Chemical Exchange. Spin-interactions External interactions Magnetic field Bo, RF field B1

Size: px
Start display at page:

Download "Chemical Exchange. Spin-interactions External interactions Magnetic field Bo, RF field B1"

Transcription

1 Chemical Exchange Spin-interactions External interactions Magnetic field Bo, RF field B1 Internal Interactions Molecular motions Chemical shifts J-coupling Chemical Exchange 1

2 Outline Motional time scales Motional line shapes Two site exchange Time scales Reaction rates: Bloch equations Steady state solutions Exchange regimes Examples Chemical exchange saturation transfer Principle Glutamate and Creatine CEST Ex vivo and In vivo Results Motional time scales Very Slow Slow fast Very fast ultra fast Slow s ms µs ns ps fs Fast Macroscopic diffusion, flow Chemical Exchange Molecular rotations Molecular vibrations Relaxation Spectral Larmor Malcolm Levitt s Book 2

3 Motinal time scales Three times scales of the nuclear spin system. Larmor time scale, τ The time required for the spins to precess through 1 radian in the magnetic field. ω ο τ l ~1 (at 100 MHz, ω ο /2π =100 ΜΗz, τ l =1.6 ns) Spectral time scale t spec Spin system with two spins with CS at ω 1 and ω 2. If the CS interactions are dominant, then the spectral time scale τ spec : ω 1 - ω 2 τ spec ~1 (at 100 MHz, two protons have CS difference δω/2π = 5ppm(=500 Hz), then, τ spec = 330 µs) Relaxation time scale: Spin-lattice relaxation time T 1 (in the order of seconds) Motional Lineshapes and Two-site exchange Motional processes on the spectral timescale affect NMR line shapes. Consider an isolated nuclear spin is transported between two different chemical environments, with different chemical shifts but identical free energies k A -----> <----- B k 3

4 Chemical Exchange O CH 3 N H CH 3 k -----> <----- k O CH 3 N H CH 3 N,N -Dimethyl-formamide O - R C N + CH 3 CH 3 Exchange regimes If the chemical shift difference between Δω=-δω/2 Δω=δω/2 two states is δω, Δω=ο and chemical exchange rate constant is k then K< δω/2 slow int. exchange regime K~ δω/2 Intermediate exchange regime K> δω/2 fast int. exchange regime 4

5 Precesssion frequency and exchange process Change in the precession frequency on a molecular exchange (A <--->B) process Superposition of transverse magnetization oscillations for exchanging molecules Total transverse magnetization for many exchanging molecules ω a /2π=10kHz, ω b /2π=11kHz, and k=500s -1 Simulations of precessing transverse magnetization Slow intermediate exchange regime K< δω/2 Faster the exchange, faster the decay Leads to broadened NMR line Motional broadening Simulation parameters: ω a /2π = 2kHz, ω b /2π = 4kHz 5

6 Simulation of fast exchange Simulation of Transverse magnetization Fast intermediate exchange regime K> δω/2 As the exchange rate k increases, magnetization decays slowly Rapid molecular jumps leads to motional narrowing Simulation parameters: ω a /2π = 2kHz, ω b /2π = 4kHz Two-site exchange time scale Spectral line shape change as one goes from slow to fast exchange K= δω/2 Malcolm Levitt s Book 6

7 NMR and reaction rates Consider nuclei at sites a and b M a = M x +im y for nuclei at site a k M b = M x +im y "for nuclei at site b M 0 = Thermal equilibrium magnetization of the sum of two sites Δω=ω-ω 0 ; δω= splitting between the two lines Nuclei at sites a and b obey the following two differential equations: dm a = M a dt + i Δω + δω T 2 2 M M a + iω A k -----> <----- B dm b dt = M b + i Δω δω T 2 2 M M b + iω Sclichter s Book Steady-state solutions At steady state, dm a dt and steady state solutions give two Lorentzian lines Δω=-δω/2 and other at Δω=δω/2 = 0 dm b dt = 0 Δω=-δω/2 Δω=δω/2 Δω=0 7

8 Exchanging spins Consider that molecule reorients, taking spins from a to b-site and vice versa. Jumping of spins from b ---> a site (in time δt) will add δm a to a magnetization δm a = C 1 M b δt C 1 =constant will diminish δm b from b magnetization δm b = -C 1 M b δt C 1 =constant Exchanging spins Similarly, jumping of spins from a ---> b site (in time δt) will add δm b to b magnetization δm b = C 2 M a δt C 2 =constant will diminish δm a from a magnetization δm a = -C 2 M a δt C 2 =constant 8

9 Exchanging spins dm a dt = C 1 M b C 2 M a dm b = C 2 M a C 1 M b dt Adding these rates to the rates without spin jumps dm a dt dm b dt = M a + i Δω δω T 2 2 = M b + i Δω δω T 2 2 M M a + iω C M C M 1 b 2 a M M b + iω C M C M 2 a 1 b Exchanging spins since whenever a molecule reorients a spins ---> b spins and b spins ---> a spins ----> C 1 =C 2 =C The rate equations are solved in the steady state and the resulting total complex magnetization M x +im y is given by 9

10 Steady-state solutions M x + im y = M a + M b = iγh 1 M 0τ[2 + τ(α a + α b )/2] (1 + α a τ)(1 + α b τ) 1 where α a = 1 + i ω T o ω δω 2 2 α b = 1 + i ω T o ω + δω 2 2 1/τ = C=k, and the absorption signal is given by My the imaginary part of the above equation Simulated spectra Two-site exchange in the slow intermediate regime K< δω/2 ( 6.3kHz) Simulation parameters ω a /2π = -1kHz ω b /2π = 1kHz Crossover point is K= δω/2 ( 6.3kHz) 10

11 Fast int. exchange K> δω/2 ( 6.3kHz) fast int. exchange regime Simulation parameters ω a /2π = -1kHz ω b /2π = 1kHz Two-site exchange time scale Spectral line shape change as one goes from slow to fast exchange K= δω/2 11

12 13 C Spectra of N,N - dimethylformamide 13 C enriched spectra of N,N - dimethylformamide gas at different temperatures in a field of 4.7T 1 H spectrum of N,N -dimethyltrichloroacetamide 1 H spectrum of N,N - dimethyltrichloroacetamide (DMTCA) as a function of temperature at 60 MHz. O CH 3 N R CH 3 k -----> <----- k O CH 3 N R CH 3 O - R C N + CH 3 CH 3 -R: H, CH 3 or CCl 3 12

13 Chemical exchange saturation transfer (CEST) Biological tissues, exchange of solute spins with water Can we exploit the CE to detect solute spins? Chemical Exchange Saturation Transfer (CEST) Solute Pool H k sw Water Pool O O O H H H H H H O O O H H H H k H H ws O O H H H H 13

14 MRS at 7T Glu 3.00ppm Excitatory neurotransmitter Sensitivity comparison between CEST and MRS Cai et al. Nat. Med. (2012) GluCEST ~700 fold higher sensitivity than MRS 28 14

15 Potential overlap of other brain metabolites with GluCEST CEST (%) CEST (%) 7T B1rms 150Hz 2s Ø Physiological concentrations of major brain metabolites at 37C Ø Glu & GABA contribute to GluCEST 29 GluCEST in MCAO rat brain 1.0 hour 4.5 hour >24 Contralateral ipsilateral <4 9.4T B 1rms 250Hz 1s Cai et al. Nat. Med. (in press) 30 15

16 Glu modulation in vivo 1 H Image GluCEST (%) 30 Baseline 2 Hr 0 In vivo GluCEST A. The axial view of the human brain. B. Difference image (CEST image at -3ppm CEST image at +3ppm); C. GluCEST contrast map; F. Map of distribution volumes (DVs) of metabotropic Glu receptor subtype 5 from the PET image (With permission, extracted from Ametamey Simon M et al, J. Cereb Blood flow Metab, J Nucl Med 2007; 48: ) Cai et al. Nat. Med. (2012) 16

17 Enzymatic inter-conversion of PCr and ATP CK facilitates high energy phosphate metabolism Current Methods 31 P MRS: measures PCr and ATP 1 HMRS: measures total creatine No noninvasive method For measuring free Cr Myocardial and skeletal muscle energetics CREST SENSITIVITY AND SPECIFICITY (3T) Haris et al., NMR in Biomed (2012) CrEST has two-three orders of magnitude higher sensitivity Than 1HMRS. Amine/amide groups on PCr, ATP and ADP have an order of magnitude slower exchange rate than Cr Hence they don t contribute to CrEST 17

18 In vivo Human Skeletal Muscle CrEST Before and After Exercise at 7T [a] (%) [b] exercise Kogan et al., Magn. Reson. Med. (in press) Plantar flexion exercise data for subject 1. (a) CrCEST asym maps of a human calf muscle before and every 48 seconds after (in order by number) 2 minutes of plantar flexion exercise. (b) MTR and (c) T 2 maps before and every 56 seconds after (in order by number) the same exercise protocol. (d) plot of the average CrCEST asym as function of time in 4 different muscles of the calf segmented from anatomical images. Error bars represent the standard deviation in the CrCEST asym in each region. 31 P MRS OF CALF MUSCLE- IN MAGNET EXERCISE Healthy human calf muscle exercise Pressing of a pedal connected to pneumatic piston for 1 minute. Kogan et al., Magn. Reson. Med. (in press) 18

19 CEST imaging Exchangeable groups on other endogenous molecules Myoinositol (Alzheimer s disease) Creatine (CK metabolism in heart) Aggrecan (Osteoarthritis) Requirement for CEST The chemical shift Δω > k A large ω reduces direct water saturation Increases the CEST sensitivity Δω < k Δω k Δω > k Ward et al. J. Magn. Reson. 143 (2000):

Lecture #6 Chemical Exchange

Lecture #6 Chemical Exchange Lecture #6 Chemical Exchange Topics Introduction Effects on longitudinal magnetization Effects on transverse magnetization Examples Handouts and Reading assignments Kowalewski, Chapter 13 Levitt, sections

More information

Lecture #7 In Vivo Water

Lecture #7 In Vivo Water Lecture #7 In Vivo Water Topics Hydration layers Tissue relaxation times Magic angle effects Magnetization Transfer Contrast (MTC) CEST Handouts and Reading assignments Mathur-De Vre, R., The NMR studies

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Effects of Chemical Exchange on NMR Spectra

Effects of Chemical Exchange on NMR Spectra Effects of Chemical Exchange on NMR Spectra Chemical exchange refers to any process in which a nucleus exchanges between two or more environments in which its NMR parameters (e.g. chemical shift, scalar

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

K ex. Conformational equilibrium. equilibrium K B

K ex. Conformational equilibrium. equilibrium K B Effects of Chemical Exchange on NMR Spectra Chemical exchange refers to any yprocess in which a nucleus exchanges between two or more environments in which its NMR parameters (e.g. chemical shift, scalar

More information

Relaxation. Ravinder Reddy

Relaxation. Ravinder Reddy Relaxation Ravinder Reddy Relaxation What is nuclear spin relaxation? What causes it? Effect on spectral line width Field dependence Mechanisms Thermal equilibrium ~10-6 spins leads to NMR signal! T1 Spin-lattice

More information

Effects of Chemical Exchange on NMR Spectra

Effects of Chemical Exchange on NMR Spectra Effects of Chemical Exchange on NMR Spectra Chemical exchange refers to any process in which a nucleus exchanges between two or more environments in which its NMR parameters (e.g. chemical shift, scalar

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening Spectral Broadening echanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Biomedical Imaging Magnetic Resonance Imaging

Biomedical Imaging Magnetic Resonance Imaging Biomedical Imaging Magnetic Resonance Imaging Charles A. DiMarzio & Eric Kercher EECE 4649 Northeastern University May 2018 Background and History Measurement of Nuclear Spins Widely used in physics/chemistry

More information

Relaxation, Multi pulse Experiments and 2D NMR

Relaxation, Multi pulse Experiments and 2D NMR Relaxation, Multi pulse Experiments and 2D NMR To Do s Read Chapter 6 Complete the end of chapter problems; 6 1, 6 2, 6 3, 6 5, 6 9 and 6 10. Read Chapter 15 and do as many problems as you can. Relaxation

More information

3 Chemical exchange and the McConnell Equations

3 Chemical exchange and the McConnell Equations 3 Chemical exchange and the McConnell Equations NMR is a technique which is well suited to study dynamic processes, such as the rates of chemical reactions. The time window which can be investigated in

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum,

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, 16.02.2009 Solid-state and solution NMR spectroscopy have many things in common Several concepts have been/will

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

Magnetic Resonance Spectroscopy. Saurabh Bhaskar Shaw Dwip Shah

Magnetic Resonance Spectroscopy. Saurabh Bhaskar Shaw Dwip Shah Magnetic Resonance Spectroscopy By Saurabh Bhaskar Shaw Dwip Shah What is Magnetic Resonance Spectroscopy? [1] Non invasive method to look at concentration of metabolites invivo. 2 Basics of MRS Physics

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Relaxation & Multidimensional Spectrocopy Vrije Universiteit Brussel 9th December 2011 Outline 1 Relaxation 2 Principles 3 Outline 1 Relaxation 2 Principles 3 Establishment of Thermal Equilibrium As previously

More information

Rad 226b/BioE 326b In Vivo MR: Relaxation Theory and Contrast Mechanisms

Rad 226b/BioE 326b In Vivo MR: Relaxation Theory and Contrast Mechanisms Rad 226b/BioE 326b In Vivo MR: Relaxation Theory and Contrast Mechanisms Daniel Spielman, Ph.D., Dept. of Radiology Lucas Center for MR Spectroscopy and Imaging (corner of Welch Rd and Pasteur Dr) office:

More information

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance A Hands on Introduction to NMR 22.920 Lecture #1 Nuclear Spin and Magnetic Resonance Introduction - The aim of this short course is to present a physical picture of the basic principles of Nuclear Magnetic

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Simon Lacoste-Julien Electromagnetic Theory Project 198-562B Department of Physics McGill University April 21 2003 Abstract This paper gives an elementary introduction

More information

SUPPLEMENTARY NOTE 1: ADDITIONAL CHARACTERIZATION OF NANODIAMOND SOLUTIONS AND THE OVERHAUSER EFFECT

SUPPLEMENTARY NOTE 1: ADDITIONAL CHARACTERIZATION OF NANODIAMOND SOLUTIONS AND THE OVERHAUSER EFFECT 1 SUPPLEMENTARY NOTE 1: ADDITIONAL CHARACTERIZATION OF NANODIAMOND SOLUTIONS AND THE OVERHAUSER EFFECT Nanodiamond (ND) solutions were prepared using high power probe sonication and analyzed by dynamic

More information

Slow symmetric exchange

Slow symmetric exchange Slow symmetric exchange ϕ A k k B t A B There are three things you should notice compared with the Figure on the previous slide: 1) The lines are broader, 2) the intensities are reduced and 3) the peaks

More information

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by:

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by: Bloch Equations We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by: M = [] µ i i In terms of the total spin

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Spin Dynamics & Vrije Universiteit Brussel 25th November 2011 Outline 1 Pulse/Fourier Transform NMR Thermal Equilibrium Effect of RF Pulses The Fourier Transform 2 Symmetric Exchange Between Two Sites

More information

VIII Chemical Exchange

VIII Chemical Exchange VIII Chemical Exchange Lecture notes by Assaf Tal Chemical exchange has surprising ties with relaxation as we shall see. Understanding exchange lets us understand phenomena, some of which at first glance

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

Spectroscopy and braintumours

Spectroscopy and braintumours Spectroscopy and braintumours jatta.berberat@ksa.ch Introduction Background Metabolites Shimming Sequences Summary 1 Spectroscopy Nuclear magnetic resonance spectroscopy (MRS) is an analytical tool, based

More information

The Positive Muon as a Probe in Chemistry. Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory

The Positive Muon as a Probe in Chemistry. Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory The Positive Muon as a Probe in Chemistry Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory I.McKenzie@rl.ac.uk µsr and Chemistry Properties of atoms or molecules containing

More information

MRI Physics I: Spins, Excitation, Relaxation

MRI Physics I: Spins, Excitation, Relaxation MRI Physics I: Spins, Excitation, Relaxation Douglas C. Noll Biomedical Engineering University of Michigan Michigan Functional MRI Laboratory Outline Introduction to Nuclear Magnetic Resonance Imaging

More information

MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS

MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS 1. A MR spectrum can identify many metabolites other than water by: Locating the peak(s) determined by a characteristic chemical shift (ppm) resulting from

More information

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft MR Fundamentals 26 October 2010 Mitglied der Helmholtz-Gemeinschaft Mitglied der Helmholtz-Gemeinschaft Nuclear Spin Nuclear Spin Nuclear magnetic resonance is observed in atoms with odd number of protons

More information

Medical Imaging Physics Spring Quarter Week 9-1

Medical Imaging Physics Spring Quarter Week 9-1 Medical Imaging Physics Spring Quarter Week 9-1 NMR and MRI Davor Balzar balzar@du.edu www.du.edu/~balzar Intro MRI Outline NMR & MRI Guest lecturer fmri Thursday, May 22 Visit to CUHSC It s not mandatory

More information

NMR Spectroscopy: A Quantum Phenomena

NMR Spectroscopy: A Quantum Phenomena NMR Spectroscopy: A Quantum Phenomena Pascale Legault Département de Biochimie Université de Montréal Outline 1) Energy Diagrams and Vector Diagrams 2) Simple 1D Spectra 3) Beyond Simple 1D Spectra 4)

More information

Magnetic Resonance Imaging. Qun Zhao Bioimaging Research Center University of Georgia

Magnetic Resonance Imaging. Qun Zhao Bioimaging Research Center University of Georgia Magnetic Resonance Imaging Qun Zhao Bioimaging Research Center University of Georgia The Nobel Prize in Physiology or Medicine 2003 "for their discoveries concerning magnetic resonance imaging" Paul C.

More information

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005 Polarised Nucleon Targets for Europe, nd meeting, Bochum Temperature dependence of nuclear spin-lattice relaxations in liquid ethanol with dissolved TEMPO radicals H. Štěpánková, J. Englich, J. Kohout,

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

MR Spectroscopy: The Physical Basis and Acquisition Strategies

MR Spectroscopy: The Physical Basis and Acquisition Strategies AAPM 2010 SAM Imaging Session MR Spectroscopy: The Physical Basis and Acquisition Strategies Edward F. Jackson, PhD Department of Imaging Physics Objectives Understand the physical basis of in vivo MRS

More information

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in: Solution Set Hand out:.. Hand in:.. Repetition. The magnetization moves adiabatically during the application of an r.f. pulse if it is always aligned along the effective field axis. This behaviour is observed

More information

Bioengineering 278" Magnetic Resonance Imaging" Winter 2010" Lecture 1! Topics:! Review of NMR basics! Hardware Overview! Quadrature Detection!

Bioengineering 278 Magnetic Resonance Imaging Winter 2010 Lecture 1! Topics:! Review of NMR basics! Hardware Overview! Quadrature Detection! Bioengineering 278" Magnetic Resonance Imaging" Winter 2010" Lecture 1 Topics: Review of NMR basics Hardware Overview Quadrature Detection Boltzmann Distribution B 0 " = µ z $ 0 % " = #h$ 0 % " = µ z $

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10 CHEM / BCMB 490/690/889 Introductory NMR Lecture 0 - - CHEM 490/690 Spin-Echo The spin-echo pulse sequence: 90 - τ - 80 - τ(echo) Spins echoes are widely used as part of larger pulse sequence to refocus

More information

Simulations of spectra and spin relaxation

Simulations of spectra and spin relaxation 43 Chapter 6 Simulations of spectra and spin relaxation Simulations of two-spin spectra We have simulated the noisy spectra of two-spin systems in order to characterize the sensitivity of the example resonator

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

γ N 6. Nuclear Magnetic Resonance (NMR) Spectroscopy.

γ N 6. Nuclear Magnetic Resonance (NMR) Spectroscopy. 6. Nuclear Magnetic Resonance (NMR) Spectroscopy. In this chapter we will discuss some basic principles of NMR spectroscopy and some very basic applications. A comprehensive treatment of NMR spectroscopy

More information

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaxation Bloch Equation 1 Spin Intrinsic angular momentum of

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x ) Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 5 GE Medical Systems 2003 Gibbs Artifact Apodization rect(k ) Hanning Window h(k )=1/2(1+cos(2πk ) 256256 image 256128

More information

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei : An introduction to Solid State NMR spectroscopy Dr. Susanne Causemann (Solid State NMR specialist/ researcher) Interaction between nuclear spins and applied magnetic fields B 0 application of a static

More information

Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides. Mark S. Conradi

Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides. Mark S. Conradi Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides Mark S. Conradi Washington University Department of Physics St. Louis, MO 63130-4899 USA msc@physics.wustl.edu 1 Uses of Nuclear

More information

Chemical Exchange Saturation Transfer (CEST) Imaging: Description of Technique and Potential Clinical Applications

Chemical Exchange Saturation Transfer (CEST) Imaging: Description of Technique and Potential Clinical Applications Curr Radiol Rep (2013) 1:102 114 DOI 10.1007/s40134-013-0010-3 INNOVATIONS IN CLINICAL MRI (F SCHICK, SECTION EDITOR) Chemical Exchange Saturation Transfer (CEST) Imaging: Description of Technique and

More information

Principles of Nuclear Magnetic Resonance Microscopy

Principles of Nuclear Magnetic Resonance Microscopy Principles of Nuclear Magnetic Resonance Microscopy Paul T. Callaghan Department of Physics and Biophysics Massey University New Zealand CLARENDON PRESS OXFORD CONTENTS 1 PRINCIPLES OF IMAGING 1 1.1 Introduction

More information

Tissue Characteristics Module Three

Tissue Characteristics Module Three Tissue Characteristics Module Three 1 Equilibrium State Equilibrium State At equilibrium, the hydrogen vector is oriented in a direction parallel to the main magnetic field. Hydrogen atoms within the vector

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

- Basic understandings: - Mapping interactions:

- Basic understandings: - Mapping interactions: NMR-lecture April 6th, 2009, FMP Berlin Outline: Christian Freund - Basic understandings: Relaxation Chemical exchange - Mapping interactions: -Chemical shift mapping (fast exchange) Linewidth analysis

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS PRACTICAL ASPECTS OF MR RELAXATIO STUDIES OF BIOMOLECULAR DYAMICS Further reading: Can be downloaded from my web page Korzhnev D.E., Billeter M., Arseniev A.S., and Orekhov V. Y., MR Studies of Brownian

More information

Spin-spin coupling I Ravinder Reddy

Spin-spin coupling I Ravinder Reddy Spin-spin coupling I Ravinder Reddy Spin-interactions External interactions Magnetic field Bo, RF field B1 Internal Interactions Molecular motions Exchange Chemical shifts J-coupling Spin Diffusion Dipolar

More information

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging G16.4426 Medical Imaging Physics of Magnetic Resonance Imaging Riccardo Lattanzi, Ph.D. Assistant Professor Department of Radiology, NYU School of Medicine Department of Electrical and Computer Engineering,

More information

Biochemistry 530 NMR Theory and Practice

Biochemistry 530 NMR Theory and Practice Biochemistry 530 NMR Theory and Practice Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington Lecturer: Gabriele Varani Biochemistry and Chemistry Room J479 and

More information

INTRODUCTION TO NMR and NMR QIP

INTRODUCTION TO NMR and NMR QIP Books (NMR): Spin dynamics: basics of nuclear magnetic resonance, M. H. Levitt, Wiley, 2001. The principles of nuclear magnetism, A. Abragam, Oxford, 1961. Principles of magnetic resonance, C. P. Slichter,

More information

Protein dynamics from NMR Relaxation data

Protein dynamics from NMR Relaxation data Protein dynamics from NMR Relaxation data Clubb 3/15/17 (S f2 ) ( e ) Nitrogen-15 relaxation ZZ-exchange R 1 = 1/T 1 Longitudinal relaxation (decay back to z-axis) R 2 = 1/T 2 Spin-spin relaxation (dephasing

More information

Introduction of Key Concepts of Nuclear Magnetic Resonance

Introduction of Key Concepts of Nuclear Magnetic Resonance I have not yet lost that sense of wonder, and delight, that this delicate motion should reside in all ordinary things around us, revealing itself only to those who looks for it. E. M. Purcell, Nobel Lecture.

More information

Basic MRI physics and Functional MRI

Basic MRI physics and Functional MRI Basic MRI physics and Functional MRI Gregory R. Lee, Ph.D Assistant Professor, Department of Radiology June 24, 2013 Pediatric Neuroimaging Research Consortium Objectives Neuroimaging Overview MR Physics

More information

Chapter 15 Lecture Outline

Chapter 15 Lecture Outline Organic Chemistry, First Edition Janice Gorzynski Smith University of Hawaii Chapter 5 Lecture Outline Introduction to NMR Two common types of NMR spectroscopy are used to characterize organic structure:

More information

Magnetic Resonance Imaging

Magnetic Resonance Imaging http://www.qldxray.com.au/filelibrary/mri_cardiovascular_system_ca_0005.jpg Magnetic Resonance Imaging 1 Overview 1. The magnetic properties of nuclei, and how they behave in strong magnetic fields. 2.

More information

NMR, the vector model and the relaxation

NMR, the vector model and the relaxation NMR, the vector model and the relaxation Reading/Books: One and two dimensional NMR spectroscopy, VCH, Friebolin Spin Dynamics, Basics of NMR, Wiley, Levitt Molecular Quantum Mechanics, Oxford Univ. Press,

More information

Introduction to NMR for measuring structure and dynamics + = UCSF Macromolecular Interactions. John Gross, Ph.D.

Introduction to NMR for measuring structure and dynamics + = UCSF Macromolecular Interactions. John Gross, Ph.D. Introduction to NMR for measuring structure and dynamics + = UCSF Macromolecular Interactions John Gross, Ph.D. Nuclear Spins: Microscopic Bar Magnets H µ S N N + Protein Fragment Magnetic Moment Bar Magnet

More information

Ferdowsi University of Mashhad

Ferdowsi University of Mashhad Spectroscopy in Inorganic Chemistry Nuclear Magnetic Resonance Spectroscopy spin deuterium 2 helium 3 The neutron has 2 quarks with a -e/3 charge and one quark with a +2e/3 charge resulting in a total

More information

NMR course at the FMP: NMR of organic compounds and small biomolecules - II -

NMR course at the FMP: NMR of organic compounds and small biomolecules - II - NMR course at the FMP: NMR of organic compounds and small biomolecules - II - 16.03.2009 The program 2/76 CW vs. FT NMR What is a pulse? Vectormodel Water-flip-back 3/76 CW vs. FT CW vs. FT 4/76 Two methods

More information

Physical fundamentals of magnetic resonance imaging

Physical fundamentals of magnetic resonance imaging Physical fundamentals of magnetic resonance imaging Stepan Sereda University of Bonn 1 / 26 Why? Figure 1 : Full body MRI scan (Source: [4]) 2 / 26 Overview Spin angular momentum Rotating frame and interaction

More information

V27: RF Spectroscopy

V27: RF Spectroscopy Martin-Luther-Universität Halle-Wittenberg FB Physik Advanced Lab Course V27: RF Spectroscopy ) Electron spin resonance (ESR) Investigate the resonance behaviour of two coupled LC circuits (an active rf

More information

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule.

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule. Chapter 13: Nuclear magnetic resonance spectroscopy NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule. 13.2 The nature of

More information

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy Magnetic Resonance Spectroscopy Upcoming 26 March (Seth Smith) Magnetization Transfer, Chemical Exchange, T1-rho 28 March Advanced vascular imaging: arterial spin labeling (ASL), susceptibility weighted

More information

Basis of MRI Contrast

Basis of MRI Contrast Basis of MRI Contrast MARK A. HORSFIELD Department of Cardiovascular Sciences University of Leicester Leicester LE1 5WW UK Tel: +44-116-2585080 Fax: +44-870-7053111 e-mail: mah5@le.ac.uk 1 1.1 The Magnetic

More information

Magnetic Resonance Spectroscopy EPR and NMR

Magnetic Resonance Spectroscopy EPR and NMR Magnetic Resonance Spectroscopy EPR and NMR A brief review of the relevant bits of quantum mechanics 1. Electrons have spin, - rotation of the charge about its axis generates a magnetic field at each electron.

More information

NMR and MRI : an introduction

NMR and MRI : an introduction Intensive Programme 2011 Design, Synthesis and Validation of Imaging Probes NMR and MRI : an introduction Walter Dastrù Università di Torino walter.dastru@unito.it \ Introduction Magnetic Resonance Imaging

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal What is this? ` Principles of MRI Lecture 05 EE225E / BIO265 Instructor: Miki Lustig UC Berkeley, EECS The first NMR spectrum of ethanol 1951. 1 2 Today Last time: Linear systems, Fourier Transforms, Sampling

More information

Cross Polarization 53 53

Cross Polarization 53 53 Cross Polarization 53 Why don t we normally detect protons in the solid-state BPTI Strong couplings between protons ( >20kHz) Homogeneous interaction Not readily averaged at moderate spinning speeds Rhodopsin

More information

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS PRACTICAL ASPECTS OF MR RELAXATIO STUDIES OF BIOMOLECULAR DYAMICS Further reading: (Can be downloaded from my web page Korzhnev D.E., Billeter M., Arseniev A.S., and Orekhov V. Y., MR Studies of Brownian

More information

Solid state 13 Cand 1 H MAS NMR investigations of C 60 (ferrocene-d 10 ) 2 complex

Solid state 13 Cand 1 H MAS NMR investigations of C 60 (ferrocene-d 10 ) 2 complex Spectroscopy 17 (2003) 39 44 39 IOS Press Solid state 13 Cand 1 H MAS NMR investigations of C 60 (ferrocene-d 10 ) 2 complex E. Shabanova, K. Schaumburg and F.S. Kamounah CISMI, Department of Chemistry,

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

Center for Sustainable Environmental Technologies, Iowa State University

Center for Sustainable Environmental Technologies, Iowa State University NMR Characterization of Biochars By Catherine Brewer Center for Sustainable Environmental Technologies, Iowa State University Introduction Nuclear magnetic resonance spectroscopy (NMR) uses a very strong

More information

Z-Spectral Modeling for Magnetization Transfer Ratio Asymmetry Calculations in Chemical Exchange Saturation Transfer MRI at 3 Tesla

Z-Spectral Modeling for Magnetization Transfer Ratio Asymmetry Calculations in Chemical Exchange Saturation Transfer MRI at 3 Tesla Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2015 Z-Spectral Modeling for Magnetization Transfer Ratio Asymmetry Calculations in Chemical Exchange Saturation Transfer

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

NMR NEWS June To find tutorials, links and more, visit our website

NMR NEWS June To find tutorials, links and more, visit our website Department of Chemistry NMR Facilities Director: Dr. Carlos A. Steren NMR NEWS June 2014 To find tutorials, links and more, visit our website www.chem.utk.edu/facilities/nmr Computers and software updates

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

Principles of EPR and Image Acquisition

Principles of EPR and Image Acquisition The University of Chicago Center for EPR Imaging in Vivo Physiology Principles of EPR and Image Acquisition Boris Epel Outline Electron Paramagnetic Resonance (EPR) Oxygen Partial Tension Measuring using

More information

NMR BMB 173 Lecture 16, February

NMR BMB 173 Lecture 16, February NMR The Structural Biology Continuum Today s lecture: NMR Lots of slides adapted from Levitt, Spin Dynamics; Creighton, Proteins; And Andy Rawlinson There are three types of particles in the universe Quarks

More information

NMR-spectroscopy of proteins in solution. Peter Schmieder

NMR-spectroscopy of proteins in solution. Peter Schmieder NMR-spectroscopy of proteins in solution Basic aspects of NMR-Spektroskopie Basic aspects of NMR-spectroscopy 3/84 Prerequisite for NMR-spectroscopy is a nuclear spin that can be thought of as a mixture

More information

Physics in Clinical Magnetic Resonance Spins, Images, Spectra, and Dynamic Nuclear Polarization

Physics in Clinical Magnetic Resonance Spins, Images, Spectra, and Dynamic Nuclear Polarization Physics in linical Magnetic Resonance Spins, Images, Spectra, and Dynamic Nuclear Polarization Kevin M Koch, PhD GE Healthcare Applied Science Laboratory, MR Physics Group Outline linical Magnetic Resonance

More information

Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange

Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange A McDermott, Columbia University Winter School in Biomolecular NMR, Stowe VT January 20-23 2008 Effects on NMR Spectra: Local,

More information