Journal of Multivariate Analysis. Least squares estimators for discretely observed stochastic processes driven by small Lévy noises

Size: px
Start display at page:

Download "Journal of Multivariate Analysis. Least squares estimators for discretely observed stochastic processes driven by small Lévy noises"

Transcription

1 Author' peroal copy Joural of Multivariate Aalyi 6 (23) Cotet lit available at SciVere ScieceDirect Joural of Multivariate Aalyi joural homepage: Leat quare etimator for dicretely oberved tochatic procee drive by mall Lévy oie Hogwei Log a,, Yautaka Shimizu b, Wei Su c a Departmet of Mathematical Sciece, Florida Atlatic Uiverity, Boca Rato, FL , USA b Graduate School of Egieerig Sciece, Oaka Uiverity, Toyoaka, Oaka , Japa c Departmet of Mathematic ad Statitic, Cocordia Uiverity, Motreal, Quebec H3G M8, Caada a r t i c l e i f o a b t r a c t Article hitory: Received 2 May 22 Available olie 25 Jauary 23 AMS 2 ubject claificatio: primary 62F2 62M5 ecodary 6G52 6J75 Keyword: Aymptotic ditributio of LSE Coitecy of LSE Dicrete obervatio Leat quare method Stochatic procee Parameter etimatio Small Lévy oie We tudy the problem of parameter etimatio for dicretely oberved tochatic procee drive by additive mall Lévy oie. We do ot impoe ay momet coditio o the drivig Lévy proce. Uder certai regularity coditio o the drift fuctio, we obtai coitecy ad rate of covergece of the leat quare etimator (LSE) of the drift parameter whe a mall diperio coefficiet ε ad imultaeouly. The aymptotic ditributio of the LSE i our geeral ettig i how to be the covolutio of a ormal ditributio ad a ditributio related to the jump part of the Lévy proce. Moreover, we briefly remark that our methodology ca be eaily exteded to the more geeral cae of emi-martigale oie. 23 Elevier Ic. All right reerved.. Itroductio Let (Ω, F, P) be a baic probability pace equipped with a right cotiuou ad icreaig family of σ -algebra (F t, t ). Let (L t, t ) be a R d -valued Lévy proce, which i give by t t L t = at + σ B t + zñ(d, dz) + zn(d, dz), (.) z z > where a = (a,..., a d ) R d, σ = (σ ij ) d r i a d r real-valued matrix, B t = (B,..., t Br t ) i a r-dimeioal tadard Browia motio, N(d, dz) i a idepedet Poio radom meaure o R + (R d \ {}) with characteritic meaure dtν(dz), ad Ñ(d, dz) = N(d, dz) ν(dz)d i a martigale meaure. Here we aume that ν(dz) i a Lévy meaure o d R d \ {} atifyig R d \{} ( z 2 )ν(dz) < with z = i= z2 i. The tochatic proce X = (X t, t ), tartig from x R d, i defied a the uique trog olutio to the followig tochatic differetial equatio (SDE) dx t = b(x t, θ)dt + εdl t, t [, ]; X = x, (.2) where θ Θ = Θ (the cloure of Θ ) with Θ beig a ope bouded covex ubet of R p, ad b = (b,..., b d ) : R d Θ R d i a kow fuctio. Without lo of geerality, we aume that ε (, ]. The regularity coditio o b will Correpodig author. addre: hlog@fau.edu (H. Log) X/$ ee frot matter 23 Elevier Ic. All right reerved. doi:.6/j.jmva.23..2

2 Author' peroal copy H. Log et al. / Joural of Multivariate Aalyi 6 (23) be provided i Sectio 2. Aume that thi proce i oberved at regularly paced time poit {t k = k/, k =, 2,..., }. The oly ukow quatity i SDE (.2) i the parameter θ. Let θ Θ be the true value of the parameter θ. The purpoe of thi paper i to tudy the leat quare etimator for the true value θ baed o the amplig data (X tk ) with mall diperio ε ad large ample ize. I the cae of diffuio procee drive by Browia motio, a popular method i the maximum likelihood etimator (MLE) baed o the Giraov deity whe the procee ca be oberved cotiuouly (ee Prakaa Rao [3], Lipter ad Shiryaev [9], Kutoyat [6], ad Bihwal [2]). Whe a diffuio proce i oberved oly at dicrete time, i mot cae the traitio deity ad hece the likelihood fuctio of the obervatio i ot explicitly computable. I order to overcome thi difficulty, ome approximate likelihood method have bee propoed by Lo [2], Pedere [27,28], Poule [29], ad Aït-Sahalia []. For a compreheive review o MLE ad other related method, we refer to Søree [37]. The leat quare etimator (LSE) i aymptotically equivalet to the MLE. For the LSE, the covergece i probability wa proved i Dorogovcev [5] ad Le Breto [8], the trog coitecy wa tudied i Kaoga [2], ad the aymptotic ditributio wa tudied i Prakaa Rao [3]. For a more recet compreheive dicuio, we refer to Prakaa Rao [3], Kutoyat [6], Bihwal [2] ad the referece therei. The parametric etimatio problem for diffuio procee with jump baed o dicrete obervatio have bee tudied by Shimizu ad Yohida [35] ad Shimizu [33] via the quai-maximum likelihood. They etablihed coitecy ad aymptotic ormality for the propoed etimator. Moreover, Ogihara ad Yohida [26] howed ome troger reult tha the oe by Shimizu ad Yohida [35], ad alo ivetigated a adaptive Baye-type etimator with it aymptotic propertie. The drivig jump procee coidered i Shimizu ad Yohida [35], Shimizu [33] ad Ogihara ad Yohida [26] iclude a large cla of Lévy procee uch a compoud Poio procee, gamma, ivere Gauia, variace gamma, ormal ivere Gauia or ome geeralized tempered table procee. Mauda [24] dealt with the coitecy ad aymptotic ormality of the TFE (trajectory-fittig etimator) ad LSE whe the drivig proce i a zero-mea adapted proce (icludig Lévy proce) with fiite momet. The parametric etimatio for Lévy-drive Ortei Uhlebeck procee wa alo tudied by Brockwell et al. [3], Spiliopoulo [39], ad Valdivieo et al. [46]. However, the aforemetioed paper were uable to cover a importat cla of drivig Lévy procee, amely α-table Lévy motio with α (, 2). Recetly, Hu ad Log [9,] have tarted the tudy o parameter etimatio for Ortei Uhlebeck procee drive by α-table Lévy motio. They obtaied ome ew aymptotic reult o the propoed TFE ad LSE uder cotiuou or dicrete obervatio, which are differet from the claical cae where aymptotic ditributio are ormal. Fae [6] exteded the reult of Hu ad Log [] to multivariate Ortei Uhlebeck procee drive by α-table Lévy motio. Mauda [25] propoed a elf-weighted leat abolute deviatio etimator for dicretely oberved ergodic Ortei Uhlebeck procee drive by ymmetric Lévy procee. The aymptotic theory of parametric etimatio for diffuio procee with mall white oie baed o cotiuou-time obervatio ha bee well developed (ee, e.g., Kutoyat [4,5], Yohida [48,5], Uchida ad Yohida [44]). There have bee may applicatio of mall oie aymptotic to mathematical fiace, ee for example Yohida [49], Takahahi [4], Kuitomo ad Takahahi [3], Takahahi ad Yohida [4], Uchida ad Yohida [45]. From a practical poit of view i parametric iferece, it i more realitic ad iteretig to coider aymptotic etimatio for diffuio procee with mall oie baed o dicrete obervatio. Subtatial progre ha bee made i thi directio. Geo-Catalot [7] ad Laredo [7] tudied the efficiet etimatio of drift parameter of mall diffuio from dicrete obervatio whe ε ad. Søree [36] ued martigale etimatig fuctio to etablih coitecy ad aymptotic ormality of the etimator of drift ad diffuio coefficiet parameter whe ε ad i fixed. Søree ad Uchida [38] ad Gloter ad Søree [8] ued a cotrat fuctio to tudy the efficiet etimatio for ukow parameter i both drift ad diffuio coefficiet fuctio. Uchida [42,43] ued the martigale etimatig fuctio approach to tudy etimatio of drift parameter for mall diffuio uder weaker coditio. Thu, i the cae of mall diffuio, the aymptotic ditributio of the etimator are ormal uder uitable coditio o ε ad. Log [2] tudied the parameter etimatio problem for dicretely oberved oe-dimeioal Ortei Uhlebeck procee with mall Lévy oie. I that paper, the drift fuctio i liear i both x ad θ (b(x, θ) = θx), the drivig Lévy proce i L t = ab t + bz t, where a ad b are kow cotat, (B t, t ) i the tadard Browia motio ad Z t i a α-table Lévy motio idepedet of (B t, t ). The coitecy ad rate of covergece of the leat quare etimator are etablihed. The aymptotic ditributio of the LSE i how to be the covolutio of a ormal ditributio ad a table ditributio. I a imilar framework, Log [22] dicued the tatitical etimatio of the drift parameter for a cla of SDE with pecial drift fuctio b(x, θ) = θb(x). Ma [23] exteded the reult of Log [2] to the cae whe the drivig oie i a geeral Lévy proce. However, all the drift fuctio dicued i Log [2,22] ad Ma [23] are liear i θ, which retrict the applicability of their model ad reult. I thi paper, we allow the drift fuctio b(x, θ) to be oliear i both x ad θ, ad the drivig oie to be a geeral Lévy proce. We are itereted i etimatig the drift parameter i SDE (.2) baed o dicrete obervatio {X ti } i= whe ε ad. We hall ue the leat quare method to obtai a aymptotically coitet etimator. Coider the followig cotrat fuctio Ψ (θ) = X tk X tk b(x tk, θ) 2 ε 2,

3 Author' peroal copy 424 H. Log et al. / Joural of Multivariate Aalyi 6 (23) where = t k = /. The the LSE ˆθ i defied a ˆθ := arg mi Ψ (θ). Sice miimizig Ψ (θ) i equivalet to miimizig Φ (θ) := ε 2 (Ψ (θ) Ψ (θ )), we may write the LSE a ˆθ = arg mi Φ (θ). We hall ue thi fact later for coveiece of the proof. I the oliear cae, it i geerally very difficult or impoible to obtai a explicit formula for the leat quare etimator ˆθ. However, we ca ue ome ice criteria i tatitical iferece (ee Chapter 5 of va der Vaart [47] ad Shimizu [34] for a more geeral criterio) to etablih the coitecy of the LSE a well a it aymptotic behavior (aymptotic ditributio ad rate of covergece). I thi paper, we coider the aymptotic of the LSE ˆθ with high frequecy ( ) ad mall diperio (ε ). Our goal i to prove that ˆθ θ i probability ad to etablih it rate of covergece ad aymptotic ditributio. We obtai ome ew aymptotic ditributio for the LSE i our geeral ettig, which are the covolutio of ormal ditributio ad a ditributio related to the jump part of the drivig Lévy proce. Some imilar but more geeral reult are alo etablihed whe the drivig Lévy proce i replaced by a geeral emi-martigale. The paper i orgaized a follow. I Sectio 2, we tate our mai reult with ome remark ad example. We etablih the coitecy of the LSE ˆθ ad give it aymptotic ditributio, which i a atural exteio of the claical malldiffuio cae. All the proof are give i Sectio 3. I Sectio 4, we dicu the exteio of mai reult i Sectio 2 to the geeral cae whe the drivig oie i a emi-martigale. Some imulatio tudie are provided i Sectio Mai reult 2.. Notatio ad aumptio Let X = (X t, t ) be the olutio to the uderlyig ordiary differetial equatio (ODE) uder the true value of the drift parameter: dx t = b(x, θ t )dt, X = x. m k z k, where m i z i For a multi-idex m = (m,..., m k ), we defie a derivative operator i z R k a m z := m z := m m i / z i i. Let C k,l (R d Θ; R q ) be the pace of all fuctio f : R d Θ R q which i k ad l time cotiuouly differetiable with repect to x ad θ, repectively. Moreover C k,l (Rd Θ; R q ) i a cla of f C k,l (R d Θ; R q ) atifyig that up θ α β x f (x, θ) C( + x ) λ for uiveral poitive cotat C ad λ, where α = (α,..., α p ) ad β = (β,..., β d ) are multi-idice with p α i= i l ad d β i= i k, repectively. We itroduce the followig et of aumptio. (A) There exit a cotat K > uch that b(x, θ) b(y, θ) K x y ; b(x, θ) K( + x ) for each x, y R d ad θ Θ. (A2) b(, ) C 2,3 (Rd Θ; R d ). (A3) θ θ b(x, θ) t b(x, θ t ) for at leat oe value of t [, ]. (A4) I(θ ) = (I ij (θ )) i,jp i poitive defiite, where I ij (θ) = ( θi b) T (X, θ) θ j b(x, θ)d. It i well-kow that SDE (.2) ha a uique trog olutio uder (A). For coveiece, we hall ue C to deote a geeric cotat whoe value may vary from place to place. For a matrix A, we defie A 2 = tr(aa T ), where A T i the trapoe of A. I particular, σ 2 = d r σ 2 i= ij Aymptotic behavior of LSE The coitecy of our etimator ˆθ i give a follow. Theorem 2.. Uder coditio (A) (A3), we have ˆθ Pθ θ a ε ad.

4 Author' peroal copy H. Log et al. / Joural of Multivariate Aalyi 6 (23) The ext theorem give the aymptotic ditributio of ˆθ. A i eaily ee, our reult iclude the cae of Søree ad Uchida [38] a a pecial cae. Theorem 2.2. Uder coditio (A) (A4), we have ε (ˆθ θ ) P θ I (θ )S(θ ), a ε, ad ε, where S(θ ) := ( θ b) T (X, θ )dl,..., ( θp b) T (X, θ )dl T. (2.) Remark 2.3. Oe of our mai cotributio i that we o loger require ay high-order momet coditio o X a i, e.g., Søree ad Uchida [38] ad other, which make our reult applicable i may practical model. Remark 2.4. I geeral, the limitig ditributio o the right-had ide of (2.) i a covolutio of a ormal ditributio ad a ditributio related to the jump part of the Lévy proce. I particular, if the drivig Lévy proce L i the liear combiatio of tadard Browia motio ad α-table motio, the limitig ditributio become the covolutio of a ormal ditributio ad a table ditributio. Remark 2.5. Whe d = ad b(x, θ) = θx, i.e., SDE (.2) i liear ad drive by a geeral Lévy proce, Theorem 2.2 reduce to Theorem. of Ma [23]. Whe the drivig Lévy proce i a liear combiatio of tadard Browia motio ad α-table motio, Theorem 2.2 wa dicued i Log [2] ad Ma [23]. Example 2.6. We coider a oe-dimeioal tochatic proce i (.2) with drift fuctio b(x, θ) = θ + θ 2 x. We aume that the true value θ = (θ, θ 2 ) of θ = (θ, θ 2 ) belog to Θ = (c, c 2 ) (c 3, c 4 ) R 2 with c < c 2 ad c 3 < c 4. The, X atifie the followig ODE dx t = (θ + θ 2 X t )dt, X = x. (2.2) The explicit olutio i give by X t = e θ 2 t x + θ (eθ 2 t ) θ 2 ˆθ = (ˆθ,, ˆθ,2 ) T of θ i give by ˆθ, = (X X ) ˆθ,2 X tk, ˆθ,2 = (X tk X tk )X tk (X X ) Xt 2 k X tk 2. X tk whe θ 2 ; X t = x + θ t whe θ 2 =. The LSE Note that θ b(x, θ) = ad θ2 b(x, θ) = x. I thi cae, the limitig radom vector i Theorem 2.2 i I (θ )( dl, X dl ) T, where I(θ ) = d X d. X d (X )2 d Example 2.7. We coider a oe-dimeioal tochatic proce i (.2) with drift fuctio b(x, θ) = θ + x 2. We aume that the true value θ of θ belog to Θ = (c, c 2 ) R with < c < c 2 <. The, X atifie the followig ODE dx t = θ + (Xt ) 2 dt, X = x. The explicit olutio i give by X t = (x + oliear equatio X tk X tk =. θ + Xt 2 k 2(x + θ +x 2 )2 e 2t θ θ +x 2 )et. It i eay to verify that the LSE ˆθ of θ i a olutio to the followig

5 Author' peroal copy 426 H. Log et al. / Joural of Multivariate Aalyi 6 (23) Sice it i impoible to get the explicit expreio for ˆθ, we olve the above equatio umerically (e.g. by uig Newto method). Note that θ b(x, θ) =. It i clear that the limitig radom variable i Theorem 2.2 i 2 θ+x2 I (θ ) dl, where I(θ ) = d. I particular, we aume that L 2 θ +(X ) 2 4 θ +(X t = ab t + σ Z t, where B t i the ) 2 tadard Browia motio ad Z t i a tadard α-table Lévy motio idepedet of B t. Let u deote by N a radom variable with the tadard ormal ditributio ad U a radom variable with the tadard α-table ditributio S α (, β, ), where α (, 2) i the idex of tability ad β [, ] i the kewe parameter. By uig the elf-imilarity ad time chage, we ca eaily how that the limitig radom variable i Theorem 2.2 ha ditributio give by α /α ai 2 (θ )N + σ I (θ ) d U. 2 θ + (X )2 Example 2.8. We coider a two-dimeioal tochatic proce i (.2) with drift fuctio b(x, θ) = C + Ax, where C = (c, c 2 ) T, A = (A ij ) i,j2 ad x = (x, x 2 ) T. We aume that the eigevalue of A have poitive real part. We wat to etimate θ = (θ,..., θ 6 ) T = (c, A, A 2, c 2, A 2, A 22 ) T Θ R 6, whoe true value i θ = (c, A, A, 2 c, 2 A, 2 A 22 )T. The X t atifie the followig ODE dx t = (C + A X t )dt, X = x. The explicit olutio i give by X t (ˆθ,i ) i6 i give by ˆθ, ˆθ,2 = Λ ˆθ,3 Y () k Y () k X () = e A t x + t ea (t ) C d. After ome baic calculatio, we fid that the LSE ˆθ = Y () k X (2) ad ˆθ,4 ˆθ,5 ˆθ,6 = Λ Y (2) k Y (2) k X () Y (2) k X (2) where X (i) (i =, 2) are the compoet of X tk, Y (i) k (i =, 2) are the compoet of Y k = X tk X tk, ad X () X (2) Λ = X () X () 2 X () X (2). X (2) X () X (2) X (2) 2 Sice it i eay ad traightforward to compute the partial derivative θi b(x, θ), i 6, ad the limitig radom vector i Theorem 2.2, we omit the detail here. 3. Proof 3.. Proof of Theorem 2. We firt etablih ome prelimiary lemma. I the equel, we hall ue the otatio Y t := X [t]/ for the tochatic proce X defied by (.2), where [t] deote the iteger part of t. Lemma 3.. The equece {Y t } coverge to the determiitic proce {X t } uiformly o compact i probability a ε ad. Proof. Note that X t X t = t (b(x, θ ) b(x, θ ))d + εl t.,

6 Author' peroal copy H. Log et al. / Joural of Multivariate Aalyi 6 (23) By the Lipchitz coditio o b( ) i (A) ad the Cauchy Schwarz iequality, we fid that t 2 X t X t 2 2 (b(x, θ ) b(x, θ ))d + 2ε 2 L t 2 2t t 2K 2 t t By Growall iequality, it follow that X t X t 2 2ε 2 e 2K 2 t 2 up L 2 t ad coequetly b(x, θ ) b(x, θ ) 2 d + 2ε 2 X X 2 d + 2ε 2 up L 2. t up X t X t 2εe K 2 T 2 up L t, tt tt up L 2 t which goe to zero i probability a ε for each T >. Sice [t]/ t a, we coclude that the tatemet hold. Lemma 3.2. Let τ m Proof. Note that X t = x + t = if{t : X t b(x, θ )d + εl t. m or Yt m}. The, τ m a.. uiformly i ad ε a m. By the liear growth coditio o b ad the Cauchy Schwarz iequality, we get t 2 X t 2 2( x + ε L t ) b(x, θ )d 2 t 2 x + ε up L + 2t b(x, θ ) 2 d t 2 t 2 x + ε up L + 2K 2 t ( + X ) 2 d t 2 t 2 x + ε up L + 4K 2 t 2 + 4K 2 t X 2 d. t Growall iequality yield that 2 X t 2 2 x + ε up L + 4K 2 t 2 t ad X t 2 x + ε up L t Thu, it follow that Y t = X [t]/ 2 + 2Kt x + up L t e 4K 2 t 2 e 2K 2 t Kt e 2K 2 t 2, which i almot urely fiite. Therefore the proof i complete. We hall ue x f (x, θ) = ( x f (x, θ),..., xd f (x, θ)) T to deote the gradiet operator of f (x, θ) with repect to x. Lemma 3.3. Let f C, (Rd Θ; R). Aume (A) (A2). The, we have f (X tk, θ) P θ f (X, θ)d a ε ad, uiformly i θ Θ. (3.)

7 Author' peroal copy 428 H. Log et al. / Joural of Multivariate Aalyi 6 (23) Proof. By the differetiability of the fuctio f (x, θ) ad Lemma 3., we fid that up f (X tk, θ) f (X, θ)d = up f (Y, θ)d f (X, θ)d up up C f (Y, θ) f (X, θ) d C( + X ( x f ) T (X up x f (X + u(y + u(y X ), θ) (Y X ), θ) du + Y ) λ Y X d Y λ + up X + up X up Y X X )du d X d Pθ a ε ad. Lemma 3.4. Let f C, (Rd Θ; R). Aume (A) (A2). The, we have that for each i d ad each θ Θ, f (X tk, θ)(l i t k L i ) P θ f (X, θ)dli a ε ad, where L i t = a it + r σ ij B j t + i the i-th compoet of L t. t Proof. Note that f (X tk, θ)(l i t k L i ) = Let Li t = Li t t z i Ñ(d, dz) + z f (Y, θ)dl i. t z i N(d, dz) z > z > z in(d, dz). The, we have the followig decompoitio f (Y, θ)dl i f (X, θ)dli = Similar to the proof of Lemma 3.3, we have (f (Y, θ) f (X, θ))z in(d, dz) z > z > (f (Y, θ) f (X, θ))z in(d, dz) + z > C f (Y, θ) f (X, θ) z i N(d, dz) C( + X z > (f (Y, θ) f (X, θ))d Li. + Y ) λ Y X z i N(d, dz) λ + up X + up X up Y X z i N(d, dz), z >

8 Author' peroal copy H. Log et al. / Joural of Multivariate Aalyi 6 (23) which coverge to zero i probability a ε ad by Lemma 3.. By uig the toppig time τ m, Lemma 3., Markov iequality ad domiated covergece, we fid that for ay give η > ad ome fixed m P + + η (f (Y r η σ 2 ij, θ) f (X, θ)) {τ m E E f (Y f (Y } d Li > η a i η, θ) f (X, θ) 2 {τ m }, θ) f (X, θ) 2 {τ m } E /2 d f (Y which goe to zero a ε ad. The, we have P (f (Y, θ) f (X, θ))d Li > η P(τ < ) + m P, θ) f (X, θ) {τ m } d /2 d z i ν(dz) 2, (3.2) z (f (Y, θ) f (X, θ)) {τ m } d Li > η, which coverge to zero a ε ad by Lemma 3.2 ad (3.2). Thi complete the proof. Lemma 3.5. Let f C, (Rd Θ; R). Aume (A) (A2). The, we have that for i d, f (X tk, θ)(x i t k X i b i (X tk, θ ) ) P θ a ε ad, uiformly i θ Θ, where X i t ad b i are the i-th compoet of X t ad b, repectively. Proof. Note that X i t k = X i + It i eay to ee that tk b i (X, θ )d + ε(l i t k L i ). f (X tk, θ)(x i t k X i b i (X tk, θ ) ) = = + ε tk f (X tk, θ)(b i (X, θ ) b i (X tk, θ ))d f (X tk, θ)(l i t k L i ) f (Y By the give coditio o f ad the Lipchitz coditio o b, we have up f (Y, θ)(b i (X, θ ) b i (Y, θ ))d up f (Y KC KC, θ)(b i (X, θ ) b i (Y, θ ))d + ε, θ) K X Y d ( + Y ) λ ( X X + Y X )d λ + up X t t f (Y, θ)dl i. up X X + up Y X, which coverge to zero i probability a ε ad by Lemma 3.. Next uig the decompoitio of L t, we have up ε f (Y, θ)dl i ε up a i f (Y, θ)d + ε up r f (Y, θ) σ ij db j + ε up f (Y, θ)z i Ñ(d, dz) + ε up f (Y, θ)z i N(d, dz). z z >

9 Author' peroal copy 43 H. Log et al. / Joural of Multivariate Aalyi 6 (23) It i clear that ε up a i f (Y, θ)d ε a i C ε a i C ( + Y ) λ d λ + up X, which coverge to zero i probability a ε ad, ad ε up f (Y, θ)z i N(d, dz) ε up f (Y, θ) z i N(d, dz) z > z > ε C( + Y ) λ z i N(d, dz) εc z > λ + up X which coverge to zero i probability. Note that r P ε up f (Y, θ) σ ij db j > η P(τ < ) + m ε P up z i N(d, dz), z > f (Y, θ) {τ m } r σ ij db j > η. (3.3) Let u i (θ) = ε f (Y, θ) {τ m } r σ ij db j, i d. We wat to prove that u i (θ) i probability a ε ad, uiformly i θ Θ. It uffice to how the poitwie covergece ad the tighte of the equece {u i ( )}. For the poitwie covergece, by the Chebyhev iequality ad Ito iometry, we have P( u i (θ) > η) ε2 η 2 E r 2 f (Y, θ) {τ m } σ ij db j r σ 2 ij ε 2 η 2 E f (Y, θ) 2 {τ m } d r r σ 2 ij σ 2 ij ε 2 η 2 E C 2 ( + Y ) 2λ {τ m } d ε 2 η 2 C 2 ( + m) 2λ, (3.4) which coverge to zero a ε ad with fixed m. For the tighte of {u i ( )}, by uig Theorem 2 i Appedix I of Ibragimov ad Ha mikii [], it i eough to prove the followig two iequalitie E[ u i (θ) 2q ] C, (3.5) E[ u i (θ 2) u i (θ ) 2q ] C θ 2 θ 2q (3.6) for θ, θ, θ 2 Θ, where 2q > p. The proof of (3.5) i very imilar to momet etimate i (3.4) by replacig Ito iometry with the Burkholder Davi Gudy iequality. So we omit the detail here. For (3.6), by uig Taylor formula ad the Burkholder Davi Gudy iequality, we have E[ u i (θ 2) u i (θ ) 2q ] ε 2q C q r ε 2q C q r σ 2 ij q E σ 2 ij q E (f (Y, θ 2 ) f (Y θ 2 θ 2 θ f (Y q, θ )) 2 {τ m } d q, θ + v(θ 2 θ )) 2 {τ m } dvd

10 Author' peroal copy H. Log et al. / Joural of Multivariate Aalyi 6 (23) ε 2q C q r ε 2q C q r σ 2 ij q C 2q θ 2 θ 2q E σ 2 ij q C 2q ( + m) 2λq θ 2 θ 2q. ( + Y q ) 2λ {τ m } d Combiig (3.3) ad the above argumet, we have that ε up f (Y, θ) r σ ijdb j coverge to zero i probability a ε ad. Similarly, we ca prove that ε up f (Y z, θ)z i Ñ(d, dz) coverge to zero i probability a ε ad. Therefore, the proof i complete. Now we are i a poitio to prove Theorem 2.. Proof of Theorem 2.. Note that Φ (θ) = 2 tk, θ) b(x tk, θ )) (b(x T (X tk X tk b(x tk, θ )) + := Φ () (θ) + Φ(2) (θ). b(x tk, θ) b(x tk, θ ) 2 By Lemma 3.5 ad let f (x, θ) = b i (x, θ) b i (x, θ ) ( i d), we have up Φ () (θ) P θ a ε ad. By uig Lemma 3.3 with f (x, θ) = b(x, θ) b(x, θ ) 2, we fid up Φ (θ) (2) F(θ) P θ a ε ad, where F(θ) = b(x, θ) t b(x, θ t ) 2 dt. Thu combiig the previou argumet, we have up Φ (θ) F(θ) P θ a ε ad, ad that (A3) ad the cotiuity of X yield that if F(θ) > F(θ ) =, θ θ >δ Pθ for each δ >. Therefore, by Theorem 5.9 of va der Vaart [47], we have the deired coitecy, i.e., ˆθ θ a ε ad. Thi complete the proof Proof of Theorem 2.2 Note that θ Φ (θ) = 2 ( θ b) T (X tk, θ)(x tk X tk b(x tk, θ) ). Let G (θ) = (G,..., Gp ) T with G i (θ) = ( θi b) T (X tk, θ)(x tk X tk b(x tk, θ) ), i =,..., p, ad let K (θ) = θ G (θ), which i a p p matrix coitig of elemet K(θ) ij = θj G i (θ), i, j p. Moreover, we itroduce the followig fuctio K ij (θ) = ( θj θi b) T (X, θ)(b(x, θ ) b(x, θ))d Iij (θ), i, j p. The we defie the matrix fuctio K(θ) = (K ij (θ)) i,jp. Before provig Theorem 2.2, we prepare ome prelimiary reult. Lemma 3.6. Aume (A) (A2). The, we have that for each i =,..., p ε G i (θ ) P θ ( θi b) T (X, θ )dl a ε, ad ε.

11 Author' peroal copy 432 H. Log et al. / Joural of Multivariate Aalyi 6 (23) Proof. Note that for i p ε G i (θ ) = ε ( θi b) T (X tk, θ )(X tk X tk b(x tk, θ ) ) = ε ( θi b) T (X tk, θ ) := H () (θ ) + H (2) (θ ). tk (b(x, θ ) b(x tk, θ ))d + By uig Lemma 3.4 ad lettig f (x, θ) = θi b j (x, θ) ( i p, j d) with θ = θ, we have H (2) (θ ) = ( θi b) T (Y Pθ, θ )dl ( θi b) T (X, θ )dl ( θi b) T (X tk, θ )(L tk L tk ) a ε ad. It uffice to prove that H (θ () ) coverge to zero i probability. For H (θ () ), we eed ome delicate etimate for the proce X t. For [, t k ], we have X X tk = (b(x u, θ ) b(x tk, θ ))du + b(x tk, θ )( ) + ε(l L tk ). By the Lipchitz coditio o b ad the Cauchy Schwarz iequality, we fid that 2 X X tk 2 2 (b(x u, θ ) b(x tk, θ ))du + 2 b(x tk, θ ) ( ) + ε L L tk 2 2 2K 2 X u X tk 2 du + 2 b(x tk, θ ) + ε up L L tk. t k By Growall iequality, we get 2 X X tk 2 2 b(x tk, θ ) + ε up L L tk e 2K 2 ( ). t k It further follow that up t k X X tk 2 b(x tk, θ ) + ε up L L tk t k e K 2 / 2. (3.7) Thu, by the Lipchitz coditio o b ad (3.7), we get tk H () (θ ) ε θi b(x tk, θ ) (b(x, θ ) b(x tk, θ ))d tk ε θi b(x tk, θ ) b(x, θ ) b(x tk, θ ) d tk ε θi b(x tk, θ ) K X X tk d (ε) K 2Ke K 2 / 2 ε θi b(x tk, θ ) up t k X X tk 2Ke K 2 / 2 θi b(x tk, θ ) b(x tk, θ ) + := H (,) (θ ) + H (,2) (θ ). It i eay to ee that H (,) θi b(x tk, θ ) b(x tk, θ ) CK (θ ) coverge to zero i probability a ε ice λ+ + up X < a.. θi b(x tk, θ ) up t k L L tk

12 Author' peroal copy H. Log et al. / Joural of Multivariate Aalyi 6 (23) (cf. (3.)). By uig the baic fact that up L L tk = o P (), t k we fid that H (,2) (θ ) 2Ke K 2 / 2 C λ + up X up L L tk, t k which coverge to zero i probability a ε ad. Therefore the proof i complete. Lemma 3.7. Aume (A) (A4). The, we have up K (θ) K(θ) P θ a ε ad. Proof. It uffice to prove that for i, j p up K ij (θ) K ij (θ) P θ a ε ad. Note that K ij (θ) = θ j G i (θ) = ( θj θi b) T (X tk, θ)(x tk X tk b(x tk, θ ) ) + := K ij,() ( θj θi b) T (X tk, θ)(b(x tk, θ ) b(x tk, θ)) ( θi b) T (X tk, θ) θj b(x tk, θ) i= (θ) + K ij,(2) (θ). By uig Lemma 3.5 ad lettig f (x, θ) = θj θi b l (x, θ) ( i, j p, l d), we have that up K ij,() (θ) coverge to zero i probability a ε ad. By uig Lemma 3.3 ad lettig f (x, θ) = ( θj θi b) T (x, θ)(b(x, θ ) b(x, θ)) ( θi b) T (x, θ) θj b(x, θ), it follow that up K ij,(2) (θ) K ij (θ) coverge to zero i probability a ε ad. Thu, the proof i complete. Fially we are ready to prove Theorem 2.2. Proof of Theorem 2.2. The proof idea maily follow Uchida [42]. Let B(θ ; ρ) = {θ : θ θ ρ} for ρ >. The, by the coitecy of ˆθ, there exit a equece η a ε ad uch that B(θ ; η ) Θ, ad that P θ [ˆθ B(θ ; η )]. Whe ˆθ B(θ ; η ), it follow by Taylor formula that D S = ε G (ˆθ ) ε G (θ ), where D = K (θ + u(ˆθ θ ))du ad S = ε (ˆθ θ ) ice B(θ ; η ) i a covex ubet of Θ. We have D K (θ ) {ˆθ B(θ ;η )} up K (θ) K (θ ) θ B(θ ;η ) Coequetly, it follow from Lemma 3.7 that Pθ D K(θ ), ε,. up K (θ) K(θ) + up K(θ) K(θ ) + K (θ ) K(θ ). θ B(θ ;η ) θ B(θ ;η ) Note that K(θ) i cotiuou with repect to θ. Sice K(θ ) = I(θ ) i poitive defiite, there exit a poitive cotat δ > uch that if w = K(θ )w > 2δ. For uch a δ >, there exit ε(δ) > ad N(δ) N uch that for ay ε (, ε(δ)), > N(δ), B(θ ; η ) Θ ad K(θ) K(θ ) < δ/2 for θ B(θ ; η ). For uch δ >, let Γ = up K (θ) K(θ ) < δ θ θ <η,ϵ 2, ˆθ B(θ ; η ).

13 Author' peroal copy 434 H. Log et al. / Joural of Multivariate Aalyi 6 (23) The, for ay ε (, ε(δ)) ad > N(δ), we have, o Γ, up (D K(θ ))w up D K(θ + u(ˆθ θ ))du w w = w = + up K(θ + u(ˆθ θ ))du K(θ ) w Thu, o Γ, w = up K (θ) K(θ) + δ θ θ η 2 < δ. if D w if K(θ )w up (D K(θ ))w > 2δ δ = δ >. w = w = w = Hece, lettig D = {D i ivertible, ˆθ B(θ ; η )}, we ee that P θ [D ] P θ [Γ ] a ε ad by Lemma 3.7. Now et U = D D + I p p D c, where I p p i the idetity matrix. The it i eay to ee that Pθ U K(θ ) D K(θ ) D + I p p K(θ ) D c, ice P θ [D ]. Thu, by Lemma 3.6, we obtai that S = U D S D + S D c = U ( ε G (θ )) D + S D c Pθ (I(θ )) ( θ b) T (X, θ )dl,..., a ε, ad ε. Thi complete the proof. ( θp b) T (X, θ )dl T 4. Geeralizatio to emi-martigale oie I thi ectio, we dicu the exteio of our mai reult i Sectio 2 to the geeral cae whe the drivig oie i a emi-martigale. Let Q t = Q + M t + A t be a emi-martigale, where M t i a local martigale ad A t i a fiite variatio proce. The, we ca replace the drivig Lévy proce L t i the SDE (.2) by the emi-martigale Q t to get dx t = b(x t, θ)dt + εdq t, t [, ]; X = x. (4.) All the related iformatio about the LSE of θ dicued i the Itroductio ad Sectio 2 hall be the ame. We are itereted i the coitecy ad aymptotic behavior of the LSE ˆθ uder the geeral model (4.). We tate the ew reult a follow. Theorem 4.. Uder coditio (A) (A3), we have ˆθ Pθ θ a ε ad. Theorem 4.2. Uder coditio (A) (A4), we have ε (ˆθ θ ) P θ I (θ ) S(θ ), a ε, ad ε, where S(θ ) := ( θ b) T (X, θ )dq,..., ( θp b) T (X, θ )dq T.

14 Author' peroal copy H. Log et al. / Joural of Multivariate Aalyi 6 (23) Remark 4.3. Sice the proof of Theorem 4. ad 4.2 are imilar to thoe of Theorem 2. ad 2.2 give i Sectio 3, we metio oly the eceary modificatio. Note that M t i a local martigale, we ca ue the tadard localizatio procedure to make M ad [M, M] beig bouded up to the toppig time {T m }, m =, 2,..., with lim m T m = almot urely. For example, we ca defie T m = if{t > : [M, M] > t m or da > m}. The, we ca modify the defiitio of τ m by τ m = if{t : X t m or Y t m} T m. Lemma 3.2 till hold, i.e. τ m a.. uiformly i ad ε a m. Whe the proof are baed o pathwie argumet, they ca be carried over to the emi-martigale oie cae eaily. Whe the proof are baed o the Markov iequality (or the Chebyhev iequality), Ito iometry ad the Burkholder Davi Gudy iequality (c.f. Theorem 54 ad remark o page 75 i Chapter IV of Protter [32]), we ca apply the modified toppig time τ m to the tochatic itegral with repect to the local martigale M t. Thu all the proof will be till valid i term of the modificatio decribed a above. We omit the detail here. 5. Simulatio Coider a 2-dimeioal model for (.2) with T b(x, θ) = θ + x 2 + x2, θ 2 x 2 2, L t = + x 2 + x2 2 V δ,γ t S α t + B t, (5.) where B i the tadard Browia motio, S α i a tadard ymmetric α-table proce S α (,, ), ad V δ,γ i a variace gamma proce with Lévy deity p V (z) = δ z e γ z, z R, δ, γ >. I thi example, we fid that our LSE of θ, ay ˆθ = (ˆθ,, ˆθ,2 ) atifie X () t k X () ˆθ, + (X () ) 2 + (X (2) ) 2 = ; I the equel, we et value of parameter a ˆθ,2 = X (2) t X (2) k t X (2) k t k +(X () t ) 2 +(X (2) k t ) 2 k (X (), X (2) ) = (, ), (θ, θ 2 ) = (2, ), (δ, γ, α) = (5, 3, 3/2). (X (2) ) 2 +(X () ) 2 +(X (2) ) 2. (5.2) The both X () ad X (2) are ifiite activity jump-procee, but the jump activity of X () i bouded variatio, ad the oe of X (2) i ubouded variatio. A ample path of X = (X () t, X (2) t ) t [,] with ε =.3 i give i Fig.. I each experimet, we geerate a dicrete ample (X tk ) k=,,..., ad compute ˆθ from the ample. Thi procedure i iterated, time, ad the mea ad the tadard deviatio of, ampled etimator are computed i each cae of (ε, ). To optimize the oliear equatio (5.2), we ued lm fuctio i R. O geeratig dicrete ample of Lévy procee, ee e.g., Cot ad Takov [4], Sectio II.6 ad referece therei, or oe ca fid ome radom umber geerator i yuima package of R, which i a package for imulatig SDE with jump; ee For example, we ue rtable to geerate radom ample from α-table ditributio. The reult are how i Table 4. From thoe table, we ca oberve the coitecy reult hold true whe ε. We alo ote that the ize of i ofte le importat i practice for etimatig the drift parameter tha the ize of ε although i eceary i theory. It i ituitively clear becaue the accuracy of etimatig drift highly deped o the termial time T of obervatio i geeral, that i, the larger T become, the more accurately θ i etimated. However, the termial T = i ow fixed. Note that, i the mall oie model, lettig ε correpod to obervig a proce from a macro poit of view, which correpod to the cae T i ome ee. Therefore, icreaig uder fixed ε doe ot improve a bia of etimator, which i improved oly if ε. I geeral, a large ca decreae the tadard error (or tadard deviatio) of etimatio, but the effect eem mall i thi example. Comparig tadard deviatio betwee ˆθ, ad ˆθ,2, the former eem to be etimated more tably tha the latter. Thi i becaue big jump of X () are le frequet tha thoe of X (2). If ε i mall eough, the path of X () i almot imilar to the determiitic curve of (X ) () ice big jump do ot occur o frequetly. However, X (2) ca have more big jump that are ot igorable eve if ε i mall, which make the etimator fluctuatig. To oberve the aymptotic ditributio of ˆθ, we hall compare the above example, ay Model A (o-gauia oie), with a 2-dimeioal proce with the ame drift b a i (5.), but the drivig oie L i 2-dimeioal Browia motio, ay Model

15 Author' peroal copy 436 H. Log et al. / Joural of Multivariate Aalyi 6 (23) X2 X Time Fig.. A ample path of Model (5.) with (θ, θ 2, δ, γ, α) = (2,, 5, 3, 3/2) ad ε =.3. Table Mea (upper) ad tadard deviatio (parethee) of etimate through, experimet i the cae ε =.3 ad (δ, γ, α) = (5, 3, 3/2). ε =.3 = 5 = = 3 True ˆθ, (.877) (.8248) (.7926) ˆθ, (2.8493) (2.8685) (2.7667) Table 2 Mea (upper) ad tadard deviatio (parethee) of etimate through, experimet i the cae ε =. ad (δ, γ, α) = (5, 3, 3/2). ε =. = 5 = = 3 True ˆθ, (.5829) (.5836) (.5833) ˆθ, (.224) (.22) (.97) Table 3 Mea (upper) ad tadard deviatio (parethee) of etimate through, experimet i the cae ε =.5 ad (δ, γ, α) = (5, 3, 3/2). ε =.5 = 5 = = 3 True ˆθ, (.296) (.295) (.293) ˆθ, (.4364) (.326) (.6773) B (Gauia oie). Fig. 2 ad 3 repectively how (ormal) QQ-plot for, iterated ample of ε (ˆθ,i θ i ) (i =, 2) i Model A with (ε, ) = (., 3), ad Fig. 4 ad 5 are thoe for Model B with (ε, ) = (., 3). I Model B, (margial) aymptotic ditributio of ε (ˆθ,i θ i ) (i =, 2) mut theoretically be ormal, which are upported by Fig. 4 ad 5. O the other had, tail of the correpodig ditributio i Model A hould be heavier tha ormal ditributio due

16 Author' peroal copy H. Log et al. / Joural of Multivariate Aalyi 6 (23) Table 4 Mea (upper) ad tadard deviatio (parethee) of etimate through, experimet i the cae ε =. ad (δ, γ, α) = (5, 3, 3/2). ε =. = 5 = = 3 True θˆ, 2.5 (.583).38 (.2626) 2.6 (.583).572 (.454) 2.8 (.578) (.37) 2. θˆ,2. Fig. 2. Normal QQ-plot for, iterated ample of ε (θˆ, θ ) i Model A (o-gauia); (ε, ) = (., 3). Fig. 3. Normal QQ-plot for, iterated ample of ε (θˆ,2 θ2 ) i Model A (o-gauia); (ε, ) = (., 3). to jump activitie, ad we ca oberve thoe fact from Fig. 2 ad 3. We ca alo oberve that the aymptotic ditributio of ε (θˆ,2 θ2 ) i much heavier tha the oe of ε (θˆ, θ ) becaue of the high frequecy of jump i X (2). Thee fact are coitet with the theory.

17 Author' peroal copy 438 H. Log et al. / Joural of Multivariate Aalyi 6 (23) Fig. 4. Normal QQ-plot for, iterated ample of ε (θˆ, θ ) i Model B (Gauia); (ε, ) = (., 3). Fig. 5. Normal QQ-plot for, iterated ample of ε (θˆ,2 θ2 ) i Model B (Gauia); (ε, ) = (., 3). Ackowledgmet The author are grateful to aoymou referee for uggetig to add ectio for emi-martigale oie ad imulatio (Sectio 4 ad 5). Thi reearch wa upported by JSPS KAKENHI Grat Number 24746, Japa Sciece ad Techology Agecy, CREST (the 2d author), ad NSERC Grat Number (the 3rd author). Referece [] Y. Aït-Sahalia, Maximum likelihood etimatio of dicretely ampled diffuio: a cloed-form approximatio approach, Ecoometrica 7 (22) [2] J.P.N. Bihwal, Parameter Etimatio i Stochatic Differetial Equatio, i: Lecture Note i Mathematic, Vol. 923, Spriger-Verlag, Berli, Heidelberg, New York, 28. [3] P.J. Brockwell, R.A. Davi, Y. Yag, Etimatio for o-egative Lévy-drive Ortei Uhlebeck procee, J. Appl. Probab. 44 (27) [4] R. Cot, P. Takov, Fiacial Modellig with Jump Procee, Chapma & Hall/CRC, Boca Rato, FL, 24. [5] A.Ja. Dorogovcev, The coitecy of a etimate of a parameter of a tochatic differetial equatio, Theory Probab. Math. Stat. (976)

18 Author' peroal copy H. Log et al. / Joural of Multivariate Aalyi 6 (23) [6] V. Fae, Statitical etimatio of multivariate Ortei Uhlebeck procee ad applicatio to co-itegratio, J. Ecoometric 72 (23) [7] V. Geo-Catalot, Maximum cotrat etimatio for diffuio procee from dicrete obervatio, Statitic 2 (99) [8] A. Gloter, M. Søree, Etimatio for tochatic differetial equatio with a mall diffuio coefficiet, Stochatic Proce. Appl. 9 (29) [9] Y. Hu, H. Log, Parameter etimatio for Ortei Uhlebeck procee drive by α-table Lévy motio, Commu. Stoch. Aal. (27) [] Y. Hu, H. Log, Leat quare etimator for Ortei Uhlebeck procee drive by α-table motio, Stochatic Proce. Appl. 9 (29) [] I.A. Ibragimov, R.Z. Ha mikii, Statitical Etimatio: Aymptotic Theory, Spriger-Verlag, New York, Berli, 98. [2] R.A. Kaoga, The coitecy of a oliear leat quare etimator for diffuio procee, Stochatic Proce. Appl. 3 (988) [3] N. Kuitomo, A. Takahahi, The aymptotic expaio approach to the valuatio of iteret rate cotiget claim, Math. Fiace (2) 7 5. [4] Yu.A. Kutoyat, Parameter Etimatio for Stochatic Procee, Helderma, Berli, 984. [5] Yu.A. Kutoyat, Idetificatio of Dyamical Sytem with Small Noie, Kluwer, Dordrecht, 994. [6] Yu.A. Kutoyat, Statitical Iferece for Ergodic Diffuio Procee, Spriger-Verlag, Lodo, Berli, Heidelberg, 24. [7] C.F. Laredo, A ufficiet coditio for aymptotic ufficiecy of icomplete obervatio of a diffuio proce, A. Statit. 8 (99) [8] A. Le Breto, O cotiuou ad dicrete amplig for parameter etimatio i diffuio type procee, Math. Program. Studie 5 (976) [9] R.S. Lipter, A.N. Shiryaev, Statitic of Radom Procee: II Applicatio, Secod Editio, i: Applicatio of Mathematic, Spriger-Verlag, Berli, Heidelberg, New York, 2. [2] A.W. Lo, Maximum likelihood etimatio of geeralized Ito procee with dicretely ampled data, Ecoometric Theory 4 (988) [2] H. Log, Leat quare etimator for dicretely oberved Ortei Uhlebeck procee with mall Lévy oie, Statit. Probab. Lett. 79 (29) [22] H. Log, Parameter etimatio for a cla of tochatic differetial equatio drive by mall table oie from dicrete obervatio, Acta Math. Sciet. 3B (2) [23] C. Ma, A ote o Leat quare etimator for dicretely oberved Ortei Uhlebeck procee with mall Lévy oie, Statit. Probab. Lett. 8 (2) [24] H. Mauda, Simple etimator for parametric Markovia tred of ergodic procee baed o ampled data, J. Japa Statit. Soc. 35 (25) [25] H. Mauda, Approximate elf-weighted LAD etimatio of dicretely oberved ergodic Ortei Uhlebeck procee, Electro. J. Stat. 4 (2) [26] T. Ogihara, N. Yohida, Quai-likelihood aalyi for the tochatic differetial equatio with jump, Stat., Iferece Stoch. Proce. 4 (2) [27] A.R. Pedere, A ew approach to maximum likelihood etimatio for tochatic differetial equatio baed o dicrete obervatio, Scad. J. Statit. 22 (995) [28] A.R. Pedere, Coitecy ad aymptotic ormality of a approximate maximum likelihood etimator for dicretely oberved diffuio procee, Beroulli (995) [29] R. Poule, Approximate maximum likelihood etimatio of dicretely oberved diffuio procee, Tech. Report 29, Cetre for Aalytical Fiace, Uiverity of Aarhu, 999. [3] B.L.S. Prakaa Rao, Aymptotic theory for oliear leat quare etimator for diffuio procee, Math. Operatio forchug Statit Ser. Statit. 4 (983) [3] B.L.S. Prakaa Rao, Statitical Iferece for Diffuio Type Procee, Oxford Uiverity Pre, Arold, Lodo, New York, 999. [32] P. Protter, Stochatic Itegratio ad Differetial Equatio, Spriger-Verlag, Berli, Heidelberg, New York, 99. [33] Y. Shimizu, M-etimatio for dicretely oberved ergodic diffuio procee with ifiite jump, Stat. Iferece Stoch. Proce. 9 (26) [34] Y. Shimizu, Quadratic type cotrat fuctio for dicretely oberved o-ergodic diffuio procee, Reearch Report Serie 9-4, Diviio of Mathematical Sciece, Oaka Uiverity, 2. [35] Y. Shimizu, N. Yohida, Etimatio of parameter for diffuio procee with jump from dicrete obervatio, Stat. Iferece Stoch. Proce. 9 (26) [36] M. Søree, Small diperio aymptotic for diffuio martigale etimatig fuctio, Preprit No. 2-2, Departmet of Statitic ad Operatio Reearch, Uiverity of Copehage, Copehage, 2. [37] H. Søree, Parameter iferece for diffuio procee oberved at dicrete poit i time: a urvey, Iterat. Statit. Rev. 72 (24) [38] M. Søree, M. Uchida, Small diffuio aymptotic for dicretely ampled tochatic differetial equatio, Beroulli 9 (23) [39] K. Spiliopoulo, Method of momet etimatio of Ortei Uhlebeck procee drive by geeral Lévy proce, Preprit, Uiverity of Marylad, 28. [4] A. Takahahi, A aymptotic expaio approach to pricig cotiget claim, Aia-Paci. Fiacial Market 6 (999) 5 5. [4] A. Takahahi, N. Yohida, A aymptotic expaio cheme for optimal ivetmet problem, Stat. Iferece Stoch. Proce. 7 (24) [42] M. Uchida, Etimatio for dicretely oberved mall diffuio baed o approximate martigale etimatig fuctio, Scad. J. Statit. 3 (24) [43] M. Uchida, Approximate martigale etimatig fuctio for tochatic differetial equatio with mall oie, Stochatic Proce. Appl. 8 (28) [44] M. Uchida, N. Yohida, Iformatio criteria for mall diffuio via the theory of Malliavi-Wataabe, Stat. Iferece Stoch. Proce. 7 (24) [45] M. Uchida, N. Yohida, Aymptotic expaio for mall diffuio applied to optio pricig, Stat. Iferece Stoch. Proce. 7 (24) [46] L. Valdivieo, W. Schoute, F. Tuerlickx, Maximum likelihood etimatio i procee of Ortei Uhlebeck type, Stat. Ifer. Stoch. Proce. 2 (29) 9. [47] A.W. va der Vaart, Aymptotic Statitic, i: Cambridge Serie i Statitical ad Probabilitic Mathematic, vol. 3, Cambridge Uiverity Pre, 998. [48] N. Yohida, Aymptotic expaio of maximum likelihood etimator for mall diffuio via the theory of Malliavi-Wataabe, Probab. Theory Relat. Field 92 (992) [49] N. Yohida, Aymptotic expaio for tatitic related to mall diffuio, J. Japa Statit. Soc. 22 (992) [5] N. Yohida, Coditioal expaio ad their applicatio, Stochatic Proce. Appl. 7 (23) 53 8.

Parameter Estimation for Discretely Observed Vasicek Model Driven by Small Lévy Noises

Parameter Estimation for Discretely Observed Vasicek Model Driven by Small Lévy Noises arameter Etimatio for Dicretely Oberved Vaicek Model Drive by Small Lévy Noie Chao Wei Abtract Thi paper i cocered with the parameter etimatio problem for Vaicek model drive by mall Lévy oie from dicrete

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd, Applied Mathematical Sciece Vol 9 5 o 3 7 - HIKARI Ltd wwwm-hiaricom http://dxdoiorg/988/am54884 O Poitive Defiite Solutio of the Noliear Matrix Equatio * A A I Saa'a A Zarea* Mathematical Sciece Departmet

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Generalized Likelihood Functions and Random Measures

Generalized Likelihood Functions and Random Measures Pure Mathematical Sciece, Vol. 3, 2014, o. 2, 87-95 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/pm.2014.437 Geeralized Likelihood Fuctio ad Radom Meaure Chrito E. Koutzaki Departmet of Mathematic

More information

STA 4032 Final Exam Formula Sheet

STA 4032 Final Exam Formula Sheet Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

More information

10-716: Advanced Machine Learning Spring Lecture 13: March 5

10-716: Advanced Machine Learning Spring Lecture 13: March 5 10-716: Advaced Machie Learig Sprig 019 Lecture 13: March 5 Lecturer: Pradeep Ravikumar Scribe: Charvi Ratogi, Hele Zhou, Nicholay opi Note: Lae template courtey of UC Berkeley EECS dept. Diclaimer: hee

More information

Another Look at Estimation for MA(1) Processes With a Unit Root

Another Look at Estimation for MA(1) Processes With a Unit Root Aother Look at Etimatio for MA Procee With a Uit Root F. Jay Breidt Richard A. Davi Na-Jug Hu Murray Roeblatt Colorado State Uiverity Natioal Tig-Hua Uiverity U. of Califoria, Sa Diego http://www.tat.colotate.edu/~rdavi/lecture

More information

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution Applied Mathematic E-Note, 9009, 300-306 c ISSN 1607-510 Available free at mirror ite of http://wwwmaththuedutw/ ame/ A Tail Boud For Sum Of Idepedet Radom Variable Ad Applicatio To The Pareto Ditributio

More information

Statistical Inference Procedures

Statistical Inference Procedures Statitical Iferece Procedure Cofidece Iterval Hypothei Tet Statitical iferece produce awer to pecific quetio about the populatio of iteret baed o the iformatio i a ample. Iferece procedure mut iclude a

More information

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Chapter 9. Key Ideas Hypothesis Test (Two Populations) Chapter 9 Key Idea Hypothei Tet (Two Populatio) Sectio 9-: Overview I Chapter 8, dicuio cetered aroud hypothei tet for the proportio, mea, ad tadard deviatio/variace of a igle populatio. However, ofte

More information

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed. ] z-tet for the mea, μ If the P-value i a mall or maller tha a pecified value, the data are tatitically igificat at igificace level. Sigificace tet for the hypothei H 0: = 0 cocerig the ukow mea of a populatio

More information

PARAMETER ESTIMATION FOR A CLASS OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY SMALL STABLE NOISES FROM DISCRETE OBSERVATIONS

PARAMETER ESTIMATION FOR A CLASS OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY SMALL STABLE NOISES FROM DISCRETE OBSERVATIONS Acta Mathematica Scietia 21,3B(3:645 663 http://actams.wipm.ac.c PARAMETER ESTIMATION FOR A CLASS OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY SMALL STABLE NOISES FROM DISCRETE OBSERVATIONS Log Hogwei

More information

IntroEcono. Discrete RV. Continuous RV s

IntroEcono. Discrete RV. Continuous RV s ItroEcoo Aoc. Prof. Poga Porchaiwiekul, Ph.D... ก ก e-mail: Poga.P@chula.ac.th Homepage: http://pioeer.chula.ac.th/~ppoga (c) Poga Porchaiwiekul, Chulalogkor Uiverity Quatitative, e.g., icome, raifall

More information

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( ) STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN Suppoe that we have a ample of meaured value x1, x, x3,, x of a igle uow quatity. Aumig that the meauremet are draw from a ormal ditributio

More information

A tail bound for sums of independent random variables : application to the symmetric Pareto distribution

A tail bound for sums of independent random variables : application to the symmetric Pareto distribution A tail boud for um of idepedet radom variable : applicatio to the ymmetric Pareto ditributio Chritophe Cheeau To cite thi verio: Chritophe Cheeau. A tail boud for um of idepedet radom variable : applicatio

More information

TESTS OF SIGNIFICANCE

TESTS OF SIGNIFICANCE TESTS OF SIGNIFICANCE Seema Jaggi I.A.S.R.I., Library Aveue, New Delhi eema@iari.re.i I applied ivetigatio, oe i ofte itereted i comparig ome characteritic (uch a the mea, the variace or a meaure of aociatio

More information

Last time: Completed solution to the optimum linear filter in real-time operation

Last time: Completed solution to the optimum linear filter in real-time operation 6.3 tochatic Etimatio ad Cotrol, Fall 4 ecture at time: Completed olutio to the oimum liear filter i real-time operatio emi-free cofiguratio: t D( p) F( p) i( p) dte dp e π F( ) F( ) ( ) F( p) ( p) 4444443

More information

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing Commet o Dicuio Sheet 18 ad Workheet 18 ( 9.5-9.7) A Itroductio to Hypothei Tetig Dicuio Sheet 18 A Itroductio to Hypothei Tetig We have tudied cofidece iterval for a while ow. Thee are method that allow

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

LECTURE 13 SIMULTANEOUS EQUATIONS

LECTURE 13 SIMULTANEOUS EQUATIONS NOVEMBER 5, 26 Demad-upply ytem LETURE 3 SIMULTNEOUS EQUTIONS I thi lecture, we dicu edogeeity problem that arie due to imultaeity, i.e. the left-had ide variable ad ome of the right-had ide variable are

More information

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Review of the Air Force Academy No. (34)/7 ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Aca Ileaa LUPAŞ Military Techical Academy, Bucharet, Romaia (lua_a@yahoo.com) DOI:.96/84-938.7.5..6 Abtract:

More information

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49 C22.0103 Sprig 2011 Homework 7 olutio 1. Baed o a ample of 50 x-value havig mea 35.36 ad tadard deviatio 4.26, fid a 95% cofidece iterval for the populatio mea. SOLUTION: The 95% cofidece iterval for the

More information

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w:

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w: Stat 400, ectio 7. Large Sample Cofidece Iterval ote by Tim Pilachowki a Large-Sample Two-ided Cofidece Iterval for a Populatio Mea ectio 7.1 redux The poit etimate for a populatio mea µ will be a ample

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS ME 40 MECHANICAL ENGINEERING REGRESSION ANALYSIS Regreio problem deal with the relatiohip betwee the frequec ditributio of oe (depedet) variable ad aother (idepedet) variable() which i (are) held fied

More information

UNIVERSITY OF CALICUT

UNIVERSITY OF CALICUT Samplig Ditributio 1 UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION BSc. MATHEMATICS COMPLEMENTARY COURSE CUCBCSS 2014 Admiio oward III Semeter STATISTICAL INFERENCE Quetio Bak 1. The umber of poible

More information

DETERMINISTIC APPROXIMATION FOR STOCHASTIC CONTROL PROBLEMS

DETERMINISTIC APPROXIMATION FOR STOCHASTIC CONTROL PROBLEMS DETERMINISTIC APPROXIMATION FOR STOCHASTIC CONTROL PROBLEMS R.Sh.Lipter*, W.J.Ruggaldier**, M.Takar*** *Departmet of Electrical Egieerig-Sytem Tel Aviv Uiverity 69978 - Ramat Aviv, Tel Aviv, ISRAEL **Dipartimeto

More information

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry Zeta-reciprocal Eteded reciprocal zeta fuctio ad a alterate formulatio of the Riema hypothei By. Alam Chaudhry Departmet of athematical Sciece, Kig Fahd Uiverity of Petroleum ad ieral Dhahra 36, Saudi

More information

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS EULER-MACLAURI SUM FORMULA AD ITS GEERALIZATIOS AD APPLICATIOS Joe Javier Garcia Moreta Graduate tudet of Phyic at the UPV/EHU (Uiverity of Baque coutry) I Solid State Phyic Addre: Practicate Ada y Grijalba

More information

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders)

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders) VIII. Iterval Etimatio A. A Few Importat Defiitio (Icludig Some Remider) 1. Poit Etimate - a igle umerical value ued a a etimate of a parameter.. Poit Etimator - the ample tatitic that provide the poit

More information

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences Turkih Joural of Aalyi ad Number Theory, 4, Vol., No. 6, 33-38 Available olie at http://pub.ciepub.com/tjat//6/9 Sciece ad Educatio Publihig DOI:.69/tjat--6-9 Geeralized Fiboacci Like Sequece Aociated

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Brief Review of Linear System Theory

Brief Review of Linear System Theory Brief Review of Liear Sytem heory he followig iformatio i typically covered i a coure o liear ytem theory. At ISU, EE 577 i oe uch coure ad i highly recommeded for power ytem egieerig tudet. We have developed

More information

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes Explicit cheme So far coidered a fully explicit cheme to umerically olve the diffuio equatio: T + = ( )T + (T+ + T ) () with = κ ( x) Oly table for < / Thi cheme i ometime referred to a FTCS (forward time

More information

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve Statitic ad Chemical Meauremet: Quatifyig Ucertaity The bottom lie: Do we trut our reult? Should we (or ayoe ele)? Why? What i Quality Aurace? What i Quality Cotrol? Normal or Gauia Ditributio The Bell

More information

Pile-up Probabilities for the Laplace Likelihood Estimator of a Non-invertible First Order Moving Average

Pile-up Probabilities for the Laplace Likelihood Estimator of a Non-invertible First Order Moving Average IMS Lecture Note Moograph Serie c Ititute of Mathematical Statitic, Pile-up Probabilitie for the Laplace Likelihood Etimator of a No-ivertible Firt Order Movig Average F. Jay Breidt 1,, Richard A. Davi,3,

More information

On the Positive Definite Solutions of the Matrix Equation X S + A * X S A = Q

On the Positive Definite Solutions of the Matrix Equation X S + A * X S A = Q The Ope Applied Mathematic Joural 011 5 19-5 19 Ope Acce O the Poitive Defiite Solutio of the Matrix Equatio X S + A * X S A = Q Maria Adam * Departmet of Computer Sciece ad Biomedical Iformatic Uiverity

More information

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.

More information

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE 20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE If the populatio tadard deviatio σ i ukow, a it uually will be i practice, we will have to etimate it by the ample tadard deviatio. Sice σ i ukow,

More information

Fig. 1: Streamline coordinates

Fig. 1: Streamline coordinates 1 Equatio of Motio i Streamlie Coordiate Ai A. Soi, MIT 2.25 Advaced Fluid Mechaic Euler equatio expree the relatiohip betwee the velocity ad the preure field i ivicid flow. Writte i term of treamlie coordiate,

More information

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles Ope Joural of Dicrete Mathematic, 205, 5, 54-64 Publihed Olie July 205 i SciRe http://wwwcirporg/oural/odm http://dxdoiorg/0426/odm2055005 O the Siged Domiatio Number of the Carteia Product of Two Directed

More information

Positive solutions of singular (k,n-k) conjugate boundary value problem

Positive solutions of singular (k,n-k) conjugate boundary value problem Joural of Applied Mathematic & Bioiformatic vol5 o 25-2 ISSN: 792-662 prit 792-699 olie Sciepre Ltd 25 Poitive olutio of igular - cojugate boudar value problem Ligbi Kog ad Tao Lu 2 Abtract Poitive olutio

More information

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS Available olie at www.ia.org.i/jia JOURA OF THE IDIA OIETY OF AGRIUTURA TATITI 64() 00 55-60 Variace Etimatio for te Regreio Etimator of te Mea i tratified amplig UMMARY at Gupta * ad Javid abbir Departmet

More information

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions M7 Chapter 9 Sectio 1 OBJECTIVES Tet two mea with idepedet ample whe populatio variace are kow. Tet two variace with idepedet ample. Tet two mea with idepedet ample whe populatio variace are equal Tet

More information

CHAPTER 6. Confidence Intervals. 6.1 (a) y = 1269; s = 145; n = 8. The standard error of the mean is = s n = = 51.3 ng/gm.

CHAPTER 6. Confidence Intervals. 6.1 (a) y = 1269; s = 145; n = 8. The standard error of the mean is = s n = = 51.3 ng/gm. } CHAPTER 6 Cofidece Iterval 6.1 (a) y = 1269; = 145; = 8. The tadard error of the mea i SE ȳ = = 145 8 = 51.3 g/gm. (b) y = 1269; = 145; = 30. The tadard error of the mea i ȳ = 145 = 26.5 g/gm. 30 6.2

More information

Fractional parts and their relations to the values of the Riemann zeta function

Fractional parts and their relations to the values of the Riemann zeta function Arab. J. Math. (08) 7: 8 http://doi.org/0.007/40065-07-084- Arabia Joural of Mathematic Ibrahim M. Alabdulmohi Fractioal part ad their relatio to the value of the Riema zeta fuctio Received: 4 Jauary 07

More information

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation Société de Calcul Mathématique S A Algorithme et Optimiatio Radom amplig of proportio Berard Beauzamy Jue 2008 From time to time we fid a problem i which we do ot deal with value but with proportio For

More information

On forward improvement iteration for stopping problems

On forward improvement iteration for stopping problems O forward improvemet iteratio for stoppig problems Mathematical Istitute, Uiversity of Kiel, Ludewig-Mey-Str. 4, D-24098 Kiel, Germay irle@math.ui-iel.de Albrecht Irle Abstract. We cosider the optimal

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

= o(1) and n 1/2 γ n log M = o(1) for some

= o(1) and n 1/2 γ n log M = o(1) for some Web-baed upportig material for FMEM: Fuctioal Mixed effect Model for Logitudial Fuctioal Repoe by Hogtu Zhu, Kehui Che, X. Luo, Yig Yua, ad Jae-Lig Wag A Proof of Theorem Recall that y i = (y i1,..., y

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Expectation of the Ratio of a Sum of Squares to the Square of the Sum : Exact and Asymptotic results

Expectation of the Ratio of a Sum of Squares to the Square of the Sum : Exact and Asymptotic results Expectatio of the Ratio of a Sum of Square to the Square of the Sum : Exact ad Aymptotic reult A. Fuch, A. Joffe, ad J. Teugel 63 October 999 Uiverité de Strabourg Uiverité de Motréal Katholieke Uiveriteit

More information

Weak formulation and Lagrange equations of motion

Weak formulation and Lagrange equations of motion Chapter 4 Weak formulatio ad Lagrage equatio of motio A mot commo approach to tudy tructural dyamic i the ue of the Lagrage equatio of motio. Thee are obtaied i thi chapter tartig from the Cauchy equatio

More information

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i 0 Dirichlet Serie & Logarithmic Power Serie. Defiitio & Theorem Defiitio.. (Ordiary Dirichlet Serie) Whe,a,,3, are complex umber, we call the followig Ordiary Dirichlet Serie. f() a a a a 3 3 a 4 4 Note

More information

13.4 Scalar Kalman Filter

13.4 Scalar Kalman Filter 13.4 Scalar Kalma Filter Data Model o derive the Kalma filter we eed the data model: a 1 + u < State quatio > + w < Obervatio quatio > Aumptio 1. u i zero mea Gauia, White, u } σ. w i zero mea Gauia, White,

More information

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 4 Dr Amir G Aghdam Cocordia Uiverity Part of thee ote are adapted from the material i the followig referece: Moder Cotrol Sytem by Richard C Dorf ad Robert H Bihop, Pretice Hall

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Chapter 9: Hypothesis Testing

Chapter 9: Hypothesis Testing Chapter 9: Hypothei Tetig Chapter 5 dicued the cocept of amplig ditributio ad Chapter 8 dicued how populatio parameter ca be etimated from a ample. 9. Baic cocept Hypothei Tetig We begi by makig a tatemet,

More information

Chapter 1 Econometrics

Chapter 1 Econometrics Chapter Ecoometric There are o exercie or applicatio i Chapter. 0 Pearo Educatio, Ic. Publihig a Pretice Hall Chapter The Liear Regreio Model There are o exercie or applicatio i Chapter. 0 Pearo Educatio,

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc.

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc. Table ad Formula for Sulliva, Fudametal of Statitic, e. 008 Pearo Educatio, Ic. CHAPTER Orgaizig ad Summarizig Data Relative frequecy frequecy um of all frequecie Cla midpoit: The um of coecutive lower

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Introducing a Novel Bivariate Generalized Skew-Symmetric Normal Distribution

Introducing a Novel Bivariate Generalized Skew-Symmetric Normal Distribution Joural of mathematics ad computer Sciece 7 (03) 66-7 Article history: Received April 03 Accepted May 03 Available olie Jue 03 Itroducig a Novel Bivariate Geeralized Skew-Symmetric Normal Distributio Behrouz

More information

DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE

DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE Joe Javier Garcia Moreta Graduate tudet of Phyic at the UPV/EHU (Uiverity of Baque coutry) I Solid State Phyic Addre:

More information

On the 2-Domination Number of Complete Grid Graphs

On the 2-Domination Number of Complete Grid Graphs Ope Joural of Dicrete Mathematic, 0,, -0 http://wwwcirporg/oural/odm ISSN Olie: - ISSN Prit: - O the -Domiatio Number of Complete Grid Graph Ramy Shahee, Suhail Mahfud, Khame Almaea Departmet of Mathematic,

More information

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2 Tetig Hypothee COMPARISONS INVOLVING TWO SAMPLE MEANS Two type of hypothee:. H o : Null Hypothei - hypothei of o differece. or 0. H A : Alterate Hypothei hypothei of differece. or 0 Two-tail v. Oe-tail

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

Statistical Inference Based on Extremum Estimators

Statistical Inference Based on Extremum Estimators T. Rotheberg Fall, 2007 Statistical Iferece Based o Extremum Estimators Itroductio Suppose 0, the true value of a p-dimesioal parameter, is kow to lie i some subset S R p : Ofte we choose to estimate 0

More information

An alternative proof of a theorem of Aldous. concerning convergence in distribution for martingales.

An alternative proof of a theorem of Aldous. concerning convergence in distribution for martingales. A alterative proof of a theorem of Aldous cocerig covergece i distributio for martigales. Maurizio Pratelli Dipartimeto di Matematica, Uiversità di Pisa. Via Buoarroti 2. I-56127 Pisa, Italy e-mail: pratelli@dm.uipi.it

More information

EFFECTIVE WLLN, SLLN, AND CLT IN STATISTICAL MODELS

EFFECTIVE WLLN, SLLN, AND CLT IN STATISTICAL MODELS EFFECTIVE WLLN, SLLN, AND CLT IN STATISTICAL MODELS Ryszard Zieliński Ist Math Polish Acad Sc POBox 21, 00-956 Warszawa 10, Polad e-mail: rziel@impagovpl ABSTRACT Weak laws of large umbers (W LLN), strog

More information

Isolated Word Recogniser

Isolated Word Recogniser Lecture 5 Iolated Word Recogitio Hidde Markov Model of peech State traitio ad aligmet probabilitie Searchig all poible aligmet Dyamic Programmig Viterbi Aligmet Iolated Word Recogitio 8. Iolated Word Recogier

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Last time: Ground rules for filtering and control system design

Last time: Ground rules for filtering and control system design 6.3 Stochatic Etimatio ad Cotrol, Fall 004 Lecture 7 Lat time: Groud rule for filterig ad cotrol ytem deig Gral ytem Sytem parameter are cotaied i w( t ad w ( t. Deired output i grated by takig the igal

More information

A class of nonparametric density derivative estimators based on global Lipschitz conditions 1

A class of nonparametric density derivative estimators based on global Lipschitz conditions 1 A cla of oparametric deity derivative etimator baed o global Lipchitz coditio Kairat Mybaev Iteratioal School of Ecoomic Kazah-Britih Techical Uiverity Tolebi 59 Almaty 050000, Kazahta email: airat mybayev@yahoo.com

More information

MAXIMAL INEQUALITIES AND STRONG LAW OF LARGE NUMBERS FOR AANA SEQUENCES

MAXIMAL INEQUALITIES AND STRONG LAW OF LARGE NUMBERS FOR AANA SEQUENCES Commu Korea Math Soc 26 20, No, pp 5 6 DOI 0434/CKMS20265 MAXIMAL INEQUALITIES AND STRONG LAW OF LARGE NUMBERS FOR AANA SEQUENCES Wag Xueju, Hu Shuhe, Li Xiaoqi, ad Yag Wezhi Abstract Let {X, } be a sequece

More information

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data Proceedigs 59th ISI World Statistics Cogress, 5-30 August 013, Hog Kog (Sessio STS046) p.09 Kolmogorov-Smirov type Tests for Local Gaussiaity i High-Frequecy Data George Tauche, Duke Uiversity Viktor Todorov,

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance S T A T 4 - R a c h e l L. W e b b, P o r t l a d S t a t e U i v e r i t y P a g e Commo Symbol = Sample Size x = Sample Mea = Sample Stadard Deviatio = Sample Variace pˆ = Sample Proportio r = Sample

More information

Introduction to Control Systems

Introduction to Control Systems Itroductio to Cotrol Sytem CLASSIFICATION OF MATHEMATICAL MODELS Icreaig Eae of Aalyi Static Icreaig Realim Dyamic Determiitic Stochatic Lumped Parameter Ditributed Parameter Liear Noliear Cotat Coefficiet

More information

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula Joural of Multivariate Aalysis 102 (2011) 1315 1319 Cotets lists available at ScieceDirect Joural of Multivariate Aalysis joural homepage: www.elsevier.com/locate/jmva Superefficiet estimatio of the margials

More information

<, if ε > 0 2nloglogn. =, if ε < 0.

<, if ε > 0 2nloglogn. =, if ε < 0. GLASNIK MATEMATIČKI Vol. 52(72)(207), 35 360 THE DAVIS-GUT LAW FOR INDEPENDENT AND IDENTICALLY DISTRIBUTED BANACH SPACE VALUED RANDOM ELEMENTS Pigya Che, Migyag Zhag ad Adrew Rosalsky Jia Uversity, P.

More information

Self-normalized deviation inequalities with application to t-statistic

Self-normalized deviation inequalities with application to t-statistic Self-ormalized deviatio iequalities with applicatio to t-statistic Xiequa Fa Ceter for Applied Mathematics, Tiaji Uiversity, 30007 Tiaji, Chia Abstract Let ξ i i 1 be a sequece of idepedet ad symmetric

More information

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT Itroductio to Extreme Value Theory Laures de Haa, ISM Japa, 202 Itroductio to Extreme Value Theory Laures de Haa Erasmus Uiversity Rotterdam, NL Uiversity of Lisbo, PT Itroductio to Extreme Value Theory

More information

8.6 Order-Recursive LS s[n]

8.6 Order-Recursive LS s[n] 8.6 Order-Recurive LS [] Motivate ti idea wit Curve Fittig Give data: 0,,,..., - [0], [],..., [-] Wat to fit a polyomial to data.., but wic oe i te rigt model?! Cotat! Quadratic! Liear! Cubic, Etc. ry

More information

The log-behavior of n p(n) and n p(n)/n

The log-behavior of n p(n) and n p(n)/n Ramauja J. 44 017, 81-99 The log-behavior of p ad p/ William Y.C. Che 1 ad Ke Y. Zheg 1 Ceter for Applied Mathematics Tiaji Uiversity Tiaji 0007, P. R. Chia Ceter for Combiatorics, LPMC Nakai Uivercity

More information

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon New proof of the duplicatio ad multiplicatio formulae for the gamma ad the Bare double gamma fuctio Abtract Doal F. Coo dcoo@btopeworld.com 6 March 9 New proof of the duplicatio formulae for the gamma

More information

Gamma Distribution and Gamma Approximation

Gamma Distribution and Gamma Approximation Gamma Distributio ad Gamma Approimatio Xiaomig Zeg a Fuhua (Frak Cheg b a Xiame Uiversity, Xiame 365, Chia mzeg@jigia.mu.edu.c b Uiversity of Ketucky, Leigto, Ketucky 456-46, USA cheg@cs.uky.edu Abstract

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

Least Squares Estimator for Ornstein-Uhlenbeck Processes Driven by α-stable Motions 1

Least Squares Estimator for Ornstein-Uhlenbeck Processes Driven by α-stable Motions 1 Least Squares Estimator for Orstei-Uhlebeck Processes Drive by α-stable Motios 1 Yaozhog Hu Departmet of Mathematics, Uiversity of Kasas, 601 Sow Hall, Lawrece, Kasas 66045-14, USA Hogwei Log 3 Departmet

More information

Properties of Fuzzy Length on Fuzzy Set

Properties of Fuzzy Length on Fuzzy Set Ope Access Library Joural 206, Volume 3, e3068 ISSN Olie: 2333-972 ISSN Prit: 2333-9705 Properties of Fuzzy Legth o Fuzzy Set Jehad R Kider, Jaafar Imra Mousa Departmet of Mathematics ad Computer Applicatios,

More information

Limit distributions for products of sums

Limit distributions for products of sums Statistics & Probability Letters 62 (23) 93 Limit distributios for products of sums Yogcheg Qi Departmet of Mathematics ad Statistics, Uiversity of Miesota-Duluth, Campus Ceter 4, 7 Uiversity Drive, Duluth,

More information

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002 ECE 330:541, Stochastic Sigals ad Systems Lecture Notes o Limit Theorems from robability Fall 00 I practice, there are two ways we ca costruct a ew sequece of radom variables from a old sequece of radom

More information

THE ADAPTIVE LASSSO UNDER A GENERALIZED SPARSITY CONDITION. Joel L. Horowitz Department of Economics Northwestern University Evanston, IL

THE ADAPTIVE LASSSO UNDER A GENERALIZED SPARSITY CONDITION. Joel L. Horowitz Department of Economics Northwestern University Evanston, IL THE ADAPTIVE LASSSO UNDER A GENERALIZED SPARSITY CONDITION by Joel L. Horowitz Departmet of Ecoomic Northweter Uiverity Evato, IL 68 ad Jia Huag Departmet of Statitic ad Actuarial Sciece Uiverity of Iowa

More information

Efficient Point Estimation of the Sharpe Ratio

Efficient Point Estimation of the Sharpe Ratio Joural of Statitical ad Ecoometric Method, vol., o.4, 013, 19-14 ISSN: 41-0384 (prit), 41-0376 (olie) Sciepre Ltd, 013 Efficiet Poit Etimatio of the Sharpe Ratio Grat H. Skrepek 1 ad Ahok Sahai Abtract

More information

New integral representations. . The polylogarithm function

New integral representations. . The polylogarithm function New itegral repreetatio of the polylogarithm fuctio Djurdje Cvijović Atomic Phyic Laboratory Viča Ititute of Nuclear Sciece P.O. Box 5 Belgrade Serbia. Abtract. Maximo ha recetly give a excellet ummary

More information