOS Press Solid state 13 Cand 1 H MAS NMR investigations of C 60 (ferrocene-d 10 ) 2 complex E. Shabanova, K. Schaumburg and F.S. Kamounah CISMI, Department of Chemistry,

More information

e 2m e c I, (7.1) = g e β B I(I +1), (7.2) = erg/gauss. (7.3)

e 2m e c I, (7.1) = g e β B I(I +1), (7.2) = erg/gauss. (7.3) Chemistry 126 Molecular Spectra & Molecular Structure Week # 7 Electron Spin Resonance Spectroscopy, Supplement Like the hydrogen nucleus, an unpaired electron in a sample has a spin of I=1/2. The magnetic

More information

Simulations of spectra and spin relaxation

Simulations of spectra and spin relaxation 43 Chapter 6 Simulations of spectra and spin relaxation Simulations of two-spin spectra We have simulated the noisy spectra of two-spin systems in order to characterize the sensitivity of the example resonator

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE Foreword Preface Acknowledgements V VI I X Chapter 1. Introduction 1.1. The development of high-resolution NMR 1 1.2. Modern

More information

Natural abundance solid-state 95 Mo MAS NMR of MoS 2 reveals precise 95 Mo anisotropic parameters from its central and satellite transitions

Natural abundance solid-state 95 Mo MAS NMR of MoS 2 reveals precise 95 Mo anisotropic parameters from its central and satellite transitions Electronic Supplementary Information for: Natural abundance solid-state 95 Mo MAS NMR of MoS 2 reveals precise 95 Mo anisotropic parameters from its central and satellite transitions Hans J. Jakobsen,*

More information

Introduction to Electron Paramagnetic Resonance Spectroscopy

Introduction to Electron Paramagnetic Resonance Spectroscopy Introduction to Electron Paramagnetic Resonance Spectroscopy Art van der Est, Department of Chemistry, Brock University St. Catharines, Ontario, Canada 1 EPR Spectroscopy EPR is magnetic resonance on unpaired

More information

Chemical Shift Anisotropy & Multidimensional Recoupling for Uniformly Labeled Proteins

Chemical Shift Anisotropy & Multidimensional Recoupling for Uniformly Labeled Proteins Chemical Shift Anisotropy & Multidimensional Recoupling for Uniformly Labeled Proteins Chad M. Rienstra University of Illinois at Urbana-Champaign Winter School on Biomolecular Solid State NMR Jan. 20-25,

More information

Spin Feedback System at COSY

Spin Feedback System at COSY Spin Feedback System at COSY 21.7.2016 Nils Hempelmann Outline Electric Dipole Moments Spin Manipulation Feedback System Validation Using Vertical Spin Build-Up Wien Filter Method 21.7.2016 Nils Hempelmann

More information

Practical Manual. General outline to use the structural information obtained from molecular alignment

Practical Manual. General outline to use the structural information obtained from molecular alignment Practical Manual General outline to use the structural information obtained from molecular alignment 1. In order to use the information one needs to know the direction and the size of the tensor (susceptibility,

More information

The Physical Basis of the NMR Experiment

The Physical Basis of the NMR Experiment The Physical Basis of the NMR Experiment 1 Interaction of Materials with Magnetic Fields F F S N S N Paramagnetism Diamagnetism 2 Microscopic View: Single Spins an electron has mass and charge in addition

More information

Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides. Mark S. Conradi

Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides. Mark S. Conradi Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides Mark S. Conradi Washington University Department of Physics St. Louis, MO 63130-4899 USA msc@physics.wustl.edu 1 Uses of Nuclear

More information

Hyperfine interaction

Hyperfine interaction Hyperfine interaction The notion hyperfine interaction (hfi) comes from atomic physics, where it is used for the interaction of the electronic magnetic moment with the nuclear magnetic moment. In magnetic

More information

3. Perturbed Angular Correlation Spectroscopy

3. Perturbed Angular Correlation Spectroscopy 3. Perturbed Angular Correlation Spectroscopy Dileep Mampallil Augustine K.U.Leuven, Belgium Perturbed Angular Correlation Spectroscopy (PAC) is a gamma ray spectroscopy and can be used to investigate

More information

NMR (CHEM8028) Solid-state NMR: Anisotropic interactions and how we use them. Dr Philip Williamson January 2015

NMR (CHEM8028) Solid-state NMR: Anisotropic interactions and how we use them. Dr Philip Williamson January 2015 NMR (CEM808) Solid-state NMR: Anisotropic interactions and how we use them Dr Philip Williamson January 015 NMR: From Molecular to Cellular Level Cell Solid State NMR Mitochondrion Membrane Liquid NMR

More information

NMR Study of Aluminium Coordination in Clays

NMR Study of Aluminium Coordination in Clays WDS'13 Proceedings of Contributed Papers, Part III, 104 109, 2013. ISBN 978-80-7378-252-8 MATFYZPRESS NMR Study of Aluminium Coordination in Clays K. Uličná, H. Štěpánková, V. Římal Charles University

More information

Multidimensional NQR Spectroscopy A New Tool in Studies of Molecular Dynamics

Multidimensional NQR Spectroscopy A New Tool in Studies of Molecular Dynamics Vol. 108 (2005) ACTA PHYSICA POLONICA A No. 1 Proceedings of the XXI International Meeting on Radio and Microwave Spectroscopy RAMIS 2005, Poznań-Bȩdlewo, Poland, April 24 28, 2005 Multidimensional NQR

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Spin Dynamics & Vrije Universiteit Brussel 25th November 2011 Outline 1 Pulse/Fourier Transform NMR Thermal Equilibrium Effect of RF Pulses The Fourier Transform 2 Symmetric Exchange Between Two Sites

More information

NMR spectroscopy. Matti Hotokka Physical Chemistry Åbo Akademi University

NMR spectroscopy. Matti Hotokka Physical Chemistry Åbo Akademi University NMR spectroscopy Matti Hotokka Physical Chemistry Åbo Akademi University Angular momentum Quantum numbers L and m (general case) The vector precesses Nuclear spin The quantum numbers are I and m Quantum

More information

2.1. NMR Spectroscopy, Anisotropic Nuclear Spin Interaction.

2.1. NMR Spectroscopy, Anisotropic Nuclear Spin Interaction. Chapter II. Molecular segments orientation study using 29 Si NMR methods. 2.1. NMR Spectroscopy, Anisotropic Nuclear Spin Interaction. The term Nuclear Magnetic Resonance (NMR) unifies a big variety of

More information

Two-dimensional Exchange and Nutation Exchange Nuclear Quadrupole Resonance Spectroscopy

Two-dimensional Exchange and Nutation Exchange Nuclear Quadrupole Resonance Spectroscopy Two-dimensional Exchange and Nutation Exchange Nuclear Quadrupole Resonance Spectroscopy M. Maćkowiak, N. Sinyavsky a, N. Velikite a, and D. Nikolaev a Institute of Molecular Physics, Polish Academy of

More information

Equilibrium Thermodynamics and Biological Calorimetry

Equilibrium Thermodynamics and Biological Calorimetry Equilibrium Thermodynamics and Biological Calorimetry Chris Johnson MRC-Laboratory of Molecular Biology Most of biology is based around reversible equilibrium processes that are mediated by many individually

More information

Hydrodynamics of colloidal dispersions. Holger Stark Technische Universität Berlin

Hydrodynamics of colloidal dispersions. Holger Stark Technische Universität Berlin Hydrodynamics of colloidal dispersions Holger Stark Technische Universität Berlin Examples of Colloidal Dispersions applicadons: food (z.b. milk), paint, ink, fog, medicadon (z.b. nasal spray), cytoplasma

More information

Chemical Exchange. Spin-interactions External interactions Magnetic field Bo, RF field B1

Chemical Exchange. Spin-interactions External interactions Magnetic field Bo, RF field B1 Chemical Exchange Spin-interactions External interactions Magnetic field Bo, RF field B1 Internal Interactions Molecular motions Chemical shifts J-coupling Chemical Exchange 1 Outline Motional time scales

More information

Direct dipolar interaction - utilization

Direct dipolar interaction - utilization Direct dipolar interaction - utilization Two main uses: I: magnetization transfer II: probing internuclear distances Direct dipolar interaction - utilization Probing internuclear distances ˆ hetero D d

More information

NMR Spectroscopy: A Quantum Phenomena

NMR Spectroscopy: A Quantum Phenomena NMR Spectroscopy: A Quantum Phenomena Pascale Legault Département de Biochimie Université de Montréal Outline 1) Energy Diagrams and Vector Diagrams 2) Simple 1D Spectra 3) Beyond Simple 1D Spectra 4)

More information

V27: RF Spectroscopy

V27: RF Spectroscopy Martin-Luther-Universität Halle-Wittenberg FB Physik Advanced Lab Course V27: RF Spectroscopy ) Electron spin resonance (ESR) Investigate the resonance behaviour of two coupled LC circuits (an active rf

More information

Nuclear Quadrupole Resonance Spectroscopy. Some examples of nuclear quadrupole moments

Nuclear Quadrupole Resonance Spectroscopy. Some examples of nuclear quadrupole moments Nuclear Quadrupole Resonance Spectroscopy Review nuclear quadrupole moments, Q A negative value for Q denotes a distribution of charge that is "football-shaped", i.e. a sphere elongated at the poles; a

More information

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews Advanced Quadrupolar NMR Sharon Ashbrook School of Chemistry, University of St Andrews Quadrupolar nuclei: revision single crystal powder ST 500 khz ST ω 0 MAS 1 khz 5 khz second-order broadening Example:

More information

The Positive Muon as a Probe in Chemistry. Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory

The Positive Muon as a Probe in Chemistry. Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory The Positive Muon as a Probe in Chemistry Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory I.McKenzie@rl.ac.uk µsr and Chemistry Properties of atoms or molecules containing

More information

Hyperfine interactions Mössbauer, PAC and NMR Spectroscopy: Quadrupole splittings, Isomer shifts, Hyperfine fields (NMR shifts)

Hyperfine interactions Mössbauer, PAC and NMR Spectroscopy: Quadrupole splittings, Isomer shifts, Hyperfine fields (NMR shifts) Hyperfine interactions Mössbauer, PAC and NMR Spectroscopy: Quadrupole splittings, Isomer shifts, Hyperfine fields (NMR shifts) Peter Blaha Institute of Materials Chemistry TU Wien Definition of Hyperfine

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Relaxation & Multidimensional Spectrocopy Vrije Universiteit Brussel 9th December 2011 Outline 1 Relaxation 2 Principles 3 Outline 1 Relaxation 2 Principles 3 Establishment of Thermal Equilibrium As previously

More information

Lecture #6 Chemical Exchange

Lecture #6 Chemical Exchange Lecture #6 Chemical Exchange Topics Introduction Effects on longitudinal magnetization Effects on transverse magnetization Examples Handouts and Reading assignments Kowalewski, Chapter 13 Levitt, sections

More information

Spectroscopy of Polymers

Spectroscopy of Polymers Spectroscopy of Polymers Jack L. Koenig Case Western Reserve University WOMACS Professional Reference Book American Chemical Society, Washington, DC 1992 Contents Preface m xiii Theory of Polymer Characterization

More information

Introduction of Key Concepts of Nuclear Magnetic Resonance

Introduction of Key Concepts of Nuclear Magnetic Resonance I have not yet lost that sense of wonder, and delight, that this delicate motion should reside in all ordinary things around us, revealing itself only to those who looks for it. E. M. Purcell, Nobel Lecture.

More information

Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich,

Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich, Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich, Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, Israel N. A. Sergeev,

More information

Nuclear magnetic resonance in condensed matter

Nuclear magnetic resonance in condensed matter University of Ljubljana Faculty of mathematics and physics Physics department SEMINAR Nuclear magnetic resonance in condensed matter Author: Miha Bratkovič Mentor: prof. dr. Janez Dolinšek Ljubljana, October

More information

NUCLEAR STRUCTURE WITH GAMMA- RAYS PART II

NUCLEAR STRUCTURE WITH GAMMA- RAYS PART II NUCLEAR STRUCTURE WITH GAMMA- RAYS PART II Heather Crawford Ohio University ExoDc Beam Summer School 2014 Oak Ridge, TN THE PLAN Yesterday Basics of gamma- rays InteracDon of gamma- rays in marer Today

More information

Supporting Information Elucidating Lithium-Ion and Proton Dynamics in Anti- Perovskite Solid Electrolytes

Supporting Information Elucidating Lithium-Ion and Proton Dynamics in Anti- Perovskite Solid Electrolytes Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information Elucidating Lithium-Ion and Proton Dynamics in Anti-

More information

Intra- beam Sca-ering Effects in the Extra Low ENergy An;proton ring (ELENA)

Intra- beam Sca-ering Effects in the Extra Low ENergy An;proton ring (ELENA) Intra- beam Sca-ering Effects in the Extra Low ENergy An;proton ring (ELENA) Javier Resta-Lopez, James Hunt, Carsten Welsch, Cockcroft Institute, The University of Liverpool IPAC 2015 Richmond, Virginia,

More information

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still

More information

Prediction of NMR parameters in the solid-state

Prediction of NMR parameters in the solid-state 1J PO Prediction of NMR parameters in the solid-state Jonathan Yates Materials Modelling Laboratory, Oxford Materials 2J PSi 1 Nuclear Magnetic Resonance Applied Field Zero Field B Population differences!

More information

NMR-spectroscopy of proteins in solution. Peter Schmieder

NMR-spectroscopy of proteins in solution. Peter Schmieder NMR-spectroscopy of proteins in solution Basic aspects of NMR-Spektroskopie Basic aspects of NMR-spectroscopy 3/84 Prerequisite for NMR-spectroscopy is a nuclear spin that can be thought of as a mixture

More information

NMR-CASTEP. Jonathan Yates. Cavendish Laboratory, Cambridge University. J-coupling cons. NMR-CASTEP York 2007 Jonathan Yates.

NMR-CASTEP. Jonathan Yates. Cavendish Laboratory, Cambridge University. J-coupling cons. NMR-CASTEP York 2007 Jonathan Yates. Jonathan Yates Cavendish Laboratory, Cambridge University 2 2 1 3 2 N1a-N7b a hemical shift Experiment Calculation [ppm] [ppm] -43.8-47.4 "(31P) 29 "( Si1) -213.3-214.8 "(29Si2) -217.0-218.7 29-119.1-128.6

More information

HIGH-TEMPERATURE STEAM-TREATMENT OF PBI AND ITS BLENDS WITH PEEK AND PEKK: A SOLID-STATE NMR STUDY

HIGH-TEMPERATURE STEAM-TREATMENT OF PBI AND ITS BLENDS WITH PEEK AND PEKK: A SOLID-STATE NMR STUDY HIGH-TEMPERATURE STEAM-TREATMENT OF PBI AND ITS BLENDS WITH PEEK AND PEKK: A SOLID-STATE NMR STUDY Jacqueline C. Pope, Tim Bremner, Janet Blümel,* Texas A&M University, College Station, TX, 77842, Tel.

More information

GIPAW: A solid-state theory for NMR

GIPAW: A solid-state theory for NMR GIPAW: A solid-state theory for NMR Jonathan Yates jonathan.yates@materials.ox.ac.uk Materials Modelling Laboratory, Oxford Materials NMR parameters we will focus on non-metallic, diamagnetic materials

More information

Doppler and Zeeman Doppler Imaging of stars

Doppler and Zeeman Doppler Imaging of stars Doppler and Zeeman Doppler Imaging of stars Oleg Kochukhov oleg.kochukhov@physics.uu.se! Uppsala University, Sweden Surface cartography of the Sun and stars, Besançon, 2014 Outline u IntroducDon: why map

More information

Outline of the talk How to describe restricted diffusion? How to monitor restricted diffusion? Laplacian eigenfunctions in NMR Other applications Loca

Outline of the talk How to describe restricted diffusion? How to monitor restricted diffusion? Laplacian eigenfunctions in NMR Other applications Loca Laplacian Eigenfunctions in NMR Denis S. Grebenkov Laboratoire de Physique de la Matière Condensée CNRS Ecole Polytechnique, Palaiseau, France IPAM Workshop «Laplacian Eigenvalues and Eigenfunctions» February

More information

The Effects of Refuge on Escape Responses of Two Caribbean Goby Species

The Effects of Refuge on Escape Responses of Two Caribbean Goby Species University of Rhode Island DigitalCommons@URI Senior Honors Projects Honors Program at the University of Rhode Island 2013 The Effects of Refuge on Escape Responses of Two Caribbean Goby Species Russell

More information

Biochemistry 530 NMR Theory and Practice

Biochemistry 530 NMR Theory and Practice Biochemistry 530 NMR Theory and Practice Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington Lecturer: Gabriele Varani Biochemistry and Chemistry Room J479 and

More information

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012 Superoperators for NMR Quantum Information Processing Osama Usman June 15, 2012 Outline 1 Prerequisites 2 Relaxation and spin Echo 3 Spherical Tensor Operators 4 Superoperators 5 My research work 6 References.

More information

Principles of Nuclear Magnetic Resonance in One and Two Dimensions

Principles of Nuclear Magnetic Resonance in One and Two Dimensions Principles of Nuclear Magnetic Resonance in One and Two Dimensions Richard R. Ernst, Geoffrey Bodenhausen, and Alexander Wokaun Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule

More information

Inorganic Spectroscopic and Structural Methods

Inorganic Spectroscopic and Structural Methods Inorganic Spectroscopic and Structural Methods Electromagnetic spectrum has enormous range of energies. Wide variety of techniques based on absorption of energy e.g. ESR and NMR: radiowaves (MHz) IR vibrations

More information

SYMMETRICAL FAULTS Revised: 10/8/13 1:49 PM

SYMMETRICAL FAULTS Revised: 10/8/13 1:49 PM SYMMETRICAL FAULTS Revised: 10/8/13 1:49 PM 10/8/13 Symmetrical Faults 1 What is a fault? A faults is any failure which interferes with the normal flow of current. Most faults on transmission lines of

More information

* Universite des Sciences et Techniques de Lille

* Universite des Sciences et Techniques de Lille XXII. INTERPRETATION OF QUADRUPOLAR POWDER SPECTRA: STATIC AND MAS EXPERIMENTS. (TUTORIAL SESSION) J.P. AMOUREUX*, C. FERNANDEZ* and P. GRANGER** * Universite des Sciences et Techniques de Lille 59655

More information

Modern Solid State NMR strategies for the structural characterization of amorphous solids Leo van Wüllen

Modern Solid State NMR strategies for the structural characterization of amorphous solids Leo van Wüllen Modern Solid State NMR strategies for the structural characterization of amorphous solids Leo van Wüllen Institute of Physical Chemistry University of Münster The van Wüllen group at Münster Inorganic

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

It is possible to choose the temperature for each experiment by setting a temperature under the Temp pane (under the Standard panel).

It is possible to choose the temperature for each experiment by setting a temperature under the Temp pane (under the Standard panel). 1 2 The study queue gives a lot of flexibility for lining up experiments: they can be run at different temperatures or at different times. You must respect the instrument limits: do not submit experiments

More information

Study of e + e - àγωj/ψ at BESIII

Study of e + e - àγωj/ψ at BESIII Study of e + e - àγωj/ψ at BESIII Liu Zhiqing Johannes Gutenberg Universität Mainz liuz@uni-mainz.de X(3872) BàKX(3872) Confirmed by 7 independent experiments (Belle, BABAR, LHCb, CDF, D0, CMS, BESIII)

More information

Evidence Based Subjec1ve Logic

Evidence Based Subjec1ve Logic Evidence Based Subjec1ve Logic Boris Škorić Nicola Zannone Sebastiaan de Hoogh EIPSI seminar 16 June 2014 h"p://arxiv.org/abs/1402.3319 Outline Trust networks Forming opinions with uncertainty - SubjecDve

More information

Ferdowsi University of Mashhad

Ferdowsi University of Mashhad Spectroscopy in Inorganic Chemistry Nuclear Magnetic Resonance Spectroscopy spin deuterium 2 helium 3 The neutron has 2 quarks with a -e/3 charge and one quark with a +2e/3 charge resulting in a total

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Simon Lacoste-Julien Electromagnetic Theory Project 198-562B Department of Physics McGill University April 21 2003 Abstract This paper gives an elementary introduction

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

Chemistry 605 (Reich)

Chemistry 605 (Reich) Chemistry 605 (Reich) THIRD HOUR EXAM Wed. May 15, 2013 Question/Points R-12L /20 R-12M /15 R-12N /25 R-12O /10 R-12P /20 Total /90 Name If you place answers anywhere else except in the spaces provided,

More information

3 Chemical exchange and the McConnell Equations

3 Chemical exchange and the McConnell Equations 3 Chemical exchange and the McConnell Equations NMR is a technique which is well suited to study dynamic processes, such as the rates of chemical reactions. The time window which can be investigated in

More information

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep. Rotational Motion Chapter 4 P. J. Grandinetti Chem. 4300 Sep. 1, 2017 P. J. Grandinetti (Chem. 4300) Rotational Motion Sep. 1, 2017 1 / 76 Angular Momentum The angular momentum of a particle with respect

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

QENS in the Energy Domain: Backscattering and Time-of

QENS in the Energy Domain: Backscattering and Time-of QENS in the Energy Domain: Backscattering and Time-of of-flight Alexei Sokolov Department of Polymer Science, The University of Akron Outline Soft Matter and Neutron Spectroscopy Using elastic scattering

More information

Scott A. Smith and Nagarajan Murali 1

Scott A. Smith and Nagarajan Murali 1 Journal of Magnetic Resonance 136, 27 36 (1999) Article ID jmre.1998.1582, available online at http://www.idealibrary.com on Relaxation Effects in a System of a Spin-1/2 Nucleus Coupled to a Quadrupolar

More information

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction:

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction: Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction: Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for organic structure determination. Like IR spectroscopy,

More information