S. K. Ghosh Associates Inc. Outline. q Introduction: masonry basics and code changes. q Beams and lintels. q Non-bearing walls: out-of-plane

Size: px
Start display at page:

Download "S. K. Ghosh Associates Inc. Outline. q Introduction: masonry basics and code changes. q Beams and lintels. q Non-bearing walls: out-of-plane"

Transcription

1 S. K. Go Aociate Ic. Otlie ASD v. SD A aor Cage Figt Ricard Beett, PD, PE Te Uiverit o Teeee Cair, 016 TS 40/60 Code Coittee q Itrodctio: aor baic ad code cage q Bea ad litel q Nobearig wall: otoplae q Cobied bedig ad axial orce: pilater q Bearig wall: otoplae q Sear wall: iplae Partiall Groted Sear Wall Special Reiorced Sear Wall 1 Baic aor Teriolog Itrodctio aor Baic Head Joit Core Bed Joit Recet Code Cage OUTLINE Le ta ¼ it overlap 3 Rig Bod 4 Not Laid i Rig Bod 1

2 S. K. Go Aociate Ic. Baic aor Teriolog Baic aor Teriolog Bod Bea : Cotiol reiorced orizotal eleet Pilater: wall portio, geerall projectig ro eiter or bot wall ace, ervig a vertical col ad/or bea 5 ttp://tecotrctor.org/cotrctio/aorpilaterwalldeigdetail/1444/ 6 aor Uit Cocrete aor Uit (CU) peciied b AST C90 ii peciied copreive tregt (et area) o 000 pi (average) Caged ro 1900 pi i 014! et area i abot 55% o gro area Caged ro ii web tice to oralized web area i 01 Tpe I ad Tpe II deigatio o loger exit ttp:// 7

3 S. K. Go Aociate Ic. Cla aor Uit CU v. Cla Uit Tpicall peciied b AST C16 (acig bric, olid it), or C65 (ollow bric) I core occp 5% o et area, it ca be coidered 100% olid AST C65: Hollow it Ued or reiorced aor, iilar to c Icreaigl veeer are C65 bric Cla ad cocrete aor beave qite dieretl, epeciall we expoed to oitre Cocrete Ceetio: ri wit tie Ue cotrol joit: See NCA TEK Note 10 01A, 100C, 1003 Cla Expad wit tie: Irreverible oitre expaio Ue expaio joit: See BIA Tec Note 1A Need bot vertical ad orizotal expaio joit 9 10 CU v. Cla Uit aor ortar Beore leavig it Bloc Sriage Bloc Sriage Bric Expaio Bric Expaio 11 a S o N w O r K troget weaet Tpical e: Tpe S: ot trctral aor Tpe N: Partitio ad veeer Tpe O: Tcpoitig AST C70 AST C70 AST C156 1 Ceetio Ste Portlad ceet lie aor ceet ortar ceet Speciicatio or ortar or Uit aor etod or Precotrctio ad Cotrctio Evalatio o ortar or Plai ad Reiorced Uit aor Stadard Gide or Qalit Arace o ortar 3

4 S. K. Go Aociate Ic. aor ortar: Speciicatio aor Grot Proportio: copliace i veriied ol b veriig vole proportio. 13 Propert: I laborator, etabli proportio tat will eet te reqired copreive tregt, air cotet ad retetivit (abilit to retai water) Tpe S ceet lie: 1 part ceet ~ 0.5 part drated ao lie ~ 4.5 part ad veri i ield tat vole Tpe N aor ceet: proportio eet 1 part Tpe N aor ceet (igle bag) proportio liit. ~ 3 part ad Proportio peciicatio i te dealt Two id o grot ie grot (ceet, ad, water) coare grot (ceet, ad, gravel, water) Grot peciied b proportio copreive tregt (reqired i > 000 pi) Slp betwee ad 11 ice aor it aborb water ro te grot, decreaig it water ceet ratio ad icreaig it copreive tregt. 14 aor Copreive Stregt, # Uit tregt etod (TS B ) Etiate a coervative aeblage tregt baed o ortar tpe ad it tregt (ro aactrer) Pri tet etod (TS B 3) Pro: ca perit optiizatio o aterial Co: reqire tetig, qaliied tetig lab, ad procedre i cae o o coplig relt t copl wit AST C1314 CU Uit Stregt Table Net area copreive tregt o cocrete aor, pi TS 60 Table Net area copreive tregt o AST C90 cocrete aor it, pi (Pa) Tpe or S ortar Tpe N ortar 1,700 1,900 1,900 1,900,350,000,000,650,50,600 3,400,500 3,50 4,350,750 3,

5 S. K. Go Aociate Ic. aor aterial Propertie Brie Hitor o TS 40/60 Propert CU Cla odl o Elaticit 900 ' # 700 ' # odl o rigidit (ear odl) Coeiciet o teral expaio Coeiciet o oitre expaio E ' 4.5 x 10 6 i./i./ F 4.0 x 10 6 i./i./ F N/A Coeiciet o riage ' C90 liit riage to 0.065% 3 x 10 4 i./i. N/A Coeiciet o creep.5 x 10 7 /pi 0.7 x 10 7 /pi 19: Firt editio 1995: Seiic reqireet oved ro Appedix to ai bod o code; capter o veeer added; capter o gla bloc added 199: ajor reorgaizatio o code; pretreed aor capter added 00: Stregt deig capter added; deiitio o ear wall added to correpod to IBC deiitio; code oved to a tree ear reviio ccle 005: Caged lap plice reqireet, reqirig c loger lap legt 00: ajor reorgaizatio o eiic reqireet; added AAC aor i Appedix 011: Eliiated oetird tre icreae ad recalibrated allowable tree; added iill proviio i Appedix 013: Cage or partiall groted ear wall; pdated it tregt table; liit tate appedix 016: Add ear rictio proviio; icreae cavit widt; pdate acor bolt 0: Go to a ixear ccle v 013 Code 011 v 013 Code Capter 1 Geeral Deig Reqireet or aor Capter Allowable Stre Deig o aor Capter 3 Stregt Deig o aor Capter 4 Pretreed aor Capter 5 Epirical Deig o aor Capter 6 Veeer Capter 7 Gla Uit aor Capter Stregt Deig o Atoclaved Aerated Cocrete aor Appedix B Deig o aor Iill 19 q Part 1 Geeral Capter 1 Geeral Reqireet Capter Notatio ad Deiitio Capter 3 Qalit ad Cotrctio q Part Deig Reqireet Capter 4 Geeral Aali ad Deig Coideratio Capter 5 Strctral Eleet Capter 6 Reiorceet, etal Acceorie, ad Acor Bolt Capter 7 Seiic Deig Reqireet q Part 3 Egieered Deig etod Capter Allowable Stre Deig Capter 9 Stregt Deig o aor Capter 10 Pretreed aor Capter 11 Stregt Deig o AAC q Part 4 Precriptive Deig etod Capter 1 Veeer Capter 13 Gla Uit aor Capter 14 aor Partitio Wall q Part 5 Appedice Appedix A Epirical Deig Appedix B Deig o aor Iill Appedix C Liit Deig etod q odl o rptre vale icreaed b 1/3 or all bt ll groted aor oral to bed joit q Uit tregt table recalibrated Tpe S ortar, 000 pi it tregt, 000 pi q Sear tregt o partiall groted wall: redctio actor o

6 S. K. Go Aociate Ic. Bea ad Litel Deig Flexral eber Bea ad Litel NoBearig Wall OUTLINE 1 Allowable Stre (Capter ) Allowable aor tre: 0.45 Allowable teel tre 3 i, Grade 60 teel ( r) + r r j 1 3 A jd b( d )( jd ) No i or ax reiorceet reqireet Allowable ear tre 1 F v. 5 Stregt Deig (Capter 9) e cla aor e cocrete aor aor tre 0. aor tre act over a 0.c 0.9 lexre; 0. ear æ 1 A A d b è 0. ø V.5Av ii rei: 1.3 cr or A (4/3)A,req d axi rei: e 1.5e r ax ( 0.) 0. æ e è e + e ø Bea ad Litel Deig ASD: Alterate Deig etod Allowable Stre (Capter ) 1. Ae vale o j (or ). Tpicall 0.5 < j < Deterie a trial vale o A. A < / F < jd Cooe reiorceet. 3. Deterie ad j; teel tre ad aor tre. 4. Copare calclated tree to allowable tree. 5. I aor tre cotrol deig, coider oter optio (c a cage o eber ize, or cage o ). Reiorceet i ot beig ed eicietl. 3 Stregt Deig (Capter 9) 1. Deterie a, dept o copreive tre bloc a d d 0. b. Solve or A ba A ρ # ' or CU Grade 60 teel: ' # 1.5 i, ρ ' # i, ρ Calclate d ( ) ê æ d d 3 ê ë è ø 3Fb û I bal? For Grade 60 teel bal 0.31 YES F bal F F + F ( d) b P A æ 1 F 1 è ø Allowable aor copreio tre cotrol NO 4 A æ F 1 d è 3 ø z A F F b ( d) z + zd z Iterate. Ue (d) a ew ge ad repeat. Allowable reiorceet teio tre cotrol 6

7 S. K. Go Aociate Ic. Copario o ASD ad SD Exaple: Bea Give: 10. opeig; dead load o 1.5 ip/; live load o 1.5 ip/; 4 i. ig; Grade 60 teel; Tpe S aor ceet ortar; i. CU; 000 pi Reqired: Deig bea Soltio: ic CU d 0 i : Legt o bearig o bea all be a ii o 4 i.; tpicall aed to be i Spa legt o eber ot bilt itegrall wit pport all be tae a te clear pa pl dept o eber, bt eed ot exceed ditace betwee ceter o pport. Spa 10 + (4 i.) Copreio ace o bea all be laterall pported at a axi pacig o: 3 ltiplied b te bea tice. 3(7.65 i.) 44 i b /d. 10(7.65 i.) / (0 i.) 349 i Allowable Stre Deig: Flexre Load Weigt o ll groted oral weigt: 3 p oet Deterie d Ae copreio cotrol d d 3ê ê ë ( 1.5 ( )) ( ) w D + L 17 ( 3.17 )( ) wl i ( 45.1 )( ) æ d 0i 0i 3ê æ è ø 3Fbb ê 3 û ë è ø ( 0.900i)( 7.65i) 9.3i. û Allowable Stre Deig: Flexre Fid A Area o teel ( 9.31i)( 7.65i) Fb ( d) b 0.900i A æ 1 æ 1 Fb ( 0.900i) 1 è ø è ø Ue #9 (A.00 i ) 1.94i Bar placed i botto Uaped it, or ocot bod bea it. Cec i copreio cotrol d 9.3i > 0.31 d 0i Copreio cotrol Calclate odlar ratio, E E E 9000i (.0i)

8 S. K. Go Aociate Ic. Stregt Deig: Flexre Cec i ad ax Reiorceet Factored Load Weigt o ll groted oral weigt: 3 p Factored oet Fid a Dept o eqivalet rectaglar tre bloc ( ( )) ( ) w 1.D + 1.6L ( 4.40 )( ) w L 6. 6 a d æ 6.6 æ1i d 0.9 0i ( 0i) è ø è ø 3. 7i 0. b 0.(.0i)( 7.65i) ii Reiorceet Cec: Sectio odl Cracig oet Cec 1.3 cr b ( 7.65i)( 4i) 3 S 73i 6 6 S ( 73i 3 )( 160 pi) i cr r 1.3 r 160 pi (parallel to bed joit i rig bod; ll groted) ( ) cr Fid A Area o teel Ue #6 (A 0. i ) (.0i)( 7.65i)( 3.7i) 0. ba 0. A 0.77i 60i 7.5 φ 70.6 axi Reiorceet Cec: ' # i ρ A r bd 0.i ( 7.65i)( 0i) odl o Rptre (Table ) Sar: Bea, Flexre aor Tpe Noral to Bed Joit Solid Uit Hollow Uit* Ugroted Fll Groted Parallel to bed joit i rig bod Solid Uit Hollow Uit Ugroted ad partiall groted Fll groted Parallel to bed joit ot laid i rig bod Cotio grot ectio parallel to bed joit Oter 31 ortar Tpe Portlad ceet/lie or ortar ceet aor Ceet or S N or S N Dead Load (/) (peripoed) Live Load (/) ASD ( ' # 1.5 i) ( ' # 1.5 i) ( ' # 1.5 i) Reqired A (i ) ASD: Allowable teio cotrol or 0.5 / ad 1 /. SD ( ' # 1.5 i) ( ' # 1.5 i) ( ' # 1.5 i)

9 S. K. Go Aociate Ic. Allowable Stre Deig: Sear Allowable Stre Deig: Sear Deig or DL 1 /, LL 1 / Sear at reactio wl V æ 0i. 1 d/ ro ace o pport + 4i i. è ø Deig ear orce Sear tre Allowable aor ear tre F ( ( ) )( ) æ V è 5.33 ø V 9.0 v 59. pi Av 7.65i. ( 0i. ) v 1 æ æ ê ëè èvd øø 1 [ pi ] 50.3pi û P A Sectio allow deig or ear at d/ ro ace o pport. Sgget tat d be ed, ot d v. 1 [.5 ] Cec ax ear tre Req d teel tre Deterie A v or a pacig o i. Fv 000 pi 9. 4 pi 59. pi 50.3pi. 9 pi æ A F d v v A Fv 0.5 A A Þ v è ø 0.5Fd.9 pi Av 0.034i 0.5 ( 7.65i. )( 0i. )( i. ) ( 3000 pi)( 0i. ) Ue #3 tirrp Deterie d o tat o ear reiorceet wold be reqired. d V bf v i.( 50.3pi) 3.5i. 34 > 59.pi OK Ue a 3 i. deep bea i poible; will ligtl icreae dead load. Stregt Deig: Sear Stregt Deig: Sear Deig or DL 1 /, LL 1 / Sear at reactio ( ( ( ) ) ( ))( ) w L V æ 0i. 1 d/ ro ace o pport + 4i i. è ø Deig ear orce Deig aor ear tregt V æ V è 5.33 ø æ ê Av + 0.5P.5A ë Vd è v øû 0. (.5)( 7.65i. )( 0i. ) 000 pi Reqireet or ear at d/ ro ace o pport i i ASD, ot SD, bt ae it applie v Sgget tat d be ed, ot d v to id A v Cec ax V Req d V Deterie A v or a pacig o i. æ Av V V 0.5 dv Þ Av è ø 0.5 d Av ( i. ) ( 60i)( 0i. ) 36 ( 4)( 7.65i. )( 0i. ) 000 pi 1. V 4 Av 0. V V i Ue #3 tirrp v Deterie d o tat o ear reiorceet wold be reqired. (.5 ) 7.65i. ( 0.(.5) 000 pi ) > 1.50 OK V 1.50 d 0.4i. Ue iverted bod bea b it to get ligtl greater d. 9

10 S. K. Go Aociate Ic. NoBearig Partiall Groted Wall OtoPlae d a b eective copreive widt per bar i{, 6t, 7 i} (5.1.) A. Netral axi i lage: a. Alot alwa te cae b. Deig or olid ectio B. Netral axi i web a. Deig a a Tbea ectio C. Oe deig baed o a 1 widt b b 37 A t ii reiorceet: No reqireet axi reiorceet: Sae reqireet a bea Deig Aid Spacig (ice) 3 Steel Area i / #3 #4 #5 # Exaple: Partiall Groted Wall ASD Exaple: Partiall Groted Wall ASD Give: i CU wall; 16 ig; Grade 60 teel, # ' 000 pi; Lateral wid load o 30 p (actored) Reqired: Reiorcig (place i ceter o wall) Soltio: ( lb )( i w )( 16 ) oet lb i lb F b 0.45(000pi) 900 pi E 1.0 x 10 6 pi F 3000 pi E 9 x 10 6 pi E /E 16.1 Deterie d Ae copreio cotrol d d 3ê ê ë Cec i copreio cotrol æ d 3.1i 3.1i 3ê æ è ø 3Fbb ê 3 û ë è ø d 0.346i 0.091< 0.31 d 3.1i 39 1i ( )( ) i ( 0.900i)( 1 ) 0.346i. û Teio cotrol A æ F 1 d è 3 ø z ( A F ) Fb ( d) z + zd z Eqatio / Vale Iteratio 1 Iteratio Iteratio 3 d (i.) (i ) (i.) (i.) Ue # 40 ice (A 0.060i /) (cloe eog or goveret wor)

11 S. K. Go Aociate Ic. Exaple: Partiall Groted Wall SD ASD v SD: Flexral eber Give: i. CU wall; 16 ig; Grade 60 teel, # ' 000 pi; Wid load o w 30 p Reqired: Reiorcig (place i ceter o wall) Soltio: Factored oet Fid a Solve a olid ectio a d ( 1 i )( 16 ) lb w 30 lb i lbi æ1150 d i ( 3.1i) è ø i i 0. b 0. (1 ) ( 000 pi) q ASD calibrated to SD or wid ad eiic load q We a igiicat portio o load i dead load, ASD will reqire ore teel ta SD q We allowable aor tre cotrol i ASD, deig are ieiciet q Advatage to SD, wic i reao cocrete deig rapidl witced to SD abot 50 ear ago Fid A 0. ba 0. A i ( 000 pi)( 1 )( 0.179i) pi i Ue # 40 ice (A 0.060i /) 41 4 Iteractio Diagra Cobied Bedig ad Axial Load Iteractio Diagra Pilater OUTLINE Allowable Stre (Capter ) For > bal Set aor trai F b /E ; CU Fid teel trai For < bal Set teel trai F /E ; or Grade 60 Fid aor trai Allowable axial load /r 99 æ P ( a 0.5 A AtF ) ê1 êë è140r ø /r > 99 æ 70r Pa ( 0.5 A AtF ) è ø û Stregt Deig (Capter 9) Set aor trai to ε Var teel trai Eqivalet rectaglar tre bloc Noial axial tregt /r 99 æ P 0.[ 0.0 ( A At ) + At ] ê1 êë è140r ø û /r > 99 æ 70r P 0.0[ 0.0 ( A At ) + At ] è ø

12 S. K. Go Aociate Ic. Exaple: i. CU Bearig Wall ASD Exaple: i. CU Bearig Wall ASD Give: 1 ig CU bearig wall, Tpe S aor ceet ortar; Grade 60 teel i ceter o wall; 4 i.; partial grot; ' # 000 pi Reqired: Iteractio diagra i ter o capacit per oot Pre oet: 16.1 ρ ρ Pre Axial: Radi o gratio Radi o gratio all be copted ig average et croectioal area o te eber coidered. NCA TEK 141B Sectio Propertie o Cocrete aor Wall r.66 i. A 40.7i / I 33.0 i 4 / Fid Fid j Fid Fid ( r) + r r j ( 3i)( 0.943)( 3.1i. ) 5. i i A F jd F b 1.64 i ( d ) ( jd ) ( 1 ) 0.171( 3.1i) i ( ) + ( ) i [ ] [ 0.943( 3.1i) ] Fid /r Fid P a 144i r.66i P a ( 0.5 A A F ) t æ ê1 êë è 140r ( ( )( ) ) i æ i ê êë ø û è 140 ø û P Allowable i Exaple: i. CU Bearig Wall ASD Exaple: i. CU Bearig Wall ASD Balaced: i Stre 3 i d < 1.5 i. N.A. i ace ell 1.19 i 3. i Strai i( ) i Below Balaced: Stre d 1.00 i. 3 i Strai 1.00 i i Fid C 1 1 C 44 ( d ) b ( 0.900i)( 1.19i)( 1 ) i 6. Fid C 1 1 C ( d ) b ( 0.703i)( 1.00i)( 1 ) i 4. Fid T Fid P ( )( ) i 3i T A 6 ( ) 4. P C T 4 P Fid T Fid P ( )( ) i 3i T A 6 ( ). P C T 6 P.6 1. Fid æ 1.19i i i è 3 ø Fid æ 1.00i i i è 3 ø

13 S. K. Go Aociate Ic. Exaple: i. CU Bearig Wall ASD Exaple: i. CU Bearig Wall SD Above Balaced: d.00 i. 1 Cetroid 1 + b x + 3 x 1 b i 1.5 i 9. / 0.53 i 0.33 i.00 i 1.5 i 0.5 / /31.5i. P..5 Stre 13.1 i Netral axi i i web 0.66/ i 1 + CT 3. i P C. Strai ( )( ) i 13.1i T ( ) i i C 1 ( 1.5i)( 1 ) 9. 1 C 0.33i 5 i ( 0.75i)( ) 0. ( 3.1i 0.53i) ( ) 3.1i 1.5i Give: 1 ig CU bearig wall, Tpe S aor ceet ortar; Grade 60 teel i ceter o wall; 4 i.; partial grot; ' # 000 pi Reqired: Iteractio diagra i ter o capacit per oot Pre oet: Fid Fid φ Cec to ae re tre bloc i i ace ell æ 1 A A d b è 0. ' ø 0.05 i ( 60i) æ i è 0. 1 ( ) A a 0.b ' i ( 60i) i ( )(.0i) 50 i ( 60i) i 11. i ( )(.0i) 0.156i ø Exaple: i. CU Bearig Wall SD Exaple: i. CU Bearig Wall SD Pre Axial: Fid /r NCA TEK 141B Sectio Propertie o Cocrete aor Wall r.66 i. A 40.7i / I 33.0 i 4 / 144i r.66i Balaced: Strai.09 i i i C Stre T a 0.c 0.(.09i.) 1.67i. web legt EFG. IJFG..0 FG HEFG. KL KL Fid P P [ ( A A ) + A ] [ ( i)( ) ] i æ ê t ( 44.3 ) 39. P t æ ê1 êë è êë 140r ø û è 140 ø û Fid C Fid T Fid φp G Fid φ G [ 0.0(.0i) ]( 1.5i)( 1 ) i [ 0.0(.0i) ]( 1.67i 1.5i)(.0 ) i 1. C 4, ace ell C 34, web ( )( ) i 60i T A 0 ( ) 0. P P 0.1 æ 1.5i ê i æ i ë è ø è ø û

14 S. K. Go Aociate Ic. Exaple: i. CU Bearig Wall SD Exaple: i. CU Bearig Wall SD Below Balaced: c 1.5 i Strai 1.5 i i i a 0.c 1.00 i Stre T Above Balaced: c 3.0 i Strai 3.0 i i i T C Stre a 0.c 0.(3.0i.).4i. web legt EFG. IJFG..0 FG HEFG. KL KL Fid C Fid T Fid φp G Fid φ G ( a) b 0.(.0i)( 1.00i)( 1 ) i 19. C 0. ( )( ) i 60i T A 0 ( C ) ( ) P T 6 ( i) æ i 0.9ê i ë è øû P Fid C Fid T Fid φp G Fid φ G [ 0.0(.0i) ]( 1.5i)( 1 ) i C 4, ace ell [ 0.0(.0i) ](.40i 1.5i)(.0 ) i 3. C 6, web ( )( ) i T Ee A 9000i 99 ( ) 4. P P 4.0 æ 1.5i ê i æ i 6. ë è ø è ø û Iteractio Diagra ASD v SD: Iteractio Diagra q Siilar beavior to lexre ASD ad SD cloe we allowable teio tre cotrol ASD ore coervative we allowable aor tre cotrol q SD iteractio diagra eaier to cotrct de to eqivalet ior tre v. liear varig tre q Advatage to SD

15 ASD: Cobied Bedig ad Axial Load Deig etod ê d d 3 ê ë I bal? For Grade 60 teel bal 0.31 Calclate æ d ( P( d t / ) + ) è ø 3Fb û YES F bal F F + F ( d) b P A æ 1 F 1 è ø Copreio cotrol NO 57 æ t d P è 3 ø A æ F 1 d è 3 ø z ( P + A F ) F b ( d) z + zd z Iterate. Ue (d) a ew ge ad repeat. Teio cotrol S. K. Go Aociate Ic. ASD: Cobied Bedig ad Axial Load Deig etod I < b teio cotrol. Solve cbic eqatio or d. bf 6 Solve or A. bdf æ t + ø 3 [ d] [ d] P d [ d] + P d d 0 è æ è 1 æ 1 d A ( d )( b) è d d ø 5 ø P F æ è æ è t + ø ø Stregt Deig: Cobied Bedig ad Axial Load Deig etod a d YES d 0. ba P / A æ d c e E è c ø Copreio cotrol Calclate [ P ( d t / ) + ] ( 0. b) I c c bal? For Grade 60 teel c bal c bal e d e + e a c 0. NO 0. ba P / A Teio cotrol Exaple: Pilater Deig ASD Give: Noial 16 i. wide x 16 i. deep CU pilater; ' # 000 pi; Grade 60 bar i eac corer, ceter o cell; Eective eigt 4 ; Dead load o 9.6 ip ad ow load o 9.6 ip act at a eccetricit o 5. i. ( i. iide o ace); Factored wid load o 6 p (prere ad ctio) ad pli o.1 ip (e5. i.); Pilater paced at 16 o ceter; Wall i aed to pa orizotall betwee pilater; No tie. Reqired: Deterie reqired reiorcig ig allowable tre deig. Soltio: Load e5. i d11. i x Iide.0 i E 100i 16.1 Lateral Load w 0.6(6p)(16)50 lb/ 60 Vertical Spaig 15

16 S. K. Go Aociate Ic. Exaple: Pilater Deig ASD Exaple: Pilater Deig ASD Weigt o pilater: Weigt o ll groted i wall (ligtweigt it) i 75 p. Pilater i lie a doble tic wall. Weigt i (75p)(16i)(1/1i) 00 lb/ Uall te load cobiatio wit allet axial load ad larget lateral load cotrol. Tr load cobiatio o 0.6D + 0.6W to deterie reqired reiorceet ad te cec oter load cobiatio. Te locatio ad vale o axi oet ca be deteried ro: 0.6D + 0.6W Top o pilater. P 0.6(9.6)0.6(.1) 0.9ip Fid locatio o axi oet x w i 5.ip i 0.50 i ( i) 0.9(5.i) 5.ipi ( i)( 1 ) 143.1i w i i (5. i) ax i w ( 0.00 )( i) i w ax + + w x w I x<0 or x>, ax oet at top x eared dow ro top o pilater Fid axial orce at ti poit. Iclde weigt o pilater (00 lb/). P ( 1 )( 143.1i). 3 1i. Deig or P.3, 1 i 61 6 Exaple: Pilater Deig ASD Exaple: Pilater Deig ASD Ae copreio cotrol; Deterie d Deterie Deterie bal d d 3ê ê ë æ d ( P( d / ) + ) è ø 3Fbb û 11.i 11.i (.3ip( 11.i 15.6i / ) 1ip i) 3ê æ i ê è ø 3( 0.900i)( 15.6i) ë û d 3.00i 0.54 d 11.i bal Fb F Fb + < bal 0.900i i 0.900i Teio cotrol; iterate 63 Eqatio / Vale Iteratio 1 Iteratio Iteratio 3 d (i.) æ d P è 3 ø (i.) A æ F 1 d è 3 ø (i ) z ( P + A F ) F b ( d) z + zd z (i.) (i.) Tr #5, 4 total, oe i eac cell

17 S. K. Go Aociate Ic. Exaple: Pilater Deig ASD Exaple: Pilater Deig ASD 000 pi D+S P D+0.75(0.6W)+0.75S P D+0.6W P pi 0.6D+0.6W P Exaple: Pilater Deig SD Exaple: Pilater Deig SD Give: Noial 16 i. wide x 16 i. deep CU pilater; ' # 000 pi; Grade 60 bar i eac corer, ceter o cell; Eective eigt 4 ; Dead load o 9.6 ip ad ow load o 9.6 ip act at a eccetricit o 5. i. ( i. iide o ace); Factored wid load o 6 p (prere ad ctio) ad pli o.1 ip (e5. i.); Pilater paced at 16 o ceter; Wall i aed to pa orizotall betwee pilater; No tie. Reqired: Deterie reqired reiorcig ig tregt deig. Soltio: Load e5. i d11. i x Iide.0 i E 100i 16.1 Lateral Load w 0.6(6p)(16)50 lb/ 67 Vertical Spaig 0.9D + 1.0W At top o pilater: Fid locatio o axi oet ( 9.6) + 1.0(.1 ) ( 5.i. ) 3. i P P e 1 x w i 3.1ip i ( i) ( 4 ) 143.7i w i i (3.1 i) i w ( )( i) i Fid axial orce at ti poit. Iclde weigt o pilater. ( 1 )( 143.7i). P i Deig or P.7 ip, 361 i 17

18 S. K. Go Aociate Ic. Exaple: Pilater Deig SD Exaple: Pilater Deig SD Deterie a a d d 11.i [ P ( d / ) + ] ( 0. b) ( ) [.7( 11.i 15.6i / ) i] 11.i 0.9( 0.)(.0i)( 15.6i) 1.50i Deterie A 0. ba P / 0. A (.0i)( 15.6i)( 1.50i).7 / i 0.57i Reqired teel 0.57 i Ue #5 eac ace, A 0.6 i Total bar, 4#5, oe i eac cell Exaple: Pilater Deig ASD v SD: Pilater Deig q Siilar beavior to beore ASD ad SD cloe we allowable teio tre cotrol ASD ore coervative we allowable aor tre cotrol Le reiorceet reqired wit SD de to all dead load actor q SD deig eaier a teel a geerall ielded q Advatage to SD

19 S. K. Go Aociate Ic. Deig: Bearig Wall OOP Load Bearig Wall: OtoPlae Load OUTLINE Allowable Stre (Capter ) No ecodorder aali reqired Ue previo deig procedre Stregt Deig (Capter 9) Secod order aali reqired Sleder wall procedre oet agiicatio Secodorder aali Need to cec axi reiorceet liit Sleder Wall Procedre Sleder Wall Procedre Ae iple pport coditio. Ae ideigt oet i approxiatel axi oet Ae ior load over etire eigt Valid ol or te ollowig coditio: N O 0.05 # P ' No eigt liit Q N O 0.0 # P ' eigt liited b T 30 S L oet: w e + P + P d P P + P w P Factored loor load P w Factored wall load Delectio: 5 d 4E I 5 cr 5 d + 4E I < ( ) 4E I cr cr cr > cr Solve iltaeo liear eqatio: > cr w 5 4EI d e 5 crp + P + 4E cr 5P 1 4E I cr æ 1 1 I I è cr ø w e æ I ê + P + cr ë è I 5P 1 4E I cr cr 1 ø û < cr w e + P 5P 1 4E I 5 w e ê + P 4EI d ë û 5P 1 4E I

20 S. K. Go Aociate Ic. Sleder Wall Procedre oet agiicatio Procedre I æ P t p A + d è ø ( d c) cr + cr 3 bc 3 P ø For cetered bar: I A + ( d c) ( P / A + ) t p / Delectio Liit r I æ è A + P c 0.64 ' b 3 bc 3 cr + d Wat axial load, P, old be ed? Sgget ig allet vale o P. Calclated ig allowable tre load cobiatio Copleetar oet Firt Order oet w,0 Eqatio 97 1 P 1 P e p EI Pe e Eqatio 9 Eqatio 99 e 5 crp + P + 4E 5P 1 4E I cr æ 1 1 I I è cr ø Alwa Negative ~ 1 π J < cr : I e 0.75I cr : I e I cr 77 7 Exaple: Wid Load ASD Exaple: Wid Load ASD Give: i. CU ear wall; Grade 60 teel; Tpe S aor ceet ortar; # ' 000 pi; roo orce act o 3 i. wide bearig plate at edge o wall. Reqired: Reiorceet Soltio: Etiate reiorceet ~ wj J Tr 40 i. 0.15, d i /; 0.57 / Ligtweigt it: wall weigt 40 p 79 Croectio o top o wall Deterie eccetricit e 7.65i/ 1.0 i..1 i D 500 lb/ L r 400 lb/ W 360 lb/ 3 p Cec 0.6D+0.6W Fid orce at top o wall Fid orce at ideigt Fid oet at top o wall Fid oet at ideigt top ( ) 0.6( 0.36 ) + P Load Cob. P (ip/) P (ip/) top (/) (/) A (i ) 0.6D+0.6W D+0.6W ( )(.67 + ) P / 0.04 ( ) ( ) ( ) i i ( 0.03 )( 16 ) 1 w top Ue #4@ 40 i. (0.06 i /) Altog cloe to #4@4 (0.05i /), a wider pacig alo redce wall weigt (A 0.05i /) 0

21 S. K. Go Aociate Ic. Exaple: Wid Load ASD Exaple: Wid Load SD Saple Calclatio: 0.6D+0.6W 1. bal 0.31; d bal 1.19i.. Ae aor cotrol. Deterie d. Sice i. < 1.1 i. teio cotrol. 3. Iterate to id A. ( / d / 3) P tp z A Fd ( 1 / 3) ( P + A F ) F b ( d) z + zd z d d 3ê ê ë æ d è ø 3Fbb û 3.1i. 3.1i. 3ê æ ê ë è ø 1i. ( ) i 3( 0.900i)( 1 ) Eqatio / Vale Iteratio 1 Iteratio d (i.) (/) (i /) (i.) (i.) i. û Give: i. CU wall; Grade 60 teel; Tpe S aor ceet ortar; ' # 000 pi ; roo orce act o 3 i. wide bearig plate at edge o wall. Reqired: Reiorceet Soltio: Etiate reiorceet ~ wj a 0.19 i. A i / Tr 40 i. J Croectio o top o wall Deterie eccetricit e 7.65i/ 1.0 i..1 i. 16 D 500 lb/ L r 400 lb/ W 360 lb/ 3 p 1 Exaple: Wid Load SD Exaple: Wid Load SD Sar o Stregt Deig Load Cobiatio Axial Force (wall weigt i 40 p or 40 i. grot pacig) Load Cobiatio 0.9D+1.0W P (ip/) 0.9(0.5)+1.0(0.36) D+1.0W+0.5L r 1.(0.5)+1.0(0.36) +0.5(0.4) P w (ip/) 0.9(0.040)(.67+) (0.040)(.67+) 0.51 P Factored loor load; jt eccetricall applied load P w Factored wall load; iclde wall ad parapet weigt, od at ideigt o wall betwee pport ( ro botto) P (ip/) Fid odl o rptre; e liear iterpolatio betwee o grot ad ll grot Ugroted (Tpe S aor ceet): 51 pi Fll groted (Tpe S aor ceet): 153 pi æ 4 groted cell æ1 groted cell r 51 pi 71 5 cell + è ø è 5 cell ø Fid cr, cracig oet: Coetar allow iclio o axial load ( 153pi) pi Ue ii axial load (oce wall a craced, it a craced) cr 4 lb i i ( P / A + ) I ( 474 )/( 4. ) + 71pi)( ) r t / cr 7. ipi 3.1i ip Wall propertie deteried ro NCA TEK 141B Sectio Propertie o Cocrete aor Wall 1

22 S. K. Go Aociate Ic. Exaple: Wid Load SD Exaple: Wid Load SD Fid c Fid Fid I cr ( 60i) + (.0i) i A + P c 1i 0.64 ' b 0.64 E E I cr 9000i i æ P t p A + d è ø æ è i ( d c) i ø i 5 bc i ( 3.1i 0.65i) 1 + i 3 ( 0.65i) 3 P e i te oet at te top pport o te wall,,top. It iclde eccetric axial load ad wid load ro parapet., top Fid. w e 5 crp æ P + E I I 4 cr è ø 5P 1 4E I 0.03 cr ( ) ( )( )( 16 ) + + 4( 100i) 5( )( 16 ) æ144i 1 4 i ( i)( ) è 6 æ 1 è 337 ø 4 i (.67 ) w, parapetparapet P e ( i).1 1i i æ144i øè 1 ø Exaple: Wid Load SD Cec area o teel: Fid a Fid φ G i A + P / 0.06 a 0.0 b 0.0 æ ( P / + A ) i æ ( / ( 60i) ) ipi a d è ø ( 60i) ip i (.0i)( 1 ) / i 0.15i 3.1i è ø Exaple: Wid Load SD Cec Delectio: Do a qic cec wit SD Load Cobiatio 0.9D+1.0W w e + P + P d ( 16 ) d i. 1.D+1.0W+0.5L r d i d Copare OK Delectio Liit d (19i) 1. 34i OK Cec oter load cobiatio: 1.D+1.0W+0.5L r, 1.09 / ad φ 1.9 / 7 OK

23 S. K. Go Aociate Ic. Exaple: Wid Load SD Exaple: Wid Load SD Cec Delectio: Ue ASD Load Cobiatio Load Cobiatio D+0.6W 0.6D+0.6W P (/) (0.36) (0.5)+0.6(0.36) 0.04 P w (/) 40(.67+) (0.47) 0.56 P (/) c (i) I cr (i 4 /) top (/) δ (i) (/) (craced) (craced) Delectio Liit d (19i) 1. 34i OK Delectio, Saple Calclatio (D+0.6W): Replace actored load wit ervice load 5 w e æ I ê + P + cr 4E I cr ë è I d 5P 1 4E I ( ) i ( i)( 14.5 ) 0.066i. cr cr 1 øû ( 0.6)( 0.03 )( 16 ) ê êë ( )( 16 ) i ( i)( 14.5 ) i 1 Cec tat > cr ; / > / cr æ 14.5 è i 4 i 17i 1 3 øû Exaple: Wid Load SD ASD v SD: Bearig Wall Cec axi Reiorceet: etral axi i i ace ell P i jt dead load (.67+) 0.97/ r ax 0.64 æ 0.64 e P A è e + ae ø bd bd (.0i) æ è i ø 0.97 i ( ) 1 ( 3.1i) q ASD ad SD reqire approxiatel te ae aot o reiorceet or reaoabl ligtl loaded wall q SD reqire a ecodorder aali ad a cec o delectio q Advatage to ASD Iteretigl OOP loadig i were deiger oe e SD A 0.06 r i bd 1 ( 3.1i) OK

24 S. K. Go Aociate Ic. Sear Wall: Sear Sear Wall: IPlae Load OUTLINE 93 Allowable Stre (Capter ) F v ( F v + F v ) g 1 æ æ Fv ê ê ë Vd è è v øø û 1 æ æ Fv ê ê ë Vd è è v øø û Special Reiorced Sear Wall F F ( ) g ( ) g v æ A vf d F v 0. 5 è A ø P A 3 ( / ) 0. 5 v Vd v ( / ) ³1. 0 Vd v Iterpolate or 0.5 < (/Vd v ) < 1 P A 94 Stregt Deig (Capter 9) V ( V + V ) g 0. æ A è øû V ê v Vd v êë ( A v ) g ( A v ) g æ Av V 0. 5 d è ø v V 6 ( / Vdv ) 0. 5 V γ^ 0.75 partiall groted ear wall; 1.0 oterwie 4 ( / V d ) ³1. 0 æ V 4 æ 5 A è Vd 3 è v ø v g ø v P 0.5 < < 1.0 Vd v Sear Wall: axi Reiorceet Sear Wall: Sear Capacit Deig Special Reiorced Sear Wall Allowable Stre (Capter ) Special reiorced ear wall avig /(Vd) 1 ad P > 0.05 A r ax æ + è ø a 1.5 ordiar wall; all oter a 3 iterediate wall wit /(V d v ) 1 a 4 pecial wall wit /(V d v ) 1 Stregt Deig (Capter 9) Provide bodar eleet, or Liit reiorceet Bodar eleet ot reqired i: P 0.1 A etrical ectio g P.05 etrical ectio w 0 A g 1 V l AND OR V 3A 3 V l w Reiorceet liit: axi tre i teel o α Axial orce D+0.75L+0.55Q E Copreio reiorceet, wit or witot lateral tie, peritted to be iclded Allowable Stre ( ) Seiic deig load reqired to be icreaed b 1.5 or ear aor ear tre redced or pecial wall Stregt Deig ( ) Deig ear tregt, V, greater ta ear correpodig to 1.5 tie oial lexral tregt, (icreae ear at leat 1.39 tie) Except V eed ot be greater ta.5v. (doble ear)

25 S. K. Go Aociate Ic. Exaple: Sear Wall ASD Exaple: Sear Wall ASD Give: 10 ig x 16 log i. CU ear wall; Grade 60 teel, Tpe S ortar; ' # 000 pi; peripoed dead load o 1 ip/. Iplae eiic load o 100 ip. S DS 0.4 Reqired: Deig te ear wall; ordiar reiorced ear wall Soltio: Cec ig 0.6D+0.7E load cobiatio. Tr #6 i eac o lat 3 cell; Weigt o wall: [40 p(1)+()75p]10 700lb Ligtweigt it, grot at 40 i. o.c. 40 p; ll grot 75 p P (0.60.7(0.)(S DS ))D (0.60.7(0.)(0.4))(1/(16)+7.) 1.9 ip Fro iteractio diagra OK; treed to 90% o capacit 97 9 Exaple: Sear Wall ASD Exaple: Sear Wall ASD Calclate et area, A v, A.5i( 19i) 9(i)(7.6i.5i) 49i icldig groted cell. v + Sear ratio ( Vd ) ( V) /( Vd ) 10i /19i / v v Top o wall (critical locatio or ear): Deterie F v P (0.60.7(0.S DS ))D 0.544(1/)(16).70 ip 1 æ æ Fv ê êë è è 1 Vd v øø û P A 700lb [( ( 0.65) ) 000 pi ] pi 49i axi F v Sear tre æ æ æ Fv 5 3 Vd g è è v ø ø è 3 ø V A ( lb) i v. 4 v ( 5 ( 0.65) ) 000 pi pi pi OK Reqired teel tre Ue #5 bar i bod bea. Deterie pacig. Fv v / g Fv.4 pi / pi 4. 4 pi æ A F d v Fv 0.5 A Þ è ø 0.5Av Fd 0.5 A v ( 0.31i)( 3000 pi)( 1i) 4.4 pi( 49i ) 5.9i i{d/, 4 i.} i{94 i., 4 i.} 4 i. Code Ue #5 at 4 i. o.c

26 S. K. Go Aociate Ic. Exaple: Sear Wall ASD Exaple: Sear Wall ASD Give: 10 ig x 16 log i. CU ear wall; Grade 60 teel, Tpe S ortar; ' # 000 pi; peripoed dead load o 1 ip/. Iplae eiic load o 100 ip. S DS 0.4 Reqired: Deig te ear wall; pecial reiorced ear wall Soltio: Cec ig 0.6D+0.7E load cobiatio. Deig or 1.5V, or 1.5(70 ip) 105 ip (Sectio ) v (105 ip)/(49i ) 13.7 pi Bt, axi F v i 3. pi Fll grot wall Calclate et area, A v, icldig groted cell. Sear tre Deterie F v (pecial wall) Reqired teel tre V A Ue #5 bar i bod bea. Deterie pacig..( 19i. ) 1464 A v 7.65i i [ ( lb) ] i 700lb [( ( 0.65) ) 000 pi ] pi F 1 v i v v Fv pi pi 0.5A F d 0.5 F A 71. pi v 7 v ( 0.31i)( 3000 pi)( 1i) 16. i v 6 v 37.7 pi( 1494i ) Ue 16 i Exaple: Sear Wall ASD Exaple: Sear Wall ASD Sectio axi Reiorceet No eed to cec axi reiorceet ice ol eed to cec i: /(Vd v ) 1 ad /(Vd v ) 0.65 P > 0.05 A 0.05(000pi)(1464i ) 146 ip; P 1. ip I we eeded to cec axi reiorcig, do a ollow. 16.1( 000 pi) r ax æ æ pi + ( pi) è ø è 000 pi ø Precriptive Reiorceet Reqireet (7.3..6) i eac directio 0.00 total Vertical: 9(0.44i )/1464i Horizotal: 7(0.31i )/[10i(7.65i)] Total OK For ditribted reiorceet, te reiorceet ratio i obtaied a te total area o teio reiorceet divided b bd. Ae 6 bar i teio. r A bd ( i ) i.( 1i. ) OK

27 S. K. Go Aociate Ic. Exaple: Sear Wall SD Exaple: Sear Wall SD Give: 10 ig x 16 log i. CU ear wall; Grade 60 teel, Tpe S ortar; ' # 000 pi; peripoed dead load o 1 ip/. Iplae eiic load o 100 ip. S DS 0.4 Reqired: Deig te ear wall; ordiar reiorced ear wall Soltio: Cec ig 0.9D+1.0E load cobiatio. Tr #5 at ed ad 40 i. Weigt o wall: 40 p(10)(16) 6400 lb Ligtweigt it, grot at 40 i. o.c. 40 p P [0.9 0.(S DS )]D [0.9 0.(0.4)](1/(16)+6.4) 1.4 ip Fro iteractio diagra OK; treed to 97% o capacit Exaple: Sear Wall SD Exaple: Sear Wall SD Calclate et area, A v, icldig groted cell. axi V ( 19i) + 7(i)(7.6i.5i) 767 A v.5i i 4 æ V ê 5 Av 3 Vd g ë è v ø û 4 0. ê3 ë û ( 5 ( 0.65) )( 767i ) 000 pi ip 107 OK Top o wall (critical locatio or ear): Deterie φv V Reqired teel tregt æ æ ê A êë Vd è è v øø 0. Ue #5 bar i bod bea. Deterie pacig. P (0.90.S DS )D 0.(1/)(16) 13.1 ip 1ip [( ( 0.65) )( 767i ) 000 pi + 0.5( 13.1 )].4ip V V 100 V g 0. æ Av V 0.5 dv Þ è ø 0.5Av dv 0.5 V v + 0.5P û g ( 0.75) ( 0.31i)( 60i)( 19i) lb i{d/, 4 i.} i{94 i., 4 i.} 4 i. Code I tregt deig, ti proviio ol applie to bea ( (e)) Sgget tat ii pacig alo be applied to ear wall. 10.0i Ue #5 at 4 i. o.c. 7

28 S. K. Go Aociate Ic. Exaple: Sear Wall SD Exaple: Sear Wall SD Sear reiorceet reqireet ( ) Except at wall iterectio, te ed o a orizotal reiorcig bar eeded to ati ear tregt reqireet all be bet arod te edge vertical reiorcig bar wit a 10degree oo. At wall iterectio, orizotal reiorcig bar eeded to ati ear tregt reqireet all be bet arod te edge vertical reiorcig bar wit a 90degree tadard oo ad all exted orizotall ito te iterectig wall a ii ditace at leat eqal to te developet legt. Give: 10 ig x 16 log i. CU ear wall; Grade 60 teel, Tpe S ortar; ' # 000 pi; peripoed dead load o 1 ip/. Iplae eiic load (ro ASCE 710) o 100 ip. S DS 0.4 Reqired: Deig te ear wall; pecial reiorced ear wall Soltio: Cec ig 0.9D+1.0E load cobiatio. Sear capacit deig proviio (Sectio ) φv ear correpodig to 1.5. ii icreae i 1.5/ V eed ot exceed.5v Noral deig V V /φ V /0. 1.5V Icreae ear b a actor o Fll grot wall (ax φv wa 103 ip) A v 7.65i 1464i.( 19i. ) Exaple: Sear Wall SD Exaple: Sear Wall SD Previol, φ 10 ; 114 (P 1.4) ; Deig or 143 ip Bt wait, wall i ll groted. Wall weigt a icreaed to 75 p For P 3.0, ll groted, 117, Deig or 147 ip Bt wait, eed to cec load cobiatio o 1.D + 1.0E P [ (S DS )]D 35. ip, Deig or 160 ip Botto lie: a cage i wall will cage, wic will cage deig reqireet; alo eed to coider all load cobiatio Oe eaier to jt e V.5V. 111 Deterie φv V Reqired teel tregt æ æ ê A êë Vd è è v øø 0. Ue #5 bar i bod bea. Deterie pacig. 1ip [( ( 0.65) )( 1464i ) 000 pi ( ) ] 1000lb ip V V V æ Av V 0.5 dv Þ è ø 0.5Av dv 0.5 V v P û ( 0.31i)( 60i)( 19i) i (b) axi pacig o reiorcig o 1/3 legt, 1/3 eigt, or 4 i. Ue axi pacig o 1/3(eigt) 40 i. Ue #5 at 40 i. o.c. Uig ear ro 1.5

29 S. K. Go Aociate Ic. Exaple: Sear Wall SD Exaple: Sear Wall SD Uig ear ro V.5V Reqired teel tregt Ue #5 bar i bod bea. Deterie pacig. ( ) 50 V.5V Ue #5 at 3 i. o.c V V V Av d V v 0.5 ( 0.31i)( 60i)( 19i) i Precriptive Reiorceet Reqireet (7.3..6) i eac directio 0.00 total Vertical: 7(0.31i )/1464i Horizotal: 3(0.31i )/[10i(7.65i)] Total OK Exaple: Sear Wall SD Exaple: Sear Wall SD Sectio axi Reiorceet Sice /(V d v ) < 1, trai gradiet i baed o 1.5ε. Strai c/d, CU c/d, Cla 1.5ε ε ε c 0.446(1i.) 3. i. Calclate axial orce baed o c 3. i. Iclde copreio reiorceet φp 76 ip Ae a live load o 1 / D L Q E (1/ (1/))16 ip OK Sectio : axi reiorceet proviio o do ot appl i deiged b ti ectio (bodar eleet) Special bodar eleet ot reqired i: P geoetricall etrical ectio 0.1 A g 0.05 A g P geoetricall etrical ectio 1 V d v AND OR V 3 3A AND V d For or wall, /V d v < 1 P < 0.1ʹA g 0.1(.0i)(1464i ) 93 ip v OK

30 S. K. Go Aociate Ic. Copario o SD ad ASD ASD v SD: Sear Wall q SD provide igiicat avig i overtrig teel ot, i ot all, teel i SD i treed to. Stre i teel i ASD varie liearl q SD geerall reqire abot ae ear teel or ordiar wall; oe avig or pecial wall q Advatage to SD Bt, axi reiorceet reqireet ca oetie be ard to eet; deiger te witc to ASD, wic reqire ore teel. Ti ae o ee. SD reqire 10 oo. Soe ti ard to cotrct, bt ot reall. Soe deiger avoid SD olel or ti reao ASD v SD: Fial Otcoe Allowable Stre Deig Stregt Deig

Combined Flexure and Axial Load

Combined Flexure and Axial Load Cobied Flexre ad Axial Load teractio Diagra Solidl groted bearig wall Partiall groted bearig wall Bearig Wall: Sleder Wall Deig Procedre Stregt Serviceabilit Delectio Exaple Pilater Bearig ad Cocetrated

More information

Combined Flexure and Axial Load

Combined Flexure and Axial Load Cobied Flexure ad Axial Load Iteractio Diagra Partiall grouted bearig wall Bearig Wall: Sleder Wall Deig Procedure Stregth Serviceabilit Delectio Moet Magiicatio Exaple Pilater Bearig ad Cocetrated Load

More information

Unreinforced Masonry Design. SD Interaction Diagram

Unreinforced Masonry Design. SD Interaction Diagram Ureiforced asory Desig Code ectios, 9. 9.. cope 9.. Desig criteria 9.. Desig assptios 9..4 Noial flexral ad axial stregt 9..5 xial tesio 9..6 Noial sear stregt Key desig eqatio: f t c I Ureiforced asory

More information

Allowable Stress Design. Flexural Members - Allowable Stress Design. Example - Masonry Beam. Allowable Stress Design. k 3.

Allowable Stress Design. Flexural Members - Allowable Stress Design. Example - Masonry Beam. Allowable Stress Design. k 3. Loa Coiatio llowale Stre Deig () D () D + L () D + (L r or S or R) (4) D + 0.75L + 0.75(L r or S or R) (5) D + (0.6W or 0.7E) (6a) D + 0.75L + 0.75(0.6W) + 0.75(L r or S or R) (6) D + 0.75L + 0.75(0.7E)

More information

8.6 Order-Recursive LS s[n]

8.6 Order-Recursive LS s[n] 8.6 Order-Recurive LS [] Motivate ti idea wit Curve Fittig Give data: 0,,,..., - [0], [],..., [-] Wat to fit a polyomial to data.., but wic oe i te rigt model?! Cotat! Quadratic! Liear! Cubic, Etc. ry

More information

Case Study in Steel adapted from Structural Design Guide, Hoffman, Gouwens, Gustafson & Rice., 2 nd ed.

Case Study in Steel adapted from Structural Design Guide, Hoffman, Gouwens, Gustafson & Rice., 2 nd ed. Case Std i Steel adapted from Strctral Desig Gide, Hoffma, Gowes, Gstafso & Rice., d ed. Bildig descriptio The bildig is a oe-stor steel strctre, tpical of a office bildig. The figre shows that it has

More information

Case Study in Steel adapted from Structural Design Guide, Hoffman, Gouwens, Gustafson & Rice., 2 nd ed.

Case Study in Steel adapted from Structural Design Guide, Hoffman, Gouwens, Gustafson & Rice., 2 nd ed. ARCH 631 Note Set F014ab Case Std i Steel adapted from Strctral Desig Gide, Hoffma, Gowes, Gstafso & Rice., d ed. Bildig descriptio The bildig is a oe-stor steel strctre, tpical of a office bildig. The

More information

Combined Flexure and Axial Load. Concentric Axial Compression ( )

Combined Flexure and Axial Load. Concentric Axial Compression ( ) Cobid Flxr ad xial Load tractio Diagra Solidl grotd barig wall artiall grotd barig wall Barig Wall: Sldr Wall Dig rocdr Strgt Srvicabilit Dlctio Exapl ilatr Barig ad Coctratd Load rtrd aor Cobid Flxral

More information

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS So far i the tudie of cotrol yte the role of the characteritic equatio polyoial i deteriig the behavior of the yte ha bee highlighted. The root of that polyoial are the pole of the cotrol yte, ad their

More information

Flexural Members - Strength Design. Flexural Members - Strength Design

Flexural Members - Strength Design. Flexural Members - Strength Design Flexral Meber - Strength Deign 5.1. Effectie copreie with per bar 5. Bea 5..1 General bea eign 5.. Deep bea 9.1.4 Strength rection factor 9.1.9 Material propertie 9. Reinforce aonry 9.. Deign aption 9...5

More information

X. Perturbation Theory

X. Perturbation Theory X. Perturbatio Theory I perturbatio theory, oe deals with a ailtoia that is coposed Ĥ that is typically exactly solvable of two pieces: a referece part ad a perturbatio ( Ĥ ) that is assued to be sall.

More information

Partial Differential Equations

Partial Differential Equations EE 84 Matematical Metods i Egieerig Partial Differetial Eqatios Followig are some classical partial differetial eqatios were is assmed to be a fctio of two or more variables t (time) ad y (spatial coordiates).

More information

Flexural Members - Strength Design. Beams Behavior

Flexural Members - Strength Design. Beams Behavior Flexral Meber - Strength Deign 0.8f c a C=0.8f (b)(0.8c) h Grot -a/ A Maonry Unit > y f y T=A f y A b b Strain Stree Aption: (9..) 1. Plane ection reain plane. All aonry in tenion i neglecte. Perfect bon

More information

Coordinate Systems. Things to think about:

Coordinate Systems. Things to think about: Coordiate Sstems There are 3 coordiate sstems that a compter graphics programmer is most cocered with: the Object Coordiate Sstem (OCS), the World Coordiate Sstem (WCS), ad the Camera Coordiate Sstem (CCS).

More information

d y f f dy Numerical Solution of Ordinary Differential Equations Consider the 1 st order ordinary differential equation (ODE) . dx

d y f f dy Numerical Solution of Ordinary Differential Equations Consider the 1 st order ordinary differential equation (ODE) . dx umerical Solutio o Ordiar Dieretial Equatios Cosider te st order ordiar dieretial equatio ODE d. d Te iitial coditio ca be tae as. Te we could use a Talor series about ad obtai te complete solutio or......!!!

More information

ALLOCATING SAMPLE TO STRATA PROPORTIONAL TO AGGREGATE MEASURE OF SIZE WITH BOTH UPPER AND LOWER BOUNDS ON THE NUMBER OF UNITS IN EACH STRATUM

ALLOCATING SAMPLE TO STRATA PROPORTIONAL TO AGGREGATE MEASURE OF SIZE WITH BOTH UPPER AND LOWER BOUNDS ON THE NUMBER OF UNITS IN EACH STRATUM ALLOCATING SAPLE TO STRATA PROPORTIONAL TO AGGREGATE EASURE OF SIZE WIT BOT UPPER AND LOWER BOUNDS ON TE NUBER OF UNITS IN EAC STRATU Lawrece R. Erst ad Cristoper J. Guciardo Erst_L@bls.gov, Guciardo_C@bls.gov

More information

SOLUTION TO CHAPTER 4 EXERCISES: SLURRY TRANSPORT

SOLUTION TO CHAPTER 4 EXERCISES: SLURRY TRANSPORT SOLUTION TO CHAPTER 4 EXERCISES: SLURRY TRANSPORT EXERCISE 4.1 Sales o a osate slurry ixture are aalyzed i a lab. Te ollowig data describe te relatiosi betwee te sear stress ad te sear rate: 1 Sear Rate,γ&

More information

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing Commet o Dicuio Sheet 18 ad Workheet 18 ( 9.5-9.7) A Itroductio to Hypothei Tetig Dicuio Sheet 18 A Itroductio to Hypothei Tetig We have tudied cofidece iterval for a while ow. Thee are method that allow

More information

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Chapter 9. Key Ideas Hypothesis Test (Two Populations) Chapter 9 Key Idea Hypothei Tet (Two Populatio) Sectio 9-: Overview I Chapter 8, dicuio cetered aroud hypothei tet for the proportio, mea, ad tadard deviatio/variace of a igle populatio. However, ofte

More information

CHAPTER 11 Limits and an Introduction to Calculus

CHAPTER 11 Limits and an Introduction to Calculus CHAPTER Limits ad a Itroductio to Calculus Sectio. Itroductio to Limits................... 50 Sectio. Teciques for Evaluatig Limits............. 5 Sectio. Te Taget Lie Problem................. 50 Sectio.

More information

What is Uniform flow (normal flow)? Uniform flow means that depth (and velocity) remain constant over a certain reach of the channel.

What is Uniform flow (normal flow)? Uniform flow means that depth (and velocity) remain constant over a certain reach of the channel. Hydraulic Lecture # CWR 4 age () Lecture # Outlie: Uiform flow i rectagular cael (age 7-7) Review for tet Aoucemet: Wat i Uiform flow (ormal flow)? Uiform flow mea tat det (ad velocity) remai cotat over

More information

Statistics Parameters

Statistics Parameters Saplig Ditributio & Cofidece Iterval Etiator Statitical Iferece Etiatio Tetig Hypothei Statitic Ued to Etiate Populatio Paraeter Statitic Saple Mea, Saple Variace, Saple Proportio, Paraeter populatio ea

More information

Section 5. Gaussian Imagery

Section 5. Gaussian Imagery OPTI-01/0 Geoetrical ad Istruetal Optics 5-1 Sectio 5 Gaussia Iagery Iagig Paraxial optics provides a sipliied etodology to deterie ray pats troug optical systes. Usig tis etod, te iage locatio or a geeral

More information

Calculation Example. Strengthening for flexure

Calculation Example. Strengthening for flexure 01-08-1 Strengthening or lexure 1 Lat 1 L Sektion 1-1 (Skala :1) be h hw A bw FRP The beam i a part o a lab in a parking garage and need to be trengthened or additional load. Simply upported with L=8.0

More information

4.8,.13 Friction and Buoyancy & Suction

4.8,.13 Friction and Buoyancy & Suction Mo. Tue We. Lab ri. 4.8,.13 rictio a Buoac & Suctio 5.1-.5 Rate of Chae & Copoet Quiz 4 L4b: Buoac, Review for Ea 1(Ch 1-4) Ea 1 (Ch 1-4) RE 4. EP 4, HW4: Ch 4 Pr 46, 50, 81, 88 & CP RE 5.a bri laptop,

More information

Physics 6C. De Broglie Wavelength Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. De Broglie Wavelength Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Pyic 6C De Broglie Wavelengt Uncertainty Principle De Broglie Wavelengt Bot ligt and atter ave bot particle and wavelike propertie. We can calculate te wavelengt of eiter wit te ae forula: p v For large

More information

Geodynamics Lecture 11 Brittle deformation and faulting

Geodynamics Lecture 11 Brittle deformation and faulting Geodamic Lecture 11 Brittle deformatio ad faultig Lecturer: David Whipp david.whipp@heliki.fi! 7.10.2014 Geodamic www.heliki.fi/liopito 1 Goal of thi lecture Preet mai brittle deformatio mechaim()! Dicu

More information

5.1 The derivative or the gradient of a curve. Definition and finding the gradient from first principles

5.1 The derivative or the gradient of a curve. Definition and finding the gradient from first principles Capter 5: Dierentiation In tis capter, we will study: 51 e derivative or te gradient o a curve Deinition and inding te gradient ro irst principles 5 Forulas or derivatives 5 e equation o te tangent line

More information

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY Orietal J. ath., Volue 1, Nuber, 009, Page 101-108 009 Orietal Acadeic Publiher PRIARY DECOPOSITION, ASSOCIATED PRIE IDEALS AND GABRIEL TOPOLOGY. EL HAJOUI, A. IRI ad A. ZOGLAT Uiverité ohaed V aculté

More information

+ve 10 N. Note we must be careful about writing If mass is not constant: dt dt dt

+ve 10 N. Note we must be careful about writing If mass is not constant: dt dt dt Force /N Moet is defied as the prodct of ass ad elocity. It is therefore a ector qatity. A ore geeral ersio of Newto s Secod Law is that force is the rate of chage of oet. I the absece of ay exteral force,

More information

Inferences of Type II Extreme Value. Distribution Based on Record Values

Inferences of Type II Extreme Value. Distribution Based on Record Values Applied Matheatical Sciece, Vol 7, 3, o 7, 3569-3578 IKARI td, www-hikarico http://doiorg/988/a33365 Ierece o Tpe II tree Value Ditributio Baed o Record Value M Ahaullah Rider Uiverit, awreceville, NJ,

More information

Computation Sessional. Numerical Differentiation and Integration

Computation Sessional. Numerical Differentiation and Integration CE 6: Egieerig Computatio Sessioal Numerical Dieretiatio ad Itegratio ti di ad gradiet commad di() Returs te dierece betwee adjacet elemets i. Typically used or uequally spaced itervals = gradiet(, ) Determies

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Accurac, Stabilit ad Sstems of Equatios November 0, 07 Numerical Solutios of Ordiar Differetial Equatios Accurac, Stabilit ad Sstems of Equatios Larr Caretto Mecaical Egieerig 0AB Semiar i Egieerig Aalsis

More information

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed. ] z-tet for the mea, μ If the P-value i a mall or maller tha a pecified value, the data are tatitically igificat at igificace level. Sigificace tet for the hypothei H 0: = 0 cocerig the ukow mea of a populatio

More information

Optimal Estimator for a Sample Set with Response Error. Ed Stanek

Optimal Estimator for a Sample Set with Response Error. Ed Stanek Optial Estiator for a Saple Set wit Respose Error Ed Staek Itroductio We develop a optial estiator siilar to te FP estiator wit respose error tat was cosidered i c08ed63doc Te first 6 pages of tis docuet

More information

ANSWER KEY WITH SOLUTION PAPER - 2 MATHEMATICS SECTION A 1. B 2. B 3. D 4. C 5. B 6. C 7. C 8. B 9. B 10. D 11. C 12. C 13. A 14. B 15.

ANSWER KEY WITH SOLUTION PAPER - 2 MATHEMATICS SECTION A 1. B 2. B 3. D 4. C 5. B 6. C 7. C 8. B 9. B 10. D 11. C 12. C 13. A 14. B 15. TARGET IIT-JEE t [ACCELERATION] V0 to V BATCH ADVANCED TEST DATE : - 09-06 ANSWER KEY WITH SOLUTION PAPER - MATHEMATICS SECTION A. B. B. D. C 5. B 6. C 7. C 8. B 9. B 0. D. C. C. A. B 5. C 6. D 7. A 8.

More information

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8 CS 15 Fall 23, Lecture 8 Lecture 8: Capacitor ad PN Juctio Prof. Nikejad Lecture Outlie Review of lectrotatic IC MIM Capacitor No-Liear Capacitor PN Juctio Thermal quilibrium lectrotatic Review 1 lectric

More information

Example 1. Examples for walls are available on our Web page: Columns

Example 1. Examples for walls are available on our Web page:   Columns Portlan Cement Association Page 1 o 9 Te ollowing examples illustrate te esign metos presente in te article Timesaving Design Ais or Reinorce Concrete, Part 3: an Walls, by Davi A. Fanella, wic appeare

More information

m = Statistical Inference Estimators Sampling Distribution of Mean (Parameters) Sampling Distribution s = Sampling Distribution & Confidence Interval

m = Statistical Inference Estimators Sampling Distribution of Mean (Parameters) Sampling Distribution s = Sampling Distribution & Confidence Interval Saplig Ditributio & Cofidece Iterval Uivariate Aalyi for a Nueric Variable (or a Nueric Populatio) Statitical Iferece Etiatio Tetig Hypothei Weight N ( =?, =?) 1 Uivariate Aalyi for a Categorical Variable

More information

LINEARIZATION OF NONLINEAR EQUATIONS By Dominick Andrisani. dg x. ( ) ( ) dx

LINEARIZATION OF NONLINEAR EQUATIONS By Dominick Andrisani. dg x. ( ) ( ) dx LINEAIZATION OF NONLINEA EQUATIONS By Domiick Adrisai A. Liearizatio of Noliear Fctios A. Scalar fctios of oe variable. We are ive the oliear fctio (). We assme that () ca be represeted si a Taylor series

More information

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w:

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w: Stat 400, ectio 7. Large Sample Cofidece Iterval ote by Tim Pilachowki a Large-Sample Two-ided Cofidece Iterval for a Populatio Mea ectio 7.1 redux The poit etimate for a populatio mea µ will be a ample

More information

Application of Laplace Decomposition Method to Solve Nonlinear Coupled Partial Differential Equations

Application of Laplace Decomposition Method to Solve Nonlinear Coupled Partial Differential Equations World Applied Sciece Joral 9 (Special Ie of Applied Math): 3-9, ISSN 88-495 IDOSI Pblicatio, Applicatio of Laplace Decopoitio Method to Sole Noliear Copled Partial Differetial Eqatio Majid Kha, M. Hai,

More information

Analysis of Analytical and Numerical Methods of Epidemic Models

Analysis of Analytical and Numerical Methods of Epidemic Models Iteratioal Joural of Egieerig Reearc ad Geeral Sciece Volue, Iue, Noveber-Deceber, 05 ISSN 09-70 Aalyi of Aalytical ad Nuerical Metod of Epideic Model Pooa Kuari Aitat Profeor, Departet of Mateatic Magad

More information

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS ME 40 MECHANICAL ENGINEERING REGRESSION ANALYSIS Regreio problem deal with the relatiohip betwee the frequec ditributio of oe (depedet) variable ad aother (idepedet) variable() which i (are) held fied

More information

CS 70 Second Midterm 7 April NAME (1 pt): SID (1 pt): TA (1 pt): Name of Neighbor to your left (1 pt): Name of Neighbor to your right (1 pt):

CS 70 Second Midterm 7 April NAME (1 pt): SID (1 pt): TA (1 pt): Name of Neighbor to your left (1 pt): Name of Neighbor to your right (1 pt): CS 70 Secod Midter 7 April 2011 NAME (1 pt): SID (1 pt): TA (1 pt): Nae of Neighbor to your left (1 pt): Nae of Neighbor to your right (1 pt): Istructios: This is a closed book, closed calculator, closed

More information

The Advection-Diffusion equation!

The Advection-Diffusion equation! ttp://www.d.edu/~gtryggva/cf-course/! Te Advectio-iffusio equatio! Grétar Tryggvaso! Sprig 3! Navier-Stokes equatios! Summary! u t + u u x + v u y = P ρ x + µ u + u ρ y Hyperbolic part! u x + v y = Elliptic

More information

Introduction to Optimization, DIKU Monday 19 November David Pisinger. Duality, motivation

Introduction to Optimization, DIKU Monday 19 November David Pisinger. Duality, motivation Itroductio to Optiizatio, DIKU 007-08 Moday 9 Noveber David Pisiger Lecture, Duality ad sesitivity aalysis Duality, shadow prices, sesitivity aalysis, post-optial aalysis, copleetary slackess, KKT optiality

More information

The Binomial Multi- Section Transformer

The Binomial Multi- Section Transformer 4/4/26 The Bioial Multisectio Matchig Trasforer /2 The Bioial Multi- Sectio Trasforer Recall that a ulti-sectio atchig etwork ca be described usig the theory of sall reflectios as: where: ( ω ) = + e +

More information

The Performance of Feedback Control Systems

The Performance of Feedback Control Systems The Performace of Feedbac Cotrol Sytem Objective:. Secify the meaure of erformace time-domai the firt te i the deig roce Percet overhoot / Settlig time T / Time to rie / Steady-tate error e. ut igal uch

More information

Fig. 1: Streamline coordinates

Fig. 1: Streamline coordinates 1 Equatio of Motio i Streamlie Coordiate Ai A. Soi, MIT 2.25 Advaced Fluid Mechaic Euler equatio expree the relatiohip betwee the velocity ad the preure field i ivicid flow. Writte i term of treamlie coordiate,

More information

Intermediate Math Circles November 5, 2008 Geometry II

Intermediate Math Circles November 5, 2008 Geometry II 1 Univerity of Waterloo Faculty of Matematic Centre for Education in Matematic and Computing Intermediate Mat Circle November 5, 2008 Geometry II Geometry 2-D Figure Two-dimenional ape ave a perimeter

More information

Lecture 19. Curve fitting I. 1 Introduction. 2 Fitting a constant to measured data

Lecture 19. Curve fitting I. 1 Introduction. 2 Fitting a constant to measured data Lecture 9 Curve fittig I Itroductio Suppose we are preseted with eight poits of easured data (x i, y j ). As show i Fig. o the left, we could represet the uderlyig fuctio of which these data are saples

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Structural Eurocodes EN 1995 Design of Timber Structures

Structural Eurocodes EN 1995 Design of Timber Structures Structural Eurocoes EN 995 Design o Tiber Structures John J Murph Chartere Engineer EN 995-- Design o Tiber Structures General Coon Rules an Rules or Builings Liit state esign Tiber Properties IS-EN 338:

More information

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Sigal & Sytem Prof. Mark Fowler Note Set #8 C-T Sytem: Laplace Traform Solvig Differetial Equatio Readig Aigmet: Sectio 6.4 of Kame ad Heck / Coure Flow Diagram The arrow here how coceptual flow

More information

6.4 Binomial Coefficients

6.4 Binomial Coefficients 64 Bioial Coefficiets Pascal s Forula Pascal s forula, aed after the seveteeth-cetury Frech atheaticia ad philosopher Blaise Pascal, is oe of the ost faous ad useful i cobiatorics (which is the foral ter

More information

too many conditions to check!!

too many conditions to check!! Vector Spaces Aioms of a Vector Space closre Defiitio : Let V be a o empty set of vectors with operatios : i. Vector additio :, v є V + v є V ii. Scalar mltiplicatio: li є V k є V where k is scalar. The,

More information

) is a square matrix with the property that for any m n matrix A, the product AI equals A. The identity matrix has a ii

) is a square matrix with the property that for any m n matrix A, the product AI equals A. The identity matrix has a ii square atrix is oe that has the sae uber of rows as colus; that is, a atrix. he idetity atrix (deoted by I, I, or [] I ) is a square atrix with the property that for ay atrix, the product I equals. he

More information

Continuous Random Variables: Conditioning, Expectation and Independence

Continuous Random Variables: Conditioning, Expectation and Independence Cotiuous Radom Variables: Coditioig, Expectatio ad Idepedece Berli Che Departmet o Computer ciece & Iormatio Egieerig Natioal Taiwa Normal Uiversit Reerece: - D.. Bertsekas, J. N. Tsitsiklis, Itroductio

More information

TUTORIAL 6. Review of Electrostatic

TUTORIAL 6. Review of Electrostatic TUTOIAL 6 eview of Electrotatic Outlie Some mathematic Coulomb Law Gau Law Potulatio for electrotatic Electric potetial Poio equatio Boudar coditio Capacitace Some mathematic Del operator A operator work

More information

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions 3.85 Proble Set 6 Radiation, Intro to Fluid Flow Solution. Radiation in Zirconia Phyical Vapor Depoition (5 (a To calculate thi viewfactor, we ll let S be the liquid zicronia dic and S the inner urface

More information

Binomial transform of products

Binomial transform of products Jauary 02 207 Bioial trasfor of products Khristo N Boyadzhiev Departet of Matheatics ad Statistics Ohio Norther Uiversity Ada OH 4580 USA -boyadzhiev@ouedu Abstract Give the bioial trasfors { b } ad {

More information

Lecture 11. Solution of Nonlinear Equations - III

Lecture 11. Solution of Nonlinear Equations - III Eiciecy o a ethod Lecture Solutio o Noliear Equatios - III The eiciecy ide o a iterative ethod is deied by / E r r: rate o covergece o the ethod : total uber o uctios ad derivative evaluatios at each step

More information

Some Properties of The Normalizer of o (N) on Graphs

Some Properties of The Normalizer of o (N) on Graphs Jornal of te Applied Matematic Statitic and Informatic (JAMSI) 4 (008) o Some Propertie of Te ormalizer of o () on Grap BAHADIR O GULER AD SERKA KADER Abtract In ti paper we give ome propertie of te normalizer

More information

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49 C22.0103 Sprig 2011 Homework 7 olutio 1. Baed o a ample of 50 x-value havig mea 35.36 ad tadard deviatio 4.26, fid a 95% cofidece iterval for the populatio mea. SOLUTION: The 95% cofidece iterval for the

More information

Outline. Review Two Space Dimensions. Review Properties of Solutions. Review Algorithms. Finite-difference Grid

Outline. Review Two Space Dimensions. Review Properties of Solutions. Review Algorithms. Finite-difference Grid Nmeric soltios o elliptic PDEs March 5, 009 Nmerical Soltios o Elliptic Eqatios Larr Caretto Mechaical Egieerig 50B Semiar i Egieerig alsis March 5, 009 Otlie Review last class Nmerical soltio o elliptic

More information

A string of not-so-obvious statements about correlation in the data. (This refers to the mechanical calculation of correlation in the data.

A string of not-so-obvious statements about correlation in the data. (This refers to the mechanical calculation of correlation in the data. STAT-UB.003 NOTES for Wedesday 0.MAY.0 We will use the file JulieApartet.tw. We ll give the regressio of Price o SqFt, show residual versus fitted plot, save residuals ad fitted. Give plot of (Resid, Price,

More information

SHEAR LAG MODELLING OF THERMAL STRESSES IN UNIDIRECTIONAL COMPOSITES

SHEAR LAG MODELLING OF THERMAL STRESSES IN UNIDIRECTIONAL COMPOSITES ORA/POSER REFERENCE: ICF00374OR SHEAR AG MODEING OF HERMA SRESSES IN UNIDIRECIONA COMPOSIES Chad M. adis Departet o Mechaical Egieerig ad Materials Sciece MS 3 Rice Uiversity P.O. Box 89 Housto X 7705

More information

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2 Tetig Hypothee COMPARISONS INVOLVING TWO SAMPLE MEANS Two type of hypothee:. H o : Null Hypothei - hypothei of o differece. or 0. H A : Alterate Hypothei hypothei of differece. or 0 Two-tail v. Oe-tail

More information

Concept of Reynolds Number, Re

Concept of Reynolds Number, Re Concept of Reynold Nuber, Re Ignore Corioli and Buoyancy and forcing Acceleration Advection Preure Gradient Friction I II III IV u u 1 p i i u ( f u ) b + u t x x x j i i i i i i U U U? U L L If IV <

More information

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes Explicit cheme So far coidered a fully explicit cheme to umerically olve the diffuio equatio: T + = ( )T + (T+ + T ) () with = κ ( x) Oly table for < / Thi cheme i ometime referred to a FTCS (forward time

More information

PHYSICS 151 Notes for Online Lecture 2.3

PHYSICS 151 Notes for Online Lecture 2.3 PHYSICS 151 Note for Online Lecture.3 riction: The baic fact of acrocopic (everda) friction are: 1) rictional force depend on the two aterial that are liding pat each other. bo liding over a waed floor

More information

CHAPTER 1: PEREVIEW. 1. Nature of Process Control Problem CLIENT HARDWARE. LEVEL-6 Planning. LEVEL-5 Scheduling. LEVEL-4 Real-Time Optimization

CHAPTER 1: PEREVIEW. 1. Nature of Process Control Problem CLIENT HARDWARE. LEVEL-6 Planning. LEVEL-5 Scheduling. LEVEL-4 Real-Time Optimization CHPER : PEREVIEW. Nature o Proe Cotrol Proble CLIEN IMERME CIVIY HRDWRE Upper level aageet Week-Mot LEVEL-6 Plaig Corporate oplex etwork Plat ager Da-Week LEVEL-5 Sedulig Platwide Ioratio te Proe Egieer

More information

STA 4032 Final Exam Formula Sheet

STA 4032 Final Exam Formula Sheet Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

More information

B U I L D I N G D E S I G N

B U I L D I N G D E S I G N B U I L D I N G D E S I G N 10.1 DESIGN OF SLAB P R I O D E E P C H O W D H U R Y C E @ K 8. 0 1 7 6 9 4 4 1 8 3 DESIGN BY COEFFICIENT METHOD Loads: DL = 150 pc LL = 85 pc Material Properties: c = 3000

More information

Birth-Death Processes. Outline. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Relationship Among Stochastic Processes.

Birth-Death Processes. Outline. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Relationship Among Stochastic Processes. EEC 686/785 Modelig & Perforace Evaluatio of Couter Systes Lecture Webig Zhao Deartet of Electrical ad Couter Egieerig Clevelad State Uiversity webig@ieee.org based o Dr. Raj jai s lecture otes Relatioshi

More information

Masonry Design. = calculated compressive stress in masonry f. = masonry design compressive stress f

Masonry Design. = calculated compressive stress in masonry f. = masonry design compressive stress f ARCH 614 Note Set 7.1 S014bn Monry Deign Nottion: A = ne or re A n = net re, equl to the gro re ubtrcting ny reinorceent A nv = net her re o onry A = re o teel reinorceent in onry deign A t = re o teel

More information

Another Look at Estimation for MA(1) Processes With a Unit Root

Another Look at Estimation for MA(1) Processes With a Unit Root Aother Look at Etimatio for MA Procee With a Uit Root F. Jay Breidt Richard A. Davi Na-Jug Hu Murray Roeblatt Colorado State Uiverity Natioal Tig-Hua Uiverity U. of Califoria, Sa Diego http://www.tat.colotate.edu/~rdavi/lecture

More information

( ) ( s ) Answers to Practice Test Questions 4 Electrons, Orbitals and Quantum Numbers. Student Number:

( ) ( s ) Answers to Practice Test Questions 4 Electrons, Orbitals and Quantum Numbers. Student Number: Anwer to Practice Tet Quetion 4 Electron, Orbital Quantu Nuber. Heienberg uncertaint principle tate tat te preciion of our knowledge about a particle poition it oentu are inverel related. If we ave ore

More information

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1 ROOT LOCUS TECHNIQUE 93 should be desiged differetly to eet differet specificatios depedig o its area of applicatio. We have observed i Sectio 6.4 of Chapter 6, how the variatio of a sigle paraeter like

More information

Conditions for equilibrium (both translational and rotational): 0 and 0

Conditions for equilibrium (both translational and rotational): 0 and 0 Leon : Equilibriu, Newton econd law, Rolling, Angular Moentu (Section 8.3- Lat tie we began dicuing rotational dynaic. We howed that the rotational inertia depend on the hape o the object and the location

More information

Chapter 8 Deflection. Structural Mechanics 2 Dept of Architecture

Chapter 8 Deflection. Structural Mechanics 2 Dept of Architecture Chapter 8 Deflection Structural echanics Dept of rchitecture Outline Deflection diagras and the elastic curve Elastic-bea theory The double integration ethod oent-area theores Conjugate-bea ethod 8- Deflection

More information

The Binomial Multi-Section Transformer

The Binomial Multi-Section Transformer 4/15/2010 The Bioial Multisectio Matchig Trasforer preset.doc 1/24 The Bioial Multi-Sectio Trasforer Recall that a ulti-sectio atchig etwork ca be described usig the theory of sall reflectios as: where:

More information

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd, Applied Mathematical Sciece Vol 9 5 o 3 7 - HIKARI Ltd wwwm-hiaricom http://dxdoiorg/988/am54884 O Poitive Defiite Solutio of the Noliear Matrix Equatio * A A I Saa'a A Zarea* Mathematical Sciece Departmet

More information

Exact Solutions for Fixed-Fixed Anisotropic Beams under Uniform Load by Using Maple

Exact Solutions for Fixed-Fixed Anisotropic Beams under Uniform Load by Using Maple Eact Solution for Fied-Fied Aniotropic Beam under Uniform Load b Uing Maple Department of Civil Engineering, Ho Ci Min Cit Univerit of Arcitecture, Vietnam ABSTRACT Te approimate olution of tree and diplacement

More information

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS. If g( is cotiuous i [a,b], te uder wat coditio te iterative (or iteratio metod = g( as a uique solutio i [a,b]? '( i [a,b].. Wat

More information

gravity force buoyancy force drag force where p density of particle density of fluid A cross section perpendicular to the direction of motion

gravity force buoyancy force drag force where p density of particle density of fluid A cross section perpendicular to the direction of motion orce acting on the ettling article SEDIMENTATION gravity force boyancy force drag force In cae of floating: their i zero. f k V g Vg f A where denity of article denity of flid A cro ection erendiclar to

More information

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions M7 Chapter 9 Sectio 1 OBJECTIVES Tet two mea with idepedet ample whe populatio variace are kow. Tet two variace with idepedet ample. Tet two mea with idepedet ample whe populatio variace are equal Tet

More information

Isolated Word Recogniser

Isolated Word Recogniser Lecture 5 Iolated Word Recogitio Hidde Markov Model of peech State traitio ad aligmet probabilitie Searchig all poible aligmet Dyamic Programmig Viterbi Aligmet Iolated Word Recogitio 8. Iolated Word Recogier

More information

The z Transform. The Discrete LTI System Response to a Complex Exponential

The z Transform. The Discrete LTI System Response to a Complex Exponential The Trasform The trasform geeralies the Discrete-time Forier Trasform for the etire complex plae. For the complex variable is sed the otatio: jω x+ j y r e ; x, y Ω arg r x + y {} The Discrete LTI System

More information

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( ) STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN Suppoe that we have a ample of meaured value x1, x, x3,, x of a igle uow quatity. Aumig that the meauremet are draw from a ormal ditributio

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

AVERAGE MARKS SCALING

AVERAGE MARKS SCALING TERTIARY INSTITUTIONS SERVICE CENTRE Level 1, 100 Royal Street East Perth, Wester Australia 6004 Telephoe (08) 9318 8000 Facsiile (08) 95 7050 http://wwwtisceduau/ 1 Itroductio AVERAGE MARKS SCALING I

More information

Chapter 2: Numerical Methods

Chapter 2: Numerical Methods Chapter : Numerical Methods. Some Numerical Methods for st Order ODEs I this sectio, a summar of essetial features of umerical methods related to solutios of ordiar differetial equatios is give. I geeral,

More information

Introduction. Question: Why do we need new forms of parametric curves? Answer: Those parametric curves discussed are not very geometric.

Introduction. Question: Why do we need new forms of parametric curves? Answer: Those parametric curves discussed are not very geometric. Itrodctio Qestio: Why do we eed ew forms of parametric crves? Aswer: Those parametric crves discssed are ot very geometric. Itrodctio Give sch a parametric form, it is difficlt to kow the derlyig geometry

More information

Final Review CMSC 733 Fall 2013

Final Review CMSC 733 Fall 2013 Fial Reiew CMSC 733 Fall 03 We hae coered a lot of aterial i thi core Oe way to orgaize thi aterial i arod a et of key eqatio ad algorith Yo hold be failiar with all of thee, ad able to apply the to proble

More information

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 7 Shear Failures, Shear Transfer, and Shear Design

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 7 Shear Failures, Shear Transfer, and Shear Design 1.054/1.541 echanic an Deign of Concrete Strctre Spring 2004 Prof. Oral Bykoztrk aachett Intitte of Technology Otline 7 1.054/1.541 echanic an Deign of Concrete Strctre (3-0-9) Otline 7 Shear Failre, Shear

More information

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t =

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t = Mathematics Summer Wilso Fial Exam August 8, ANSWERS Problem 1 (a) Fid the solutio to y +x y = e x x that satisfies y() = 5 : This is already i the form we used for a first order liear differetial equatio,

More information

Lecture 6. Material from Various Sources, Mainly Nise Chapters 5.8 and 12. Similarity Transformations and Introduction to State-Space Control

Lecture 6. Material from Various Sources, Mainly Nise Chapters 5.8 and 12. Similarity Transformations and Introduction to State-Space Control ETR Advaced Cotrol Lectre 6 aterial from Vario Sorce, ail Nie Chater.8 ad ETR ADVANCED CONTROL SEESTER, Similarit Traformatio ad Itrodctio to State-Sace Cotrol G. Hovlad Z. Dog State-Sace Deig v Freqec

More information