Another Look at Estimation for MA(1) Processes With a Unit Root

Size: px
Start display at page:

Download "Another Look at Estimation for MA(1) Processes With a Unit Root"

Transcription

1 Aother Look at Etimatio for MA Procee With a Uit Root F. Jay Breidt Richard A. Davi Na-Jug Hu Murray Roeblatt Colorado State Uiverity Natioal Tig-Hua Uiverity U. of Califoria, Sa Diego

2 Program Model: Y t = Z t θ Z t-, {Z t } ~ IID, σ 2 Itroductio The MA uit root problem Why tudy o-ivertible MA? over-differecig radom walk + oie Gauia Likelihood Etimatio Idetifiability Limit reult Exteio o-zero mea heavy tail Laplace Likelihood/LAD etimatio Joit ad exact likelihood Limit reult Limit ditributio/imulatio compario Pile-up probabilitie joit likelihood exact likelihood 2

3 MA uit root problem MA: world implet time erie model! Y t = Z t θ Z t-, {Z t } ~ IID, σ 2 Propertie: θ < θ > θ = j θ j= j= Z t = Y t j - j Z t = θ Y t Z P t + j ivertible o-ivertible p{ Yt, Yt,...,} ad Zt p{ Yt +, Yt + 2,...,} p{ Y, } Y = Y perfect iterpolatio θ < ˆ i AN, 2 MLE θ θ θ / MLE = maximum Gauia likelihood, = ample ize What if θ =? 3

4 Why tudy MA with a uit root? a differecig to remove o-tatioarity liear tred model: X t = a + bt + Z t. Y t = X t X t- = b + Z t Z t- ~ MA with θ =. eaoal model: X t = t + Z t, t eaoal compoet w/ period 2. Y t = X t X t-2 = Z t Z t-2 ~ MA2 with θ =. b radom walk + oie X t = X t- + U t Y t = X t + V t radom walk igal radom walk igal + oie The Y t Y t- = U t + V t V t- ~MA with θ= if ad oly if VarU t =. 4

5 Idetifiability ad the Gauia likelihood Idetifiability Y t = Z t θ Z t-, {Z t } ~ IID, σ 2 θ > Y t = ε t θ ε t-, where {ε t } ~ WN,θ 2 σ 2. {ε t } i IID if ad oly if {Z t } i Gauia Breidt ad Davi `9 {ε t } i a pecial cae of a All-Pa Model Breidt, Davi, Tridade `, Adrew et al. `5a, `5b Gauia Likelihood L G θ, σ 2 = L G /θ, θ 2 σ 2 θ i oly idetifiably for θ. Note: i thi implie L G θ = L G /θ for the profile likelihood ad θ = i a critical poit, L ' G =. ii a pile-up effect eue, i.e., eve if θ <. P θ ˆ = > 5

6 Gauia likelihood, o-gauia data obervatio from Y t = Z t θ Z t-, {Z t } ~ IID, Laplace pdf θ =.8 θ =. θ =.25 Gauia likelihood theta 6

7 Gauia MLE for ear-uit root Idea: build parameter ormalizatio ito the likelihood fuctio. Model: Y t = Z t --/ Z t-, t =,,. = -θ, θ = - /, θ = - γ/ Gauia Likelihood: L = l - / - l, l = profile log-like. Theorem Davi ad Dumuir `96: Uder θ = -γ /, L d Z γ o C[,. Reult: θˆ ˆ = argmax Ζ γ θˆ ˆ L L = arglocalmax Ζ γ P θˆ = P ˆ = =.658 if γ =. L mle mle L 7

8 Exteio of MLE Gauia likelihood i o-zero mea Che ad Davi `: ame type of limit, except pile-up i more exceive. Pˆ =.955 θ mle Thi make hypothei tetig eay! Reject H : θ = if ˆ < ize of tet i.45 θ mle ii heavy tail Davi ad Mikoch `98: {Z t } ymmetric alpha table SαS. The the max Gauia likelihood etimator ha the ame ormalizig rate, i.e., θˆ L d P θˆ P ˆ L = L = The pile-up decreae with icreaig tail heavie. ˆ L 8

9 Laplace likelihood/lad etimatio If oie ditributio i o-gauia, the MA parameter θ i idetifiable for all real value. Q. For MLE o-gauia doe oe have / or / /2 aymptotic? Q2. I there a pile-up effect? Look at thi problem with o-gauia likelihood Specifically, coider Laplace likelihood / Leat Abolute Deviatio for uit root oly ot ear-uit root Some reult are prelimiary oly! 2

10 No-Gauia likelihood Joit ad Exact Model. Y t = Z t θ Z t-, {Z t } ~ IID with media ad EZ 4 <. Iitial variable. Z iit = Z, Z t = Y t, if θ, otherwie. Joit deity: Let Y =Y,...,Y, the iit f y, z = f z, z,..., z + θ, { θ } { θ > } where the z t are olved forward by: z t = Y t + θ z t-, t =,, for θ with z = z iit backward by: z t- = θ z t Y t, t =,, for θ > with z = z iit + Y Y Note: itegrate out z iit to get Exact likelihood. f y = f y, z iit dz iit 3

11 Laplace likelihood example obervatio from Y t = Z t θ Z t-, {Z t } ~ IID Laplace pdf 4 Z θ =.8 θ = theta Z z.iit theta z.iit - -2

12 Laplace likelihood, Laplace oie obervatio from Y t = Z t θ Z t-, {Z t } ~ IID Laplace pdf θ =.8 θ =. θ =.25 Exact likelihood Joit likelihood at z max θ Laplace likelihood Laplace likelihood theta theta 5

13 Laplace likelihood-lad etimatio Joit Laplace log-likelihood. σ = E Z i a cale parameter L θ, z iit, σ = Maximizig wrt σ, we obtai + log 2σ σ σ ˆ = t= t= o that maximizig L i equivalet to miimizig l θ, z iit = z t / + t= t= z z t t z t log, if θ, θ, otherwie. θ { θ > } 7

14 8 Joit Laplace likelihood limit reult Reult. Uder the parameterizatio, θ = + / ad z iit = Z + ασ/ /2, we have where for, ad for >.,,,, α θ σ = α U Z l z l U d iit d e t ds e f dw e t ds e U t t 2, + α + + α = α d e t ds e f dw e t ds e U t t 2, + α + + α = α +

15 Joit Laplace likelihood limit reult The limit cotai correlated Browia Motio St ad Wt, obtaied a the limit of the partial um procee S [ t ] [ t ] t = Z i d S t, W t = ig Z i d σ i= σ i= Wt. From the limit, U, α U, α, d it ugget from the cotiuou mappig theorem? that limitoptimumcriterio = optimumlimitcriterio. So for the optimizer of the Joit likelihood where ˆ, ˆ ˆ, ˆ iit θ σ z Z α ˆ J, αˆ J J J = arglocal mi U, α. d J J 9

16 Coitet etimatio of oie? Note that the previou reult imply that σ zˆiit = Z + ˆ α = Z + O p / 2 o that a uoberved radom oie ca be coitetly etimated. Doe thi make ay ee? Recall that i the uit root cae, Z p{ Y, Y 2, K, Y, K } o that i fact, coitet etimatio i poible. 2

17 Exact Laplace likelihood limit reult Exact Laplace Likelihood: L θ, σ = f y, z iit dz iit Reult 2. For the local optimizer of the Exact likelihood, θˆ ˆ E d E, where ˆ arg mi * E = U, ad U * i a tochatic proce defied i term of St ad Wt. 22

18 Simulatig from the limit proce Step. Simulate two idep equece W,..., W m ad V,..., V m of iid N, radom variable with m=. Step 2. Form Wt ad Vt by the partial um procee, W t = [ t ] j= W j / ad V t = [ t ] j= V j /. Step 3. Set St = Wt + c Vt, where 2 c = Var Z t / E Z. Limit proce deped oly o c ad f. Step 4. Compute U,α ad U * from the defiitio. Step 5. Determie the repective Local ad Global miimizer of Joit limit U,α ad Exact limit U * umerically. 23

19 Simulated realizatio of the limit procee Simulate Joit ad Exact limit procee, U,α, U*. t5 pdf Simulate realizatio of each limit proce, joit ad exact Compute local ad global optima Repeat Build up limit ditributio fuctio U ad Utar beta 24

20 Limit cdf red graph = Laplace pdf for Z t blue graph = Gauia pdf for Z t cdf Joit Lap Like cdf Exact Lap Like beta.mi beta.mi 27

21 Simulatio reult: Global Exact ad Global Joit Exact = MLE Joit = maximize over θ ad z iit Laplace oie θ =, σ = rep = 2 bia rme Exact Joit θˆ ˆ E θ J Note: Joit domiate Exact rme i half the ize = 5 = bia rme bia rme = 2 bia rme

22 Aalyi of pile-up probabilitie Look back at realizatio of the limit procee, U,α, U*. Whe i there a local optimum at θ =? Check derivative Negative derivative from the left Poitive derivative from the right Local optimum at θ = U ad Utar t5 pdf -2-2 beta 32

23 Pile-up probabilitie Joit Reult 3. Joit Laplace likelihood where Y = P θˆ J = P- < Y <, W S dw -W S d + 2 W f d-w / 2 Idea: look at derivative ˆ P θ = = Plim U, αˆ < ad lim, αˆ U Plim U, αˆ < ad lim U, αˆ Now, lim U, αˆ = Y + lim U, αˆ = Y ad the reult follow. J > > 33

24 Pile-up probabilitie Exact Reult 4. Exact Laplace likelihood ˆ P θ E = P < Y < - = 2 2 The pile-up probability i alway zero for the Exact, ad alway poitive for the Joit ee Reult 3. Remark. Laplace pile-up - z /σ If Z t ha a Laplace deity f z = e, the 2σ Y = [ W W ] dv +. 2 where W ad V are idepedet tadard Browia motio. 34

25 Laplace pile-up probabilitie cot It follow that the Joit etimator ha pile-up probability P θˆ J = P < Y < = P-.5 [ W W ] < dv <.5 = E P-.5 < / 2 = E 2Φ.5 [ ] W W 2 d - [ W W ] dv <.5 W t, t [,].82 But o pile-up probability for Local Exact: Remark: if Local doe ot pile up, Global doe ot pile up if Local doe pile up, Global probably doe a well 35

26 Simulatio reult pile-up probabilitie Pile-up probabilitie for Joit: P θˆ J = Gau Lap Uif t No pile-up probabilitie for Exact. 36

27 Summary ad Future Work Reviewed MA uit root ad ear-uit root with Gauia likelihood / aymptotic, pile-up eve if θ< New reult for MA uit root with Leat Abolute Deviatio / aymptotic for Joit or Exact Joit beat Exact; Joit ha pile-up ad Exact doe ot Further work: Nail dow prelimiary reult, coduct further imulatio Other o-gauia criterio fuctio MLE? No-zero mea? Near-uit root? -γ/ Performace of Joit with Gauia likelihood? 37

Pile-up Probabilities for the Laplace Likelihood Estimator of a Non-invertible First Order Moving Average

Pile-up Probabilities for the Laplace Likelihood Estimator of a Non-invertible First Order Moving Average IMS Lecture Note Moograph Serie c Ititute of Mathematical Statitic, Pile-up Probabilitie for the Laplace Likelihood Etimator of a No-ivertible Firt Order Movig Average F. Jay Breidt 1,, Richard A. Davi,3,

More information

IntroEcono. Discrete RV. Continuous RV s

IntroEcono. Discrete RV. Continuous RV s ItroEcoo Aoc. Prof. Poga Porchaiwiekul, Ph.D... ก ก e-mail: Poga.P@chula.ac.th Homepage: http://pioeer.chula.ac.th/~ppoga (c) Poga Porchaiwiekul, Chulalogkor Uiverity Quatitative, e.g., icome, raifall

More information

STA 4032 Final Exam Formula Sheet

STA 4032 Final Exam Formula Sheet Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed. ] z-tet for the mea, μ If the P-value i a mall or maller tha a pecified value, the data are tatitically igificat at igificace level. Sigificace tet for the hypothei H 0: = 0 cocerig the ukow mea of a populatio

More information

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing Commet o Dicuio Sheet 18 ad Workheet 18 ( 9.5-9.7) A Itroductio to Hypothei Tetig Dicuio Sheet 18 A Itroductio to Hypothei Tetig We have tudied cofidece iterval for a while ow. Thee are method that allow

More information

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2 Tetig Hypothee COMPARISONS INVOLVING TWO SAMPLE MEANS Two type of hypothee:. H o : Null Hypothei - hypothei of o differece. or 0. H A : Alterate Hypothei hypothei of differece. or 0 Two-tail v. Oe-tail

More information

Generalized Likelihood Functions and Random Measures

Generalized Likelihood Functions and Random Measures Pure Mathematical Sciece, Vol. 3, 2014, o. 2, 87-95 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/pm.2014.437 Geeralized Likelihood Fuctio ad Radom Meaure Chrito E. Koutzaki Departmet of Mathematic

More information

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Review of the Air Force Academy No. (34)/7 ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Aca Ileaa LUPAŞ Military Techical Academy, Bucharet, Romaia (lua_a@yahoo.com) DOI:.96/84-938.7.5..6 Abtract:

More information

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( ) STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN Suppoe that we have a ample of meaured value x1, x, x3,, x of a igle uow quatity. Aumig that the meauremet are draw from a ormal ditributio

More information

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.

More information

13.4 Scalar Kalman Filter

13.4 Scalar Kalman Filter 13.4 Scalar Kalma Filter Data Model o derive the Kalma filter we eed the data model: a 1 + u < State quatio > + w < Obervatio quatio > Aumptio 1. u i zero mea Gauia, White, u } σ. w i zero mea Gauia, White,

More information

Formula Sheet. December 8, 2011

Formula Sheet. December 8, 2011 Formula Sheet December 8, 2011 Abtract I type thi for your coveice. There may be error. Ue at your ow rik. It i your repoible to check it i correct or ot before uig it. 1 Decriptive Statitic 1.1 Cetral

More information

LECTURE 13 SIMULTANEOUS EQUATIONS

LECTURE 13 SIMULTANEOUS EQUATIONS NOVEMBER 5, 26 Demad-upply ytem LETURE 3 SIMULTNEOUS EQUTIONS I thi lecture, we dicu edogeeity problem that arie due to imultaeity, i.e. the left-had ide variable ad ome of the right-had ide variable are

More information

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions M7 Chapter 9 Sectio 1 OBJECTIVES Tet two mea with idepedet ample whe populatio variace are kow. Tet two variace with idepedet ample. Tet two mea with idepedet ample whe populatio variace are equal Tet

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

TESTS OF SIGNIFICANCE

TESTS OF SIGNIFICANCE TESTS OF SIGNIFICANCE Seema Jaggi I.A.S.R.I., Library Aveue, New Delhi eema@iari.re.i I applied ivetigatio, oe i ofte itereted i comparig ome characteritic (uch a the mea, the variace or a meaure of aociatio

More information

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve Statitic ad Chemical Meauremet: Quatifyig Ucertaity The bottom lie: Do we trut our reult? Should we (or ayoe ele)? Why? What i Quality Aurace? What i Quality Cotrol? Normal or Gauia Ditributio The Bell

More information

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders)

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders) VIII. Iterval Etimatio A. A Few Importat Defiitio (Icludig Some Remider) 1. Poit Etimate - a igle umerical value ued a a etimate of a parameter.. Poit Etimator - the ample tatitic that provide the poit

More information

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution Applied Mathematic E-Note, 9009, 300-306 c ISSN 1607-510 Available free at mirror ite of http://wwwmaththuedutw/ ame/ A Tail Boud For Sum Of Idepedet Radom Variable Ad Applicatio To The Pareto Ditributio

More information

UNIVERSITY OF CALICUT

UNIVERSITY OF CALICUT Samplig Ditributio 1 UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION BSc. MATHEMATICS COMPLEMENTARY COURSE CUCBCSS 2014 Admiio oward III Semeter STATISTICAL INFERENCE Quetio Bak 1. The umber of poible

More information

Statistical Inference Procedures

Statistical Inference Procedures Statitical Iferece Procedure Cofidece Iterval Hypothei Tet Statitical iferece produce awer to pecific quetio about the populatio of iteret baed o the iformatio i a ample. Iferece procedure mut iclude a

More information

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8 CS 15 Fall 23, Lecture 8 Lecture 8: Capacitor ad PN Juctio Prof. Nikejad Lecture Outlie Review of lectrotatic IC MIM Capacitor No-Liear Capacitor PN Juctio Thermal quilibrium lectrotatic Review 1 lectric

More information

Widely used? average out effect Discrete Prior. Examplep. More than one observation. using MVUE (sample mean) yy 1 = 3.2, y 2 =2.2, y 3 =3.6, y 4 =4.

Widely used? average out effect Discrete Prior. Examplep. More than one observation. using MVUE (sample mean) yy 1 = 3.2, y 2 =2.2, y 3 =3.6, y 4 =4. Dicrete Prior for (μ Widely ued? average out effect Dicrete Prior populatio td i kow equally likely or ubjective weight π ( μ y ~ π ( μ l( y μ π ( μ e Examplep ( μ y Set a ubjective prior ad a gueig value

More information

STAT Homework 2 - Solutions

STAT Homework 2 - Solutions STAT-36700 Homework - Solutios Fall 08 September 4, 08 This cotais solutios for Homework. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better isight.

More information

Topics in MMSE Estimation for Sparse Approximation

Topics in MMSE Estimation for Sparse Approximation for Spare Approximatio * Michael Elad The Computer Sciece Departmet The Techio Irael Ititute of techology Haifa 3, Irael Workhop: Sparity ad Computatio Haudorff ceter of Mathematic Uiverity of Bo Jue 7-,

More information

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE 20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE If the populatio tadard deviatio σ i ukow, a it uually will be i practice, we will have to etimate it by the ample tadard deviatio. Sice σ i ukow,

More information

Lecture 11 and 12: Basic estimation theory

Lecture 11 and 12: Basic estimation theory Lecture ad 2: Basic estimatio theory Sprig 202 - EE 94 Networked estimatio ad cotrol Prof. Kha March 2 202 I. MAXIMUM-LIKELIHOOD ESTIMATORS The maximum likelihood priciple is deceptively simple. Louis

More information

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,...,Y satisfy Y i = x i + " i : i =,..., IID where x,...,x R are fixed values ad ",...," Normal(0, )with R + kow. Fid ˆ = MLE( ). IND Solutio: Observe

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Parameter Estimation for Discretely Observed Vasicek Model Driven by Small Lévy Noises

Parameter Estimation for Discretely Observed Vasicek Model Driven by Small Lévy Noises arameter Etimatio for Dicretely Oberved Vaicek Model Drive by Small Lévy Noie Chao Wei Abtract Thi paper i cocered with the parameter etimatio problem for Vaicek model drive by mall Lévy oie from dicrete

More information

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS ME 40 MECHANICAL ENGINEERING REGRESSION ANALYSIS Regreio problem deal with the relatiohip betwee the frequec ditributio of oe (depedet) variable ad aother (idepedet) variable() which i (are) held fied

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Some Basic Cocepts of Statistical Iferece (Sec 5.) Suppose we have a rv X that has a pdf/pmf deoted by f(x; θ) or p(x; θ), where θ is called the parameter. I previous lectures, we focus o probability problems

More information

Regression and generalization

Regression and generalization Regressio ad geeralizatio CE-717: Machie Learig Sharif Uiversity of Techology M. Soleymai Fall 2016 Curve fittig: probabilistic perspective Describig ucertaity over value of target variable as a probability

More information

Last time: Completed solution to the optimum linear filter in real-time operation

Last time: Completed solution to the optimum linear filter in real-time operation 6.3 tochatic Etimatio ad Cotrol, Fall 4 ecture at time: Completed olutio to the oimum liear filter i real-time operatio emi-free cofiguratio: t D( p) F( p) i( p) dte dp e π F( ) F( ) ( ) F( p) ( p) 4444443

More information

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd, Applied Mathematical Sciece Vol 9 5 o 3 7 - HIKARI Ltd wwwm-hiaricom http://dxdoiorg/988/am54884 O Poitive Defiite Solutio of the Noliear Matrix Equatio * A A I Saa'a A Zarea* Mathematical Sciece Departmet

More information

Confidence Intervals. Confidence Intervals

Confidence Intervals. Confidence Intervals A overview Mot probability ditributio are idexed by oe me parameter. F example, N(µ,σ 2 ) B(, p). I igificace tet, we have ued poit etimat f parameter. F example, f iid Y 1,Y 2,...,Y N(µ,σ 2 ), Ȳ i a poit

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

= o(1) and n 1/2 γ n log M = o(1) for some

= o(1) and n 1/2 γ n log M = o(1) for some Web-baed upportig material for FMEM: Fuctioal Mixed effect Model for Logitudial Fuctioal Repoe by Hogtu Zhu, Kehui Che, X. Luo, Yig Yua, ad Jae-Lig Wag A Proof of Theorem Recall that y i = (y i1,..., y

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Chapter 9. Key Ideas Hypothesis Test (Two Populations) Chapter 9 Key Idea Hypothei Tet (Two Populatio) Sectio 9-: Overview I Chapter 8, dicuio cetered aroud hypothei tet for the proportio, mea, ad tadard deviatio/variace of a igle populatio. However, ofte

More information

Large Sample Theory. Convergence. Central Limit Theorems Asymptotic Distribution Delta Method. Convergence in Probability Convergence in Distribution

Large Sample Theory. Convergence. Central Limit Theorems Asymptotic Distribution Delta Method. Convergence in Probability Convergence in Distribution Large Sample Theory Covergece Covergece i Probability Covergece i Distributio Cetral Limit Theorems Asymptotic Distributio Delta Method Covergece i Probability A sequece of radom scalars {z } = (z 1,z,

More information

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i 0 Dirichlet Serie & Logarithmic Power Serie. Defiitio & Theorem Defiitio.. (Ordiary Dirichlet Serie) Whe,a,,3, are complex umber, we call the followig Ordiary Dirichlet Serie. f() a a a a 3 3 a 4 4 Note

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

CE3502 Environmental Monitoring, Measurements, and Data Analysis (EMMA) Spring 2008 Final Review

CE3502 Environmental Monitoring, Measurements, and Data Analysis (EMMA) Spring 2008 Final Review CE35 Evirometal Moitorig, Meauremet, ad Data Aalyi (EMMA) Sprig 8 Fial Review I. Topic:. Decriptive tatitic: a. Mea, Stadard Deviatio, COV b. Bia (accuracy), preciio, Radom v. ytematic error c. Populatio

More information

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator Ecoomics 24B Relatio to Method of Momets ad Maximum Likelihood OLSE as a Maximum Likelihood Estimator Uder Assumptio 5 we have speci ed the distributio of the error, so we ca estimate the model parameters

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49 C22.0103 Sprig 2011 Homework 7 olutio 1. Baed o a ample of 50 x-value havig mea 35.36 ad tadard deviatio 4.26, fid a 95% cofidece iterval for the populatio mea. SOLUTION: The 95% cofidece iterval for the

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

Chapter 8.2. Interval Estimation

Chapter 8.2. Interval Estimation Chapter 8.2. Iterval Etimatio Baic of Cofidece Iterval ad Large Sample Cofidece Iterval 1 Baic Propertie of Cofidece Iterval Aumptio: X 1, X 2,, X are from Normal ditributio with a mea of µ ad tadard deviatio.

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

Probability and Statistics

Probability and Statistics Probability ad Statistics Cotets. Multi-dimesioal Gaussia radom variable. Gaussia radom process 3. Wieer process Why we eed to discuss Gaussia Process The most commo Accordig to the cetral limit theorem,

More information

Tools Hypothesis Tests

Tools Hypothesis Tests Tool Hypothei Tet The Tool meu provide acce to a Hypothei Tet procedure that calculate cofidece iterval ad perform hypothei tet for mea, variace, rate ad proportio. It i cotrolled by the dialog box how

More information

Reasons for Sampling. Forest Sampling. Scales of Measurement. Scales of Measurement. Sampling Error. Sampling - General Approach

Reasons for Sampling. Forest Sampling. Scales of Measurement. Scales of Measurement. Sampling Error. Sampling - General Approach Foret amplig Aver & Burkhart, Chpt. & Reao for amplig Do NOT have the time or moe to do a complete eumeratio Remember that the etimate of the populatio parameter baed o a ample are ot accurate, therefore

More information

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation Société de Calcul Mathématique S A Algorithme et Optimiatio Radom amplig of proportio Berard Beauzamy Jue 2008 From time to time we fid a problem i which we do ot deal with value but with proportio For

More information

Last time: Ground rules for filtering and control system design

Last time: Ground rules for filtering and control system design 6.3 Stochatic Etimatio ad Cotrol, Fall 004 Lecture 7 Lat time: Groud rule for filterig ad cotrol ytem deig Gral ytem Sytem parameter are cotaied i w( t ad w ( t. Deired output i grated by takig the igal

More information

Difference tests (1): parametric

Difference tests (1): parametric NST B Eperimetal Pychology Statitic practical Differece tet (): parametric Rudolf Cardial & Mike Aitke / 3 December 003; Departmet of Eperimetal Pychology Uiverity of Cambridge Hadout: Awer to Eample (from

More information

Statistical Equations

Statistical Equations Statitical Equatio You are permitted to ue the iformatio o thee page durig your eam. Thee page are ot guarateed to cotai all the iformatio you will eed. If you fid iformatio which you believe hould be

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Lecture 6 Simple alternatives and the Neyman-Pearson lemma

Lecture 6 Simple alternatives and the Neyman-Pearson lemma STATS 00: Itroductio to Statistical Iferece Autum 06 Lecture 6 Simple alteratives ad the Neyma-Pearso lemma Last lecture, we discussed a umber of ways to costruct test statistics for testig a simple ull

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Noise Enhancement for Weighted Sum of Type I and II Error Probabilities with Constraints

Noise Enhancement for Weighted Sum of Type I and II Error Probabilities with Constraints etropy Article Noie Ehacemet for Weighted Sum of Type I ad II Error Probabilitie with Cotrait Shuju iu, Tig Yag ad Kui Zhag * College of Commuicatio Egieerig, Chogqig Uiverity, Chogqig 444, Chia; liuj@cqu.edu.c

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values Iteratioal Joural of Applied Operatioal Research Vol. 4 No. 1 pp. 61-68 Witer 2014 Joural homepage: www.ijorlu.ir Cofidece iterval for the two-parameter expoetiated Gumbel distributio based o record values

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance S T A T 4 - R a c h e l L. W e b b, P o r t l a d S t a t e U i v e r i t y P a g e Commo Symbol = Sample Size x = Sample Mea = Sample Stadard Deviatio = Sample Variace pˆ = Sample Proportio r = Sample

More information

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions Statistical ad Mathematical Methods DS-GA 00 December 8, 05. Short questios Sample Fial Problems Solutios a. Ax b has a solutio if b is i the rage of A. The dimesio of the rage of A is because A has liearly-idepedet

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

Generalized Semi- Markov Processes (GSMP)

Generalized Semi- Markov Processes (GSMP) Geeralized Semi- Markov Processes (GSMP) Summary Some Defiitios Markov ad Semi-Markov Processes The Poisso Process Properties of the Poisso Process Iterarrival times Memoryless property ad the residual

More information

10-716: Advanced Machine Learning Spring Lecture 13: March 5

10-716: Advanced Machine Learning Spring Lecture 13: March 5 10-716: Advaced Machie Learig Sprig 019 Lecture 13: March 5 Lecturer: Pradeep Ravikumar Scribe: Charvi Ratogi, Hele Zhou, Nicholay opi Note: Lae template courtey of UC Berkeley EECS dept. Diclaimer: hee

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

Journal of Multivariate Analysis. Least squares estimators for discretely observed stochastic processes driven by small Lévy noises

Journal of Multivariate Analysis. Least squares estimators for discretely observed stochastic processes driven by small Lévy noises Author' peroal copy Joural of Multivariate Aalyi 6 (23) 422 439 Cotet lit available at SciVere ScieceDirect Joural of Multivariate Aalyi joural homepage: www.elevier.com/locate/jmva Leat quare etimator

More information

A tail bound for sums of independent random variables : application to the symmetric Pareto distribution

A tail bound for sums of independent random variables : application to the symmetric Pareto distribution A tail boud for um of idepedet radom variable : applicatio to the ymmetric Pareto ditributio Chritophe Cheeau To cite thi verio: Chritophe Cheeau. A tail boud for um of idepedet radom variable : applicatio

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

MATHEMATICS LW Quantitative Methods II Martin Huard Friday April 26, 2013 TEST # 4 SOLUTIONS

MATHEMATICS LW Quantitative Methods II Martin Huard Friday April 26, 2013 TEST # 4 SOLUTIONS ATHATICS 360-55-L Quatitative ethod II arti Huard Friday April 6, 013 TST # 4 SOLUTIONS Name: Awer all quetio ad how all your work. Quetio 1 (10 poit) To oberve the effect drikig a Red Bull ha o cocetratio,

More information

Lecture 24: Variable selection in linear models

Lecture 24: Variable selection in linear models Lecture 24: Variable selectio i liear models Cosider liear model X = Z β + ε, β R p ad Varε = σ 2 I. Like the LSE, the ridge regressio estimator does ot give 0 estimate to a compoet of β eve if that compoet

More information

Numerical Conformal Mapping via a Fredholm Integral Equation using Fourier Method ABSTRACT INTRODUCTION

Numerical Conformal Mapping via a Fredholm Integral Equation using Fourier Method ABSTRACT INTRODUCTION alaysia Joural of athematical Scieces 3(1): 83-93 (9) umerical Coformal appig via a Fredholm Itegral Equatio usig Fourier ethod 1 Ali Hassa ohamed urid ad Teh Yua Yig 1, Departmet of athematics, Faculty

More information

Isolated Word Recogniser

Isolated Word Recogniser Lecture 5 Iolated Word Recogitio Hidde Markov Model of peech State traitio ad aligmet probabilitie Searchig all poible aligmet Dyamic Programmig Viterbi Aligmet Iolated Word Recogitio 8. Iolated Word Recogier

More information

Agnostic Learning and Concentration Inequalities

Agnostic Learning and Concentration Inequalities ECE901 Sprig 2004 Statistical Regularizatio ad Learig Theory Lecture: 7 Agostic Learig ad Cocetratio Iequalities Lecturer: Rob Nowak Scribe: Aravid Kailas 1 Itroductio 1.1 Motivatio I the last lecture

More information

Julian J. Faraway Department of Statistics, University of Michigan, Ann Arbor, Michigan 48109, USA. Phone: (734)

Julian J. Faraway Department of Statistics, University of Michigan, Ann Arbor, Michigan 48109, USA. Phone: (734) Ditributio of the Admixture tet for the Detectio of Likage uder Heterogeeity Julia J. Faraway Departmet of Statitic, Uiverity of Michiga, A Arbor, Michiga 48109, USA. Phoe: (734)-763-5238 Ruig Title: Admixture

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter & Teachig Material.

More information

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT Itroductio to Extreme Value Theory Laures de Haa, ISM Japa, 202 Itroductio to Extreme Value Theory Laures de Haa Erasmus Uiversity Rotterdam, NL Uiversity of Lisbo, PT Itroductio to Extreme Value Theory

More information

Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3. Properties of Summary Statistics: Sampling Distribution Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

More information

8.6 Order-Recursive LS s[n]

8.6 Order-Recursive LS s[n] 8.6 Order-Recurive LS [] Motivate ti idea wit Curve Fittig Give data: 0,,,..., - [0], [],..., [-] Wat to fit a polyomial to data.., but wic oe i te rigt model?! Cotat! Quadratic! Liear! Cubic, Etc. ry

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulatio 1 Itroductio Readig Assigmet: Read Chapter 1 of text. We shall itroduce may of the key issues to be discussed i this course via a couple of model problems. Model Problem 1 (Jackso

More information

An Introduction to Asymptotic Theory

An Introduction to Asymptotic Theory A Itroductio to Asymptotic Theory Pig Yu School of Ecoomics ad Fiace The Uiversity of Hog Kog Pig Yu (HKU) Asymptotic Theory 1 / 20 Five Weapos i Asymptotic Theory Five Weapos i Asymptotic Theory Pig Yu

More information

Markov Decision Processes

Markov Decision Processes Markov Decisio Processes Defiitios; Statioary policies; Value improvemet algorithm, Policy improvemet algorithm, ad liear programmig for discouted cost ad average cost criteria. Markov Decisio Processes

More information

Questions about the Assignment. Describing Data: Distributions and Relationships. Measures of Spread Standard Deviation. One Quantitative Variable

Questions about the Assignment. Describing Data: Distributions and Relationships. Measures of Spread Standard Deviation. One Quantitative Variable Quetio about the Aigmet Read the quetio ad awer the quetio that are aked Experimet elimiate cofoudig variable Decribig Data: Ditributio ad Relatiohip GSS people attitude veru their characteritic ad poue

More information

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett Lecture Note 8 Poit Estimators ad Poit Estimatio Methods MIT 14.30 Sprig 2006 Herma Beett Give a parameter with ukow value, the goal of poit estimatio is to use a sample to compute a umber that represets

More information

On Certain Sums Extended over Prime Factors

On Certain Sums Extended over Prime Factors Iteratioal Mathematical Forum, Vol. 9, 014, o. 17, 797-801 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/imf.014.4478 O Certai Sum Exteded over Prime Factor Rafael Jakimczuk Diviió Matemática,

More information

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w:

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w: Stat 400, ectio 7. Large Sample Cofidece Iterval ote by Tim Pilachowki a Large-Sample Two-ided Cofidece Iterval for a Populatio Mea ectio 7.1 redux The poit etimate for a populatio mea µ will be a ample

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information