MODERATING RATIO PARAMETER EVALUATION FOR DIFFERENT MATERIALS BY MEANS OF MONTE CARLO CALCULATIONS AND REACTIVITY DIRECT MEASUREMENTS

Size: px
Start display at page:

Download "MODERATING RATIO PARAMETER EVALUATION FOR DIFFERENT MATERIALS BY MEANS OF MONTE CARLO CALCULATIONS AND REACTIVITY DIRECT MEASUREMENTS"

Transcription

1 MODERING RIO PRMEER EVLUION FOR DIFFEREN MERIL BY MEN OF MONE CRLO CLCULION ND RECIVIY DIREC MEUREMEN. Borio, M. Cagnazzo, F. Marchetti, P. Pappalardo,. alvini. Laboratorio Energia Nucleare pplicata (L.E.N..) of University of Pavia Pavia, Italy 1. Introduction he aim of this work is to determine moderating properties of different materials, in specific the lowingdown Power (DP) and the Moderating Ratio (MR), defined as DP =ξ MR= ξ where and represent respectively the macroscopic scattering and absorption cross section, and ξ is the average logarithmic energy loss per collision. lowing-down power indicates how rapidly a neutron will slow down in the material, but it does not fully explain the effectiveness of the material as a moderator. In fact, a material can slow down neutrons with high efficiency because of its big, but it can be a poor moderator because it also absorbs neutrons with high probability. hus, the most complete measure of the effectiveness of a moderator is the moderating ratio parameter because it takes into account also the absorption effects: the bigger is the moderating ratio values, the more effectively the material performs as a moderator. he first part of the work consisted in the comparison between the DP and MR parameter evaluated for different materials by means of Monte Carlo simulations and by means of calculations based on their definition formula: these calculations are based on knowledge of material composition and of microscopic cross section σ i (derived from literature). he second part of the work was dedicated to correlate the materials MR values with the measured variation of reactivity induced by the insertion of the materials in the core of RIG Mark II reactor of the University of Pavia. 2. DP and MR determination by means of MCNP Code and by means of definition formula. Calculations from the definition formula and Monte Carlo simulations were performed for the following material: d (g/cm 3 ) H 2 O 1.00 Graphite 1.60 ample 1.90 ample B

2 Where ample and ample B are two perfluoropolyether received from olvay olexis s.p.a. [1] with the following composition: ample : CF 3 O(CF 2 CF(CF 3 )O) n (CF 2 O) m (CF(CF3)O) p CF 3 n=20; m=0.3; p=0.7 ample B: - O(CF 2 O) m (CF 2 CF 2 O) n - n= 81.54; m=76.2, (molar fractions) = CF 3 (0.64); CF 2 Cl (0.21); CF 2 CF 2 Cl (0.15). Monte Carlo simulation were performed by means of MCNP (Monte Carlo N-Particle) code and concerned the evaluation of macroscopic total cross section and of diffusion length L. Considering a mono-directional beam of neutrons of intensity Φ 0, which strikes on a material of thickness x (Fig. 1), every neutron that interacts in the material will be lost from the beam. If Φ ( x) is the intensity of the uncollided neutrons after penetrating the distance x and emerging from the target, the attenuation of neutron beam is given by: Φ = Φ0 e x ince the purpose is to evaluate in correspondence of thermal energy region, the input for the source Φ 0 in MCNP has been a neutron beam whit Maxwell energy spectral distribution at K. he output correspond to the uncollided flux Φ : once fixed the thickness x, can be calculated. x (cm -1 ) Calculation MCNP H 2 O Graphite ample ample B N - ource φ 0 * φ Figure 1 he diffusion length L is a typical parameter for a neutron population at thermal equilibrium in the infinite medium in which diffusion takes place. he relation connecting L with the distance R from the neutron source and with the corresponding flux Φ(R) at that point, in an infinite and homogeneous medium (Fig. 2), is given by: Φ ( R) R = a e R L 178

3 ource φ(r) * R Figure 2 0,1 0, R (cm) Figure 3: exponential fit of Φ ( R) R as function of R. In this case, MCNP calculation is performed placing a neutron isotropic point source in the middle of a sphere of radium R filled whit moderator material (the outside of the sphere is composed of moderator too to take into account the diffusion in an infinite medium). he output of MCNP is the flux Φ (R) : by means of an exponential fit of Φ ( R) R the moderator diffusion length L can be evaluated (Fig. 3). L (cm) H 2 O 2.75 [2] 2.85 [3] Graphite 52.5 [2] - 59 [3] ample ample B Once and L have been evaluated it is possible to calculate the macroscopic scattering ( ) and absorption ( ) cross section by use of following equations: = + 1 L = 3 ; << he results were compared with values reported in literature, when possible, and with those obtained by simple calculation of macroscopic cross section. (cm -1 ) H 2O Graphite [3] ample ample B (cm -1 ) H 2O [3] Graphite 2.73e-4 [3] 2.834e e-4 ample e e-4 ample B e e-3 179

4 Logarimic energy loss per collision ξ has been calculated by definitions: ( 1) ξ = ξ = s ln 1 ξi respectively in the case of a nuclide with atomic number and of a mixture of nuclides. Calculated value of ξ were compared with literature when possible. i ( i ) s ξ calculation ξ literature H 2 O GRPHIE ample ample B Using the obtained value for and, lowing-down Power (DP) and Moderating Ratio (MR) have been calculated for different materials: results are reported in the following tables and mark a common trend and a good agreement between calculation and MCNP simulation. DP H 2 O 1.35 [2] Graphite 0.06 [2] ample ample B MR H 2 O 71 [2] Graphite 192 [2] ample ample B MR determination by reactivity measure. he experimental determination of Moderating Ratio has been performed by measuring the insertion of positive or negative reactivity in the reactor due to the introduction of the materials inside the Central himble of reactor core. In order to avoid reactivity effects due to temperature, measurement has been performed at 15W power. he measure procedure consisted of the following steps: Reactor is brought critical at 15 W power, central thimble is void; 180

5 the position values of control rods are registered; a sample of material X is introduced into the Central himble: the perturbation induces a deviation from steady state, which is associated to an insertion of positive or negative reactivity ρ ; Fixed the HIM e RNIEN control rods positions, critical condition at 15 W is achieved again by inserting or extracting the REGULING control rod the positive of negative reactivity inserted in the core ( ρ X ) as consequence of the introduction of material X, is evaluated using the REGULING rod calibration data. Before to start the measurement an analysis of the four materials was performed looking for contaminant with high absorption cross section. ll samples resulted very clean materials, but, from the analysis certificate, graphite resulted contaminated by less than 0.5 ppm in weight of natural boron. Besides, since graphite was in a micro-particulate state, the density of the sample was considerably low, about 1.03 g. cm -3. For this reasons, the MR parameter for graphite was recalculated by means of the definition formula: the new value estimation was 191. he results of the measurement performed on the samples are reported below: ρ (cents) H 2 O (density = 1.00) 9.22 Graphite (density = 1.03) 7.52 ample (density = 1.90) 9.95 ample B (density = 1.85) 8.74 t this point the goal was to correlate the measured ρ X with the calculated MR. In order to do this it was necessary to think about what parameters of the measure could give a contribution to the variation of reactivity but wouldn t effect the MR value. wo parameters were identified: the total weight of the sample of the material inserted in the reactor core W x and the atomic density per barn of the material itself N x. s result a new parameter of the measure was defined as follow: x ρx = ρ H O 3 W H 3 2 x x 2 W O N N H 2 O and the MR x /MR H2O values of the materials were displayed as a function of the parameter x giving as a result an exponential fit (Fig. 4). he error on the MR evaluation is due to the uncertainties on the microscopic cross section values and on the density values of the materials and, for our calculation, can be estimated about few percent. he error on parameter is mainly due to the accuracy in the indication of the reactor power level and to the uncertainties in the estimation of the REGULING rod reactivity value, of the weight and of the density of the materials. he error on parameter is estimated less than ±2%. 181

6 10 MRx/MRH20 1 0,1 0,85 0,9 0,95 1 1,05 1,1 Figure 4: exponential fit of MR x /MR H2O values of the materials as a function of the parameter x. 4. Conclusions he comparison between the DP and MR parameter evaluated for different materials by means of Monte Carlo simulations and by means of direct calculations based on their definition formula showed a good agreement with errors less that 10%. hus the Monte Carlo code seems to be a good support for the calculation of the moderating parameters, particularly useful when the materials are compound of many elements. he correlation between the values of the MR of different materials with the measured variation of reactivity induced by the insertion of the materials in the reactor core is possible by means of a definition of a new parameter of the measure. his parameter, named, depends from the total weight of the sample inserted in the reactor core and from the atomic density per barn of the material. he MR values of the materials displayed as a function of the parameter give as a result an exponential fit. In order to validate this correlation, though, it will be necessary to perform other measurements using very clean materials with a very well known composition. his will be one of the future activity of LEN. [1] G. Marchionni, G. jroldi, and G. Pezzin, in Comprehensive Polymer cience,.l. ggarwal and. Russo (Eds.), econd upplement, Pergamon, 1996, London, pp [2] K.H.Beckurts and K.Wirtz, Neutron Physics, pringer-verlag, [3] John R. Lamarsh, Introduction to Nuclear Reactor heory, ddison-wesley Publishing Company, Reading, Massachussetts, U...,

X. Assembling the Pieces

X. Assembling the Pieces X. Assembling the Pieces 179 Introduction Our goal all along has been to gain an understanding of nuclear reactors. As we ve noted many times, this requires knowledge of how neutrons are produced and lost.

More information

NEUTRON MODERATION. LIST three desirable characteristics of a moderator.

NEUTRON MODERATION. LIST three desirable characteristics of a moderator. Reactor Theory (eutron Characteristics) DOE-HDBK-1019/1-93 EUTRO MODERATIO EUTRO MODERATIO In thermal reactors, the neutrons that cause fission are at a much lower energy than the energy level at which

More information

Elastic scattering. Elastic scattering

Elastic scattering. Elastic scattering Elastic scattering Now we have worked out how much energy is lost when a neutron is scattered through an angle, θ We would like to know how much energy, on average, is lost per collision In order to do

More information

Cross-Sections for Neutron Reactions

Cross-Sections for Neutron Reactions 22.05 Reactor Physics Part Four Cross-Sections for Neutron Reactions 1. Interactions: Cross-sections deal with the measurement of interactions between moving particles and the material through which they

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 1. Title: Neutron Life Cycle

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 1. Title: Neutron Life Cycle Lectures on Nuclear Power Safety Lecture No 1 Title: Neutron Life Cycle Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture Infinite Multiplication Factor, k Four Factor Formula

More information

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT R. KHAN, M. VILLA, H. BÖCK Vienna University of Technology Atominstitute Stadionallee 2, A-1020, Vienna, Austria ABSTRACT The Atominstitute

More information

Fundamentals of Nuclear Reactor Physics

Fundamentals of Nuclear Reactor Physics Fundamentals of Nuclear Reactor Physics E. E. Lewis Professor of Mechanical Engineering McCormick School of Engineering and Applied Science Northwestern University AMSTERDAM BOSTON HEIDELBERG LONDON NEW

More information

Excerpt from the Proceedings of the COMSOL Users Conference 2007 Grenoble

Excerpt from the Proceedings of the COMSOL Users Conference 2007 Grenoble Excerpt from the Proceedings of the COSOL Users Conference 007 Grenoble Evaluation of the moderator temperature coefficient of reactivity in a PWR V. emoli *,, A. Cammi Politecnico di ilano, Department

More information

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η Neutron reproduction factor k eff = 1.000 What is: Migration length? Critical size? How does the geometry affect the reproduction factor? x 0.9 Thermal utilization factor f x 0.9 Resonance escape probability

More information

Investigation Of The Effects Of Variation Of Neutron Source-Detector Distance On The Emitted Neutron Dose Equivalent

Investigation Of The Effects Of Variation Of Neutron Source-Detector Distance On The Emitted Neutron Dose Equivalent ISSN: 9- Vol. Issue, June - Investigation Of The Effects Of Variation Of Neutron Source-Detector Distance On The Emitted Equivalent Igwesi, D. I. Physics and Industrial Physics Department, Faculty of Physical

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Simulated Results for Neutron Radiations Shielding Using Monte Carlo C.E. Okon *1, I. O. Akpan 2 *1 School of Physics & Astronomy,

Simulated Results for Neutron Radiations Shielding Using Monte Carlo C.E. Okon *1, I. O. Akpan 2 *1 School of Physics & Astronomy, American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Lecture 27 Reactor Kinetics-III

Lecture 27 Reactor Kinetics-III Objectives In this lecture you will learn the following In this lecture we will understand some general concepts on control. We will learn about reactivity coefficients and their general nature. Finally,

More information

The Henryk Niewodniczański INSTITUTE OF NUCLEAR PHYSICS Polish Academy of Sciences ul. Radzikowskiego 152, Kraków, Poland.

The Henryk Niewodniczański INSTITUTE OF NUCLEAR PHYSICS Polish Academy of Sciences ul. Radzikowskiego 152, Kraków, Poland. The Henryk Niewodniczański INSTITUTE OF NUCLEAR PHYSICS Polish Academy of Sciences ul. Radzikowskiego 152, 31-342 Kraków, Poland. www.ifj.edu.pl/reports/23.html Kraków, listopad 23 Report No: 1933/PN Influence

More information

Reactivity Coefficients

Reactivity Coefficients Reactivity Coefficients B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Reactivity Changes In studying kinetics, we have seen

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Exam 1 Review 1 Chapter 1 - Fundamentals 2 Nuclear units Elementary particles/particle physics Isotopic nomenclature Atomic weight/number density

More information

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature.

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. Moderator Temperature Coefficient MTC 1 Moderator Temperature Coefficient The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. α

More information

2. The Steady State and the Diffusion Equation

2. The Steady State and the Diffusion Equation 2. The Steady State and the Diffusion Equation The Neutron Field Basic field quantity in reactor physics is the neutron angular flux density distribution: Φ( r r, E, r Ω,t) = v(e)n( r r, E, r Ω,t) -- distribution

More information

Chapter 7 & 8 Control Rods Fission Product Poisons. Ryan Schow

Chapter 7 & 8 Control Rods Fission Product Poisons. Ryan Schow Chapter 7 & 8 Control Rods Fission Product Poisons Ryan Schow Ch. 7 OBJECTIVES 1. Define rod shadow and describe its causes and effects. 2. Sketch typical differential and integral rod worth curves and

More information

arxiv: v2 [physics.ins-det] 22 Nov 2017

arxiv: v2 [physics.ins-det] 22 Nov 2017 A new model with for the first criticality benchmarks of the TRIGA Mark II reactor arxiv:177.5194v2 [physics.ins-det] 22 Nov 217 Christian Castagna a,c, Davide Chiesa b,c,, Antonio Cammi a,c, Sara Boarin

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 4. Title: Control Rods and Sub-critical Systems

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 4. Title: Control Rods and Sub-critical Systems Lectures on Nuclear Power Safety Lecture No 4 Title: Control Rods and Sub-critical Systems Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture Control Rods Selection of Control

More information

M.Cagnazzo Atominstitut, Vienna University of Technology Stadionallee 2, 1020 Wien, Austria

M.Cagnazzo Atominstitut, Vienna University of Technology Stadionallee 2, 1020 Wien, Austria Measurements of the In-Core Neutron Flux Distribution and Energy Spectrum at the Triga Mark II Reactor of the Vienna University of Technology/Atominstitut ABSTRACT M.Cagnazzo Atominstitut, Vienna University

More information

Considerations for Measurements in Support of Thermal Scattering Data Evaluations. Ayman I. Hawari

Considerations for Measurements in Support of Thermal Scattering Data Evaluations. Ayman I. Hawari OECD/NEA Meeting: WPEC SG42 Thermal Scattering Kernel S(a,b): Measurement, Evaluation and Application May 13 14, 2017 Paris, France Considerations for Measurements in Support of Thermal Scattering Data

More information

17 Neutron Life Cycle

17 Neutron Life Cycle 17 Neutron Life Cycle A typical neutron, from birth as a prompt fission neutron to absorption in the fuel, survives for about 0.001 s (the neutron lifetime) in a CANDU. During this short lifetime, it travels

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Lesson 6: Diffusion Theory (cf. Transport), Applications

Lesson 6: Diffusion Theory (cf. Transport), Applications Lesson 6: Diffusion Theory (cf. Transport), Applications Transport Equation Diffusion Theory as Special Case Multi-zone Problems (Passive Media) Self-shielding Effects Diffusion Kernels Typical Values

More information

USA HTR NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL TESTING REACTOR

USA HTR NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL TESTING REACTOR Proceedings of HTR2008 4 th International Topical Meeting on High Temperature Reactors September 28-October 1, 2008, Washington, D.C, USA HTR2008-58155 NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL

More information

Efficient Energy Conversion of the 14MeV Neutrons in DT Inertial Confinement Fusion. By F. Winterberg University of Nevada, Reno

Efficient Energy Conversion of the 14MeV Neutrons in DT Inertial Confinement Fusion. By F. Winterberg University of Nevada, Reno Efficient Energy Conversion of the 14MeV Neutrons in DT Inertial Confinement Fusion By F. Winterberg University of Nevada, Reno Abstract In DT fusion 80% of the energy released goes into 14MeV neutrons,

More information

Study of Control rod worth in the TMSR

Study of Control rod worth in the TMSR Nuclear Science and Techniques 24 (2013) 010601 Study of Control rod worth in the TMSR ZHOU Xuemei * LIU Guimin 1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

More information

3. State each of the four types of inelastic collisions, giving an example of each (zaa type example is acceptable)

3. State each of the four types of inelastic collisions, giving an example of each (zaa type example is acceptable) Nuclear Theory - Course 227 OBJECTIVES to: At the conclusion of this course the trainee will be able 227.00-1 Nuclear Structure 1. Explain and use the ZXA notation. 2. Explain the concept of binding energy.

More information

Study on SiC Components to Improve the Neutron Economy in HTGR

Study on SiC Components to Improve the Neutron Economy in HTGR Study on SiC Components to Improve the Neutron Economy in HTGR Piyatida TRINURUK and Assoc.Prof.Dr. Toru OBARA Department of Nuclear Engineering Research Laboratory for Nuclear Reactors Tokyo Institute

More information

Monte Carlo Methods in Reactor Physics

Monte Carlo Methods in Reactor Physics UNIVERSITY OF LJUBLJANA Faculty of Mathematics and Physics Department of Physics Seminar on Monte Carlo Methods in Reactor Physics Author: Andrej Kavčič Mentor: prof. dr. Matjaž Ravnik Ljubljana, January

More information

VIII. Neutron Moderation and the Six Factors

VIII. Neutron Moderation and the Six Factors Introduction VIII. Neutron Moderation and the Six Factors 130 We continue our quest to calculate the multiplication factor (keff) and the neutron distribution (in position and energy) in nuclear reactors.

More information

VI. Chain Reaction. Two basic requirements must be filled in order to produce power in a reactor:

VI. Chain Reaction. Two basic requirements must be filled in order to produce power in a reactor: VI. Chain Reaction VI.1. Basic of Chain Reaction Two basic requirements must be filled in order to produce power in a reactor: The fission rate should be high. This rate must be continuously maintained.

More information

The Boltzmann Equation and Its Applications

The Boltzmann Equation and Its Applications Carlo Cercignani The Boltzmann Equation and Its Applications With 42 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo CONTENTS PREFACE vii I. BASIC PRINCIPLES OF THE KINETIC

More information

20.1 Xenon Production Xe-135 is produced directly in only 0.3% of all U-235 fissions. The following example is typical:

20.1 Xenon Production Xe-135 is produced directly in only 0.3% of all U-235 fissions. The following example is typical: 20 Xenon: A Fission Product Poison Many fission products absorb neutrons. Most absorption cross-sections are small and are not important in short-term operation. Xenon- has a cross-section of approximately

More information

Reactor Operation Without Feedback Effects

Reactor Operation Without Feedback Effects 22.05 Reactor Physics - Part Twenty-Six Reactor Operation Without Feedback Effects 1. Reference Material: See pp. 363-368 of the article, Light Water Reactor Control Systems, in Wiley Encyclopedia of Electrical

More information

Lesson 8: Slowing Down Spectra, p, Fermi Age

Lesson 8: Slowing Down Spectra, p, Fermi Age Lesson 8: Slowing Down Spectra, p, Fermi Age Slowing Down Spectra in Infinite Homogeneous Media Resonance Escape Probability ( p ) Resonance Integral ( I, I eff ) p, for a Reactor Lattice Semi-empirical

More information

Neutron interactions and dosimetry. Eirik Malinen Einar Waldeland

Neutron interactions and dosimetry. Eirik Malinen Einar Waldeland Neutron interactions and dosimetry Eirik Malinen Einar Waldeland Topics 1. Neutron interactions 1. Scattering 2. Absorption 2. Neutron dosimetry 3. Applications The neutron Uncharged particle, mass close

More information

Reactor Physics: Basic Definitions and Perspectives. Table of Contents

Reactor Physics: Basic Definitions and Perspectives. Table of Contents Reactor Physics - Basic Definitions and Perspectives Reactor Physics: Basic Definitions and Perspectives prepared by Wm. J. Garland, Professor, Department of Engineering Physics, McMaster University, Hamilton,

More information

NUCLEAR SCIENCE ACAD BASIC CURRICULUM CHAPTER 5 NEUTRON LIFE CYCLE STUDENT TEXT REV 2. L th. L f U-235 FUEL MODERATOR START CYCLE HERE THERMAL NEUTRON

NUCLEAR SCIENCE ACAD BASIC CURRICULUM CHAPTER 5 NEUTRON LIFE CYCLE STUDENT TEXT REV 2. L th. L f U-235 FUEL MODERATOR START CYCLE HERE THERMAL NEUTRON ACAD BASIC CURRICULUM NUCLEAR SCIENCE CHAPTER 5 NEUTRON LIFE CYCLE 346 RESONANCE LOSSES p 038 THERMAL NEUTRON 2 THERMAL NEUTRON LEAKAGE 52 THERMAL ABSORBED BY NON-FUEL ATOMS L th 07 THERMAL f 965 THERMAL

More information

Operational Reactor Safety

Operational Reactor Safety Operational Reactor Safety 22.091/22.903 Professor Andrew C. Kadak Professor of the Practice Lecture 3 Reactor Kinetics and Control Page 1 Topics to Be Covered Time Dependent Diffusion Equation Prompt

More information

Nuclear Reactor Physics I Final Exam Solutions

Nuclear Reactor Physics I Final Exam Solutions .11 Nuclear Reactor Physics I Final Exam Solutions Author: Lulu Li Professor: Kord Smith May 5, 01 Prof. Smith wants to stress a couple of concepts that get people confused: Square cylinder means a cylinder

More information

Reactor Kinetics and Operation

Reactor Kinetics and Operation Reactor Kinetics and Operation Course No: N03-002 Credit: 3 PDH Gilbert Gedeon, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 0980 P: (877) 322-5800 F: (877) 322-4774

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 5. Title: Reactor Kinetics and Reactor Operation

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 5. Title: Reactor Kinetics and Reactor Operation Lectures on Nuclear Power Safety Lecture No 5 Title: Reactor Kinetics and Reactor Operation Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture (1) Reactor Kinetics Reactor

More information

"Control Rod Calibration"

Control Rod Calibration TECHNICAL UNIVERSITY DRESDEN Institute of Power Engineering Training Reactor Reactor Training Course Experiment "Control Rod Calibration" Instruction for Experiment Control Rod Calibration Content: 1...

More information

Simple Experimental Design for Calculation of Neutron Removal Cross Sections K. Groves 1 1) McMaster University, 1280 Main St. W, Hamilton, Canada.

Simple Experimental Design for Calculation of Neutron Removal Cross Sections K. Groves 1 1) McMaster University, 1280 Main St. W, Hamilton, Canada. Simple Experimental Design for Calculation of Neutron Removal Cross Sections K. Groves 1 1) McMaster University, 1280 Main St. W, Hamilton, Canada. (Dated: 5 August 2017) This article proposes an experimental

More information

Control of the fission chain reaction

Control of the fission chain reaction Control of the fission chain reaction Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 April 8, 2011 NUCS 342 (Lecture 30) April 8, 2011 1 / 29 Outline 1 Fission chain reaction

More information

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN s Present address: J.L. Kloosterman Interfaculty Reactor Institute Delft University of Technology Mekelweg 15, NL-2629 JB Delft, the Netherlands Fax: ++31

More information

SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE. Bratislava, Iľkovičova 3, Bratislava, Slovakia

SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE. Bratislava, Iľkovičova 3, Bratislava, Slovakia SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE Jakub Lüley 1, Ján Haščík 1, Vladimír Slugeň 1, Vladimír Nečas 1 1 Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava,

More information

ENEN/Reactor Theory/ Laboratory Session 1 DETERMINATION OF BASIC STATIC REACTOR PARAMETERS IN THE GRAPHITE PILE AT THE VENUS FACILITY

ENEN/Reactor Theory/ Laboratory Session 1 DETERMINATION OF BASIC STATIC REACTOR PARAMETERS IN THE GRAPHITE PILE AT THE VENUS FACILITY p1 Summary DETERMINATION OF BASIC STATIC REACTOR PARAMETERS IN THE GRAPHITE PILE AT THE VENUS FACILITY P. Baeten (pbaeten@sccen.be) The purpose of this laboratory session is the determination of the basic

More information

Chapter V: Cavity theories

Chapter V: Cavity theories Chapter V: Cavity theories 1 Introduction Goal of radiation dosimetry: measure of the dose absorbed inside a medium (often assimilated to water in calculations) A detector (dosimeter) never measures directly

More information

Neutron Diffusion Theory: One Velocity Model

Neutron Diffusion Theory: One Velocity Model 22.05 Reactor Physics - Part Ten 1. Background: Neutron Diffusion Theory: One Velocity Model We now have sufficient tools to begin a study of the second method for the determination of neutron flux as

More information

ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS

ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS Hernán G. Meier, Martín Brizuela, Alexis R. A. Maître and Felipe Albornoz INVAP S.E. Comandante Luis Piedra Buena 4950, 8400 San Carlos

More information

On the use of SERPENT code for few-group XS generation for Sodium Fast Reactors

On the use of SERPENT code for few-group XS generation for Sodium Fast Reactors On the use of SERPENT code for few-group XS generation for Sodium Fast Reactors Raquel Ochoa Nuclear Engineering Department UPM CONTENTS: 1. Introduction 2. Comparison with ERANOS 3. Parameters required

More information

Neutronic Calculations of Ghana Research Reactor-1 LEU Core

Neutronic Calculations of Ghana Research Reactor-1 LEU Core Neutronic Calculations of Ghana Research Reactor-1 LEU Core Manowogbor VC*, Odoi HC and Abrefah RG Department of Nuclear Engineering, School of Nuclear Allied Sciences, University of Ghana Commentary Received

More information

CONTROL ROD WORTH EVALUATION OF TRIGA MARK II REACTOR

CONTROL ROD WORTH EVALUATION OF TRIGA MARK II REACTOR International Conference Nuclear Energy in Central Europe 2001 Hoteli Bernardin, Portorož, Slovenia, September 10-13, 2001 www: http://www.drustvo-js.si/port2001/ e-mail: PORT2001@ijs.si tel.:+ 386 1 588

More information

Control Rod Calibration and Worth Calculation for Optimized Power Reactor 1000 (OPR-1000) Using Core Simulator OPR1000

Control Rod Calibration and Worth Calculation for Optimized Power Reactor 1000 (OPR-1000) Using Core Simulator OPR1000 World Journal of Nuclear Science and Technology, 017, 7, 15-3 http://www.scirp.org/journal/wjnst ISSN Online: 161-6809 ISSN Print: 161-6795 Control Rod Calibration and Worth Calculation for Optimized Power

More information

Comparison of the Monte Carlo Adjoint-Weighted and Differential Operator Perturbation Methods

Comparison of the Monte Carlo Adjoint-Weighted and Differential Operator Perturbation Methods Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol., pp.836-841 (011) ARTICLE Comparison of the Monte Carlo Adjoint-Weighted and Differential Operator Perturbation Methods Brian C. KIEDROWSKI * and Forrest

More information

Lewis 2.1, 2.2 and 2.3

Lewis 2.1, 2.2 and 2.3 Chapter 2(and 3) Cross-Sections TA Lewis 2.1, 2.2 and 2.3 Learning Objectives Understand different types of nuclear reactions Understand cross section behavior for different reactions Understand d resonance

More information

Energy Dependence of Neutron Flux

Energy Dependence of Neutron Flux Energy Dependence of Neutron Flux B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents We start the discussion of the energy

More information

UNIVERSITY OF CAPE TOWN. EEE4101F / EEE4103F: Basic Nuclear Physics Problem Set 04. Due 12:00 (!) Wednesday 8 April 2015

UNIVERSITY OF CAPE TOWN. EEE4101F / EEE4103F: Basic Nuclear Physics Problem Set 04. Due 12:00 (!) Wednesday 8 April 2015 UNIVERSITY OF CAPE TOWN EEE4101F / EEE4103F: Basic Nuclear Physics Problem Set 04 Due 12:00 (!) Wednesday 8 April 2015 1) Explain the concept of a cross-section, using language that a high-school teacher

More information

Today, I will present the first of two lectures on neutron interactions.

Today, I will present the first of two lectures on neutron interactions. Today, I will present the first of two lectures on neutron interactions. I first need to acknowledge that these two lectures were based on lectures presented previously in Med Phys I by Dr Howell. 1 Before

More information

Reactivity Balance & Reactor Control System

Reactivity Balance & Reactor Control System Reactivity Balance & Reactor Control System K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 6 Table of Contents 1 MULTIPLICATION

More information

Exploring Monte Carlo Methods

Exploring Monte Carlo Methods Exploring Monte Carlo Methods William L Dunn J. Kenneth Shultis AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO ELSEVIER Academic Press Is an imprint

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 1 (2/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 1 (2/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications .54 Neutron Interactions and Applications (Spring 004) Chapter 1 (/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications There are many references in the vast literature on nuclear

More information

Nuclear Physics 2. D. atomic energy levels. (1) D. scattered back along the original direction. (1)

Nuclear Physics 2. D. atomic energy levels. (1) D. scattered back along the original direction. (1) Name: Date: Nuclear Physics 2. Which of the following gives the correct number of protons and number of neutrons in the nucleus of B? 5 Number of protons Number of neutrons A. 5 6 B. 5 C. 6 5 D. 5 2. The

More information

6 Neutrons and Neutron Interactions

6 Neutrons and Neutron Interactions 6 Neutrons and Neutron Interactions A nuclear reactor will not operate without neutrons. Neutrons induce the fission reaction, which produces the heat in CANDU reactors, and fission creates more neutrons.

More information

Solving the neutron slowing down equation

Solving the neutron slowing down equation Solving the neutron slowing down equation Bertrand Mercier, Jinghan Peng To cite this version: Bertrand Mercier, Jinghan Peng. Solving the neutron slowing down equation. 2014. HAL Id: hal-01081772

More information

Project Memorandum. N N o. = e (ρx)(µ/ρ) (1)

Project Memorandum. N N o. = e (ρx)(µ/ρ) (1) Project Memorandum To : Jebediah Q. Dingus, Gamma Products Inc. From : Patrick R. LeClair, Material Characterization Associates, Inc. Re : 662 kev Gamma ray shielding Date : January 5, 2010 PH255 S10 LeClair

More information

Solving Bateman Equation for Xenon Transient Analysis Using Numerical Methods

Solving Bateman Equation for Xenon Transient Analysis Using Numerical Methods Solving Bateman Equation for Xenon Transient Analysis Using Numerical Methods Zechuan Ding Illume Research, 405 Xintianshiji Business Center, 5 Shixia Road, Shenzhen, China Abstract. After a nuclear reactor

More information

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b.

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Nuclear Fission 1/v Fast neutrons should be moderated. 235 U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Fission Barriers 1 Nuclear Fission Q for 235 U + n 236 U

More information

The Use of Serpent 2 in Support of Modeling of the Transient Test Reactor at Idaho National Laboratory

The Use of Serpent 2 in Support of Modeling of the Transient Test Reactor at Idaho National Laboratory The Use of Serpent 2 in Support of Modeling of the Transient Test Reactor at Idaho National Laboratory Sixth International Serpent User s Group Meeting Politecnico di Milano, Milan, Italy 26-29 September,

More information

Neutron Shielding Properties Of Concrete With Boron And Boron Containing Mineral

Neutron Shielding Properties Of Concrete With Boron And Boron Containing Mineral 15 APJES I-I (2013) 15-19 Neutron Shielding Properties Of Concrete With Boron And Boron Containing Mineral *1 Salim Orak, 2 Derya Yilmaz Baysoy 1 Istanbul Commerce University, Faculty of Arts and Science,

More information

Lecture 20 Reactor Theory-V

Lecture 20 Reactor Theory-V Objectives In this lecture you will learn the following We will discuss the criticality condition and then introduce the concept of k eff.. We then will introduce the four factor formula and two group

More information

Reactors and Fuels. Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV

Reactors and Fuels. Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV Reactors and Fuels Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV July 19-21, 2011 This course is partially based on work supported by

More information

Modeling of the Multi-SERTTA Experiment with MAMMOTH

Modeling of the Multi-SERTTA Experiment with MAMMOTH INL/MIS-17-43729 INL/MIS-16-40269 Approved for for public release; distribution is is unlimited. Modeling of the Multi-SERTTA Experiment with MAMMOTH Javier Ortensi, Ph.D. P.E. R&D Scientist Nuclear Science

More information

THREE-DIMENSIONAL INTEGRAL NEUTRON TRANSPORT CELL CALCULATIONS FOR THE DETERMINATION OF MEAN CELL CROSS SECTIONS

THREE-DIMENSIONAL INTEGRAL NEUTRON TRANSPORT CELL CALCULATIONS FOR THE DETERMINATION OF MEAN CELL CROSS SECTIONS THREE-DIMENSIONAL INTEGRAL NEUTRON TRANSPORT CELL CALCULATIONS FOR THE DETERMINATION OF MEAN CELL CROSS SECTIONS Carsten Beckert 1. Introduction To calculate the neutron transport in a reactor, it is often

More information

A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis

A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis A. Aures 1,2, A. Pautz 2, K. Velkov 1, W. Zwermann 1 1 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) ggmbh Boltzmannstraße

More information

Neutron Interactions with Matter

Neutron Interactions with Matter Radioactivity - Radionuclides - Radiation 8 th Multi-Media Training Course with Nuclides.net (Institute Josžef Stefan, Ljubljana, 13th - 15th September 2006) Thursday, 14 th September 2006 Neutron Interactions

More information

Reactor-physical calculations using an MCAM based MCNP model of the Training Reactor of Budapest University of Technology and Economics

Reactor-physical calculations using an MCAM based MCNP model of the Training Reactor of Budapest University of Technology and Economics Nukleon 016. december IX. évf. (016) 00 Reactor-physical calculations using an MCAM based MCNP model of the Training Reactor of Budapest University of Technology and Economics Tran Thuy Duong 1, Nguyễn

More information

8: Source-Sink Problems in 1 Energy Group

8: Source-Sink Problems in 1 Energy Group 8: Source-Sink Problems in 1 Energy Group B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 015 Sept.-Dec. 015 September 1 Contents Solving the 1-group diffusion

More information

COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES

COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES S. Bznuni, A. Amirjanyan, N. Baghdasaryan Nuclear and Radiation Safety Center Yerevan, Armenia Email: s.bznuni@nrsc.am

More information

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 E. Fridman 1, R. Rachamin 1, C. Wemple 2 1 Helmholtz Zentrum Dresden Rossendorf 2 Studsvik Scandpower Inc. Text optional: Institutsname Prof. Dr.

More information

Preliminary Uncertainty Analysis at ANL

Preliminary Uncertainty Analysis at ANL Preliminary Uncertainty Analysis at ANL OECD/NEA WPEC Subgroup 33 Meeting November 30, 2010 Paris, France W. S. Yang, G. Aliberti, R. D. McKnight Nuclear Engineering Division Argonne National Laboratory

More information

E LEWIS Fundamentals of Nuclear Reactor Physics (Academic Press, 2008) Chapter 2 - Neutron Interactions

E LEWIS Fundamentals of Nuclear Reactor Physics (Academic Press, 2008) Chapter 2 - Neutron Interactions E LEWIS Fundamentals of Nuclear Reactor Physics (Academic Press, 2008) Chapter 2 - Neutron Interactions . CHAPTER 2 Neutron Interactions 2.1 Introduction The behavior of the neutrons emitted from fission

More information

Chapter 10. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) (i) 238. (ii) β particle(s) 1 Electron antineutrinos 1

Chapter 10. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) (i) 238. (ii) β particle(s) 1 Electron antineutrinos 1 (a) (i) 238 92 U + 0 n 239 92 U (ii) β particle(s) Electron antineutrinos (b) For: Natural uranium is 98% uranium-238 which would be otherwise unused. Plutonium-239 would not need to be stored long-term

More information

KEYWORDS: chord length sampling, random media, radiation transport, Monte Carlo method, chord length probability distribution function.

KEYWORDS: chord length sampling, random media, radiation transport, Monte Carlo method, chord length probability distribution function. On the Chord Length Sampling in 1-D Binary Stochastic Media Chao Liang and Wei Ji * Department of Mechanical, Aerospace, and Nuclear Engineering Rensselaer Polytechnic Institute, Troy, NY 12180-3590 *

More information

DESIGN OF B 4 C BURNABLE PARTICLES MIXED IN LEU FUEL FOR HTRS

DESIGN OF B 4 C BURNABLE PARTICLES MIXED IN LEU FUEL FOR HTRS DESIGN OF B 4 C BURNABLE PARTICLES MIXED IN LEU FUEL FOR HTRS V. Berthou, J.L. Kloosterman, H. Van Dam, T.H.J.J. Van der Hagen. Delft University of Technology Interfaculty Reactor Institute Mekelweg 5,

More information

Activities of the neutron standardization. at the Korea Research Institute of Standards and Science (KRISS)

Activities of the neutron standardization. at the Korea Research Institute of Standards and Science (KRISS) Activities of the neutron standardization at the Korea Research Institute of Standards and Science (KRISS) I. Introduction The activities of neutron standardization in KRISS have been continued for last

More information

CALCULATION OF FAST NEUTRON REMOVAL CROSS-SECTIONS FOR DIFFERENT SHIELDING MATERIALS

CALCULATION OF FAST NEUTRON REMOVAL CROSS-SECTIONS FOR DIFFERENT SHIELDING MATERIALS International Journal of Physics and Research (IJPR ISSN 2250-0030 Vol. 3, Issue 2, Jun 2013, 7-16 TJPRC Pvt. Ltd. CALCULATION OF FAST NEUTRON REMOVAL CROSS-SECTIONS FOR DIFFERENT SHIELDING MATERIALS Y.

More information

Neutron pulse height analysis (R405n)

Neutron pulse height analysis (R405n) Neutron pulse height analysis (R405n) Y. Satou April 6, 2011 Abstract A pulse height analysis was made for the neutron counter hodoscope used in R405n. By normalizing the pulse height distributions measured

More information

Recent Activities on Neutron Calibration Fields at FRS of JAERI

Recent Activities on Neutron Calibration Fields at FRS of JAERI Recent Activities on Neutron Calibration Fields at FRS of JAERI Michio Yoshizawa, Yoshihiko Tanimura, Jun Saegusa and Makoto Yoshida Department of Health Physics, Japan Atomic Energy Research Institute

More information

RANDOMLY DISPERSED PARTICLE FUEL MODEL IN THE PSG MONTE CARLO NEUTRON TRANSPORT CODE

RANDOMLY DISPERSED PARTICLE FUEL MODEL IN THE PSG MONTE CARLO NEUTRON TRANSPORT CODE Supercomputing in Nuclear Applications (M&C + SNA 2007) Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) RANDOMLY DISPERSED PARTICLE FUEL MODEL IN

More information

On the Chord Length Sampling in 1-D Binary Stochastic Media

On the Chord Length Sampling in 1-D Binary Stochastic Media On the Chord Length Sampling in 1-D Binary Stochastic Media Chao Liang and Wei Ji * Department of Mechanical, Aerospace, and Nuclear Engineering Rensselaer Polytechnic Institute, Troy, NY 12180-3590 *

More information

Neutronic Analysis of Moroccan TRIGA MARK-II Research Reactor using the DRAGON.v5 and TRIVAC.v5 codes

Neutronic Analysis of Moroccan TRIGA MARK-II Research Reactor using the DRAGON.v5 and TRIVAC.v5 codes Physics AUC, vol. 27, 41-49 (2017) PHYSICS AUC Neutronic Analysis of Moroccan TRIGA MARK-II Research Reactor using the DRAGON.v5 and TRIVAC.v5 codes DARIF Abdelaziz, CHETAINE Abdelouahed, KABACH Ouadie,

More information

Power Changes in a Critical Reactor. The Critical Reactor

Power Changes in a Critical Reactor. The Critical Reactor Chapter 8 Power Changes in a Critical Reactor n For very small reactivity increases n For small reactivity increases n For large reactivity increases/decreases The Critical Reactor < k = hfpel f L t =

More information

Chapter 2 Nuclear Reactor Calculations

Chapter 2 Nuclear Reactor Calculations Chapter 2 Nuclear Reactor Calculations Keisuke Okumura, Yoshiaki Oka, and Yuki Ishiwatari Abstract The most fundamental evaluation quantity of the nuclear design calculation is the effective multiplication

More information

turbine (a) (i) Which part of the power station provides thermal (heat) energy from a chain reaction?

turbine (a) (i) Which part of the power station provides thermal (heat) energy from a chain reaction? Nuclear fission and radiation 1 The diagram shows parts of a nuclear power station. control rods boiler steam generator electricity out turbine condenser nuclear reactor (a) (i) Which part of the power

More information

Universal curve of the thermal neutron self-shielding factor in foils, wires, spheres and cylinders

Universal curve of the thermal neutron self-shielding factor in foils, wires, spheres and cylinders Journal of Radioanalytical and Nuclear Chemistry, Vol. 261, No. 3 (2004) 637 643 Universal curve of the thermal neutron self-shielding factor in foils, wires, spheres and cylinders E. Martinho, J. Salgado,

More information