VI. Chain Reaction. Two basic requirements must be filled in order to produce power in a reactor:

Size: px
Start display at page:

Download "VI. Chain Reaction. Two basic requirements must be filled in order to produce power in a reactor:"

Transcription

1 VI. Chain Reaction VI.1. Basic of Chain Reaction Two basic requirements must be filled in order to produce power in a reactor: The fission rate should be high. This rate must be continuously maintained. The fission process may be repeated due to the fact that each fission releases neutrons. The condition for the maintaining of a chain reaction is that the neutron produced in a fission be capable of producing another fission. This process can be seen in the next figure. Figure 1 Such a chain reaction can be described qualitatively by the multiplication factor, which is indicated by the symbol k and is defined as the ratio of the number of fission neutrons in one generation divided by the number of fissions neutrons of the preceding generation. K= number of fission neutrons in one generation number of fission neutrons in preceding generation If k is equal to one the chain reaction progresses at constant rate and the system is critical If k is greater than one the chain reaction progress increases the fission neutrons and the system is supercritical If k is less than one the chain reaction progress decreases the fission neutrons and the system is subcritical In a nuclear reactor the fission chain reaction can proceed in a controlled manner, this control is done by varying the value of k through manipulation of the control rods. For example to increase the power, the operator will increase k to a value greater than 1 by removal of the control rods and the reactor becomes supercritical; when the desired power has been reached the operator returns the reactor to critical condition (k=1) by insertion of the control rods. To reduce the power the operator decreases k to a value less than 1 and the reactor becomes subcritical, and the power decreases. The definition of multiplication factor can also be understood as a neutron balance between the rate at which they are produced and the rate at which they disappear. Neutrons can disappear in two ways: they can be absorbed or they can escape from the surface of the reactor. 1

2 k= production rate (absorption + leakage) rates If the production rate is greater than the sum of absorption and leakage rates the reactor is supercritical and if it is smaller the reactor is subcritical. VI.2. Example of chain reaction with natural uranium Since more than one neutron is generally produced per fission (n = 2.43 for U 235 with thermal neutrons), it would appear to be a simple matter to utilize one of them to produce another fission. We will see what happens in practice when we analyze the case of natural uranium. Suppose we take 100 fission neutrons in a block of natural uranium, of which, 70 are above the energy threshold for U 238, which is equal to 1.2 MeV, and the remaining 30 neutrons are below this energy level. Figure 2 shows the microscopic cross sections for U 235. Figure 3 shows the microscopic cross sections for U 238. Figure 4 shows the microscopic cross sections for natural uranium. Figure 2. The microscopic cross sections for U

3 Figure 3. The microscopic cross sections for U 238 Figure 4. The microscopic cross sections for natural uranium. 3

4 In analyzing the 30 neutrons mentioned above (see graph), we see that the majority of them are scattered as a result of elastic collisions with U 238 (n,n)u 238, producing a moderation of these neutrons, and with no considerable loss of energy, due to the great difference in masses. In (n,n')u 238 reactions, the neutrons lose considerable energy, leaving the nucleus of the uranium excited. Following many collisions, the neutrons will drop to an energy level of under 100 kev. At these energy levels, the greatest probability of reaction is for (n,γ)u 238, which exceeds the probability of fission by 40 times, so that less than one of the 30 neutrons in question will produce a fission, with the rest being captured by U 238. The 70 neutrons whose energy level is above 1.2 MeV will undergo different reactions in direct proportion to their neutron cross sections. In the first collisions we have the following: 38 neutrons react as (n,n) U neutrons react as (n,n') U 238 About 4 neutrons react as (n,f) U 238, and approximately 1 neutron reacts as (n,γ) U 238, with a slight probability of interaction with U 235. The 38 elastically scattered neutrons take part in a second collision with the uranium, whose possible reactions are approximately 2 neutrons (n,f)u 238, 15 neutrons (n,n')u 238 with energies of under 1.2 MeV, and 21 neutrons (n,n)u 238 of 1.2 MeV. These 21 neutrons produce a third collision and those obtained from that collision produce another one and so on, following which, of the 100 initial neutrons, 8 produce fission with U 238 and 2 with U 235, with energy levels of about 0.14 ev. The values assigned in the distribution of the number of neutrons out of the 70 that surpass the threshold of U 238 were obtained via the quantification of the neutron cross sections for each type of reaction, as seen in the previous Figure 2, Figure 3 and Figure = value of reaction (n,n) U = value of reaction (n,n ) U = value of reaction (n,f) U 238 or, that is to say, 57% of the initial 70 neutrons produce an (n,n) U 238 reaction. In the case of the 27 (n,n') U 238 reaction neutrons: 70 57% = 38 (n,n') U 238 neutrons 4

5 In the case of the 4 (n,f) U 238 reaction neutrons: 70 38% = 27 (n,n') U 238 neutrons 70 6% = 4.2 (n,f) U 238 neutrons CONCLUSION From the foregoing analysis (10 fissions) we obtain the number of new fission neutrons. 10 fissions 2.5 = 25 fission neutrons On analyzing the multiplication factor, that is to say, the relationship between available neutrons in the 1st generation and those obtained in the 2nd generation: This is a value lower than k=1, which is a condition for the maintaining of the chain reaction. Thus, the system is described as being sub-critical. SYSTEMS THAT PRODUCE CHAIN REACTIONS We have already seen that it is impossible to maintain the chain reaction in a system using natural uranium alone, but there are ways of achieving this: Fast Reactors One way is to increase the quantity of U 235 in relation to U 238, so as to augment the probability of U 235 fission at energies of under 1.2 MeV. If, for example, of the neutrons that enter this region, 32 produce fission in U 235, the chain reaction can be maintained, or, that is to say: 100 neutrons 8 neutrons fission with U neutrons fission with U 235 If we assume that n = 2.5 we have 40 fissions x 2.5 neutrons/fission = 100 neutrons 5

6 in the second generation and k = 1. This process is known as fuel enrichment, a process which has given birth to the development of fast reactors. Thermal Reactors Another way of maintaining the chain reaction is by adding material with a low atomic number to natural uranium. The main objective here is to slow down neutrons to a low energy level (0.025 ev), with a material that produces elastic scattering and does no possess appreciable absorption. This process of slowing down neutrons is known as moderation, and it takes neutrons to thermal energy levels at which the probability of fission with U 235 is very high (about 580 barns, compared with 1.2 barns at 1 MeV), whereas at this same energy level, the probability of radioactive capture in U 238 is 2.7 barns. Even considering the low U 235 content in natural uranium, fission is more probable than capture. The materials that achieve this effect in neutrons are called moderators. The reactor which possesses a large mass of moderator and where the majority of the neutrons reach thermal energy levels (thermal equilibrium with the atoms of the moderator) are called thermal reactors. VI.3. TYPES OF REACTORS The nuclear reactors can be classified according to different criteria. The next paragraphs present two conceptual classification: 1) Utilization of the reactor. The fission process produces neutrons and energy. Based on this, there are conceptually two types of reactors: Research Reactors, which use the neutrons generated from the fission, and Power Reactors, which use the energy generated from the fission. 2) Energy of the neutrons which cause the fission in the system. Thermal Reactors, in which fissions are produced by neutrons that are approximately in thermal equilibrium with atoms in the system and have an energy below 0.3 ev. Fast Reactors, in which fissions are induced by neutrons with an energy above 100 kev. Intermediate Reactors, in which most of the fissions are produced by neutrons with an energy above thermal to about 10 kev. 6

17 Neutron Life Cycle

17 Neutron Life Cycle 17 Neutron Life Cycle A typical neutron, from birth as a prompt fission neutron to absorption in the fuel, survives for about 0.001 s (the neutron lifetime) in a CANDU. During this short lifetime, it travels

More information

NUCLEAR SCIENCE ACAD BASIC CURRICULUM CHAPTER 5 NEUTRON LIFE CYCLE STUDENT TEXT REV 2. L th. L f U-235 FUEL MODERATOR START CYCLE HERE THERMAL NEUTRON

NUCLEAR SCIENCE ACAD BASIC CURRICULUM CHAPTER 5 NEUTRON LIFE CYCLE STUDENT TEXT REV 2. L th. L f U-235 FUEL MODERATOR START CYCLE HERE THERMAL NEUTRON ACAD BASIC CURRICULUM NUCLEAR SCIENCE CHAPTER 5 NEUTRON LIFE CYCLE 346 RESONANCE LOSSES p 038 THERMAL NEUTRON 2 THERMAL NEUTRON LEAKAGE 52 THERMAL ABSORBED BY NON-FUEL ATOMS L th 07 THERMAL f 965 THERMAL

More information

Nuclear Physics 2. D. atomic energy levels. (1) D. scattered back along the original direction. (1)

Nuclear Physics 2. D. atomic energy levels. (1) D. scattered back along the original direction. (1) Name: Date: Nuclear Physics 2. Which of the following gives the correct number of protons and number of neutrons in the nucleus of B? 5 Number of protons Number of neutrons A. 5 6 B. 5 C. 6 5 D. 5 2. The

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b.

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Nuclear Fission 1/v Fast neutrons should be moderated. 235 U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Fission Barriers 1 Nuclear Fission Q for 235 U + n 236 U

More information

NEUTRON MODERATION. LIST three desirable characteristics of a moderator.

NEUTRON MODERATION. LIST three desirable characteristics of a moderator. Reactor Theory (eutron Characteristics) DOE-HDBK-1019/1-93 EUTRO MODERATIO EUTRO MODERATIO In thermal reactors, the neutrons that cause fission are at a much lower energy than the energy level at which

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 1. Title: Neutron Life Cycle

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 1. Title: Neutron Life Cycle Lectures on Nuclear Power Safety Lecture No 1 Title: Neutron Life Cycle Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture Infinite Multiplication Factor, k Four Factor Formula

More information

Control of the fission chain reaction

Control of the fission chain reaction Control of the fission chain reaction Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 April 8, 2011 NUCS 342 (Lecture 30) April 8, 2011 1 / 29 Outline 1 Fission chain reaction

More information

Write down the nuclear equation that represents the decay of neptunium 239 into plutonium 239.

Write down the nuclear equation that represents the decay of neptunium 239 into plutonium 239. Q1.A rod made from uranium 238 ( U) is placed in the core of a nuclear reactor where it absorbs free neutrons. When a nucleus of uranium 238 absorbs a neutron it becomes unstable and decays to neptunium

More information

Elastic scattering. Elastic scattering

Elastic scattering. Elastic scattering Elastic scattering Now we have worked out how much energy is lost when a neutron is scattered through an angle, θ We would like to know how much energy, on average, is lost per collision In order to do

More information

Reactivity Balance & Reactor Control System

Reactivity Balance & Reactor Control System Reactivity Balance & Reactor Control System K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 6 Table of Contents 1 MULTIPLICATION

More information

Cross-Sections for Neutron Reactions

Cross-Sections for Neutron Reactions 22.05 Reactor Physics Part Four Cross-Sections for Neutron Reactions 1. Interactions: Cross-sections deal with the measurement of interactions between moving particles and the material through which they

More information

MCRT L8: Neutron Transport

MCRT L8: Neutron Transport MCRT L8: Neutron Transport Recap fission, absorption, scattering, cross sections Fission products and secondary neutrons Slow and fast neutrons Energy spectrum of fission neutrons Nuclear reactor safety

More information

Lecture 20 Reactor Theory-V

Lecture 20 Reactor Theory-V Objectives In this lecture you will learn the following We will discuss the criticality condition and then introduce the concept of k eff.. We then will introduce the four factor formula and two group

More information

2. The neutron may just bounce off (elastic scattering), and this can happen at all neutron energies.

2. The neutron may just bounce off (elastic scattering), and this can happen at all neutron energies. Nuclear Theory - Course 227 NEUTRON CROSS SECTONS, NEUTRON DENSTY AND NEUTRON FLUX Neutron Cross Sections Let us have a look at the various reactions a neutron can undergo with a U-235 nucleus: As mentioned

More information

Neutron Interactions with Matter

Neutron Interactions with Matter Radioactivity - Radionuclides - Radiation 8 th Multi-Media Training Course with Nuclides.net (Institute Josžef Stefan, Ljubljana, 13th - 15th September 2006) Thursday, 14 th September 2006 Neutron Interactions

More information

Reactor Operation Without Feedback Effects

Reactor Operation Without Feedback Effects 22.05 Reactor Physics - Part Twenty-Six Reactor Operation Without Feedback Effects 1. Reference Material: See pp. 363-368 of the article, Light Water Reactor Control Systems, in Wiley Encyclopedia of Electrical

More information

Quiz, Physics & Chemistry

Quiz, Physics & Chemistry Eight Sessions 1. Pressurized Water Reactor 2. Quiz, Thermodynamics & HTFF 3. Quiz, Physics & Chemistry 4. Exam #1, Electrical Concepts & Systems 5. Quiz, Materials Science 6. Quiz, Strength of Materials

More information

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321 Neutron Interactions Part I Rebecca M. Howell, Ph.D. Radiation Physics rhowell@mdanderson.org Y2.5321 Why do we as Medical Physicists care about neutrons? Neutrons in Radiation Therapy Neutron Therapy

More information

neutrons in the few kev to several MeV Neutrons are generated over a wide range of energies by a variety of different processes.

neutrons in the few kev to several MeV Neutrons are generated over a wide range of energies by a variety of different processes. Neutrons 1932: Chadwick discovers the neutron 1935: Goldhaber discovers 10 B(n,α) 7 Li reaction 1936: Locher proposes boron neutron capture as a cancer therapy 1939: Nuclear fission in 235 U induced by

More information

Today, I will present the first of two lectures on neutron interactions.

Today, I will present the first of two lectures on neutron interactions. Today, I will present the first of two lectures on neutron interactions. I first need to acknowledge that these two lectures were based on lectures presented previously in Med Phys I by Dr Howell. 1 Before

More information

Nuclear Theory - Course 227

Nuclear Theory - Course 227 Lesson 227.00-2 NEUTRON BALANCE Nuclear Theory - Course 227 DURNG STEADY REACTOR OPERATON We have seen, in the previous lesson, what type of neutrons are produced and how they are produced in a reactor.

More information

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY THE ATOMIC NUCLEUS / NUCLEAR RADIUS & DENSITY / PROPERTIES OF NUCLEAR RADIATION / INTENSITY & BACKGROUND RADIATION / EXPONENTIAL LAW OF DECAY

More information

turbine (a) (i) Which part of the power station provides thermal (heat) energy from a chain reaction?

turbine (a) (i) Which part of the power station provides thermal (heat) energy from a chain reaction? Nuclear fission and radiation 1 The diagram shows parts of a nuclear power station. control rods boiler steam generator electricity out turbine condenser nuclear reactor (a) (i) Which part of the power

More information

Neutron interactions and dosimetry. Eirik Malinen Einar Waldeland

Neutron interactions and dosimetry. Eirik Malinen Einar Waldeland Neutron interactions and dosimetry Eirik Malinen Einar Waldeland Topics 1. Neutron interactions 1. Scattering 2. Absorption 2. Neutron dosimetry 3. Applications The neutron Uncharged particle, mass close

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Binding Energy...increases almost linearly with A; average B/A about 8 MeV per nucleon nuclei most tightly bound around A=60 below A=60, we can release energy by nuclear fusion above A=60, we can

More information

6 Neutrons and Neutron Interactions

6 Neutrons and Neutron Interactions 6 Neutrons and Neutron Interactions A nuclear reactor will not operate without neutrons. Neutrons induce the fission reaction, which produces the heat in CANDU reactors, and fission creates more neutrons.

More information

Fundamentals of Nuclear Reactor Physics

Fundamentals of Nuclear Reactor Physics Fundamentals of Nuclear Reactor Physics E. E. Lewis Professor of Mechanical Engineering McCormick School of Engineering and Applied Science Northwestern University AMSTERDAM BOSTON HEIDELBERG LONDON NEW

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig [1]

u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig [1] 1 (a) Fig. 6.1 shows the quark composition of some particles. proton neutron A B u u d u d d u d u u u u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig. 6.1. (ii) State

More information

Question Answer Marks Guidance 1 (a) The neutrons interact with other uranium (nuclei) / the neutrons cause further (fission) reactions

Question Answer Marks Guidance 1 (a) The neutrons interact with other uranium (nuclei) / the neutrons cause further (fission) reactions Question Answer Marks Guidance 1 (a) The neutrons interact with other uranium (nuclei) / the neutrons cause further (fission) reactions Not: neutrons interact with uranium atoms / molecules / particles

More information

Physics 3204 UNIT 3 Test Matter Energy Interface

Physics 3204 UNIT 3 Test Matter Energy Interface Physics 3204 UNIT 3 Test Matter Energy Interface 2005 2006 Time: 60 minutes Total Value: 33 Marks Formulae and Constants v = f λ E = hf h f = E k + W 0 E = m c 2 p = h λ 1 A= A T 0 2 t 1 2 E k = ½ mv 2

More information

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec.

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2: Fission and Other Neutron Reactions B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents Concepts: Fission and other

More information

Activation Analysis. Characteristic decay mechanisms, α, β, γ Activity A reveals the abundance N:

Activation Analysis. Characteristic decay mechanisms, α, β, γ Activity A reveals the abundance N: 2.5. Isotope analysis and neutron activation techniques The previously discussed techniques of material analysis are mainly based on the characteristic atomic structure of the elements and the associated

More information

Chapter 7.1. Q4 (a) In 1 s the energy is 500 MJ or (i) 5.0! 10 J, (ii) 5.0! 10 kw! hr " 140 kwh or (iii) MWh. (b) In one year the energy is

Chapter 7.1. Q4 (a) In 1 s the energy is 500 MJ or (i) 5.0! 10 J, (ii) 5.0! 10 kw! hr  140 kwh or (iii) MWh. (b) In one year the energy is Chapter 7.1 Q1 The thermal energy discarded must be returned to a reservoir that has a lower temperature from where the energy was extracted. In this case the temperatures are the same and so this will

More information

Reactivity Coefficients

Reactivity Coefficients Reactivity Coefficients B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Reactivity Changes In studying kinetics, we have seen

More information

Introduction to Nuclear Physics Physics 124 Solution Set 6

Introduction to Nuclear Physics Physics 124 Solution Set 6 Introduction to Nuclear Physics Physics 124 Solution Set 6 J.T. Burke January 18, 2000 1 Problem 22 In order to thermalize a neutron it must undergo multiple elastic collisions. Upon each interaction it

More information

VIII. Neutron Moderation and the Six Factors

VIII. Neutron Moderation and the Six Factors Introduction VIII. Neutron Moderation and the Six Factors 130 We continue our quest to calculate the multiplication factor (keff) and the neutron distribution (in position and energy) in nuclear reactors.

More information

X. Assembling the Pieces

X. Assembling the Pieces X. Assembling the Pieces 179 Introduction Our goal all along has been to gain an understanding of nuclear reactors. As we ve noted many times, this requires knowledge of how neutrons are produced and lost.

More information

Chapter 12: Nuclear Reaction

Chapter 12: Nuclear Reaction Chapter 12: Nuclear Reaction A nuclear reaction occurs when a nucleus is unstable or is being bombarded by a nuclear particle. The product of a nuclear reaction is a new nuclide with an emission of a nuclear

More information

1 v. L18.pdf Spring 2010, P627, YK February 22, 2012

1 v. L18.pdf Spring 2010, P627, YK February 22, 2012 L18.pdf Spring 2010, P627, YK February 22, 2012 18 T2 Nuclear Information Service at LANL: http://t2.lanl.gov/data/ ENDF/B VI Neutron Data : http://t2.lanl.gov/cgi bin/nuclides/endind Thermal neutron x

More information

Slowing down the neutrons

Slowing down the neutrons Slowing down the neutrons Clearly, an obvious way to make a reactor work, and to make use of this characteristic of the 3 U(n,f) cross-section, is to slow down the fast, fission neutrons. This can be accomplished,

More information

Chapter Four (Interaction of Radiation with Matter)

Chapter Four (Interaction of Radiation with Matter) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Four (Interaction of Radiation with Matter) Different types of radiation interact

More information

Nuclear Physics (13 th lecture)

Nuclear Physics (13 th lecture) uclear Physics ( th lecture) Cross sections of special neutron-induced reactions UCLR FISSIO Mechanism and characteristics of nuclear fission. o The fission process o Mass distribution of the fragments

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Exam 1 Review 1 Chapter 1 - Fundamentals 2 Nuclear units Elementary particles/particle physics Isotopic nomenclature Atomic weight/number density

More information

Term 3 Week 2 Nuclear Fusion & Nuclear Fission

Term 3 Week 2 Nuclear Fusion & Nuclear Fission Term 3 Week 2 Nuclear Fusion & Nuclear Fission Tuesday, November 04, 2014 Nuclear Fusion To understand nuclear fusion & fission Nuclear Fusion Why do stars shine? Stars release energy as a result of fusing

More information

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Lecture 14, 8/9/2017 Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place

More information

Subcritical Multiplication and Reactor Startup

Subcritical Multiplication and Reactor Startup 22.05 Reactor Physics - Part Twenty-Five Subcritical Multiplication and Reactor Startup 1. Reference Material See pp. 357-363 of the article, Light Water Reactor Control Systems, in Wiley Encyclopedia

More information

Lesson 8: Slowing Down Spectra, p, Fermi Age

Lesson 8: Slowing Down Spectra, p, Fermi Age Lesson 8: Slowing Down Spectra, p, Fermi Age Slowing Down Spectra in Infinite Homogeneous Media Resonance Escape Probability ( p ) Resonance Integral ( I, I eff ) p, for a Reactor Lattice Semi-empirical

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. Describe briefly one scattering experiment to investigate the size of the nucleus of the atom. Include a description of the properties of the incident radiation which makes

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 20 Modern Physics Nuclear Energy and Elementary Particles Fission, Fusion and Reactors Elementary Particles Fundamental Forces Classification of Particles Conservation

More information

Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name:

Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name: Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name: Atomic structure and radioactivity Give a definition for each of these key words: Atom Isotope Proton Neutron Electron Atomic nucleus

More information

3. State each of the four types of inelastic collisions, giving an example of each (zaa type example is acceptable)

3. State each of the four types of inelastic collisions, giving an example of each (zaa type example is acceptable) Nuclear Theory - Course 227 OBJECTIVES to: At the conclusion of this course the trainee will be able 227.00-1 Nuclear Structure 1. Explain and use the ZXA notation. 2. Explain the concept of binding energy.

More information

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η Neutron reproduction factor k eff = 1.000 What is: Migration length? Critical size? How does the geometry affect the reproduction factor? x 0.9 Thermal utilization factor f x 0.9 Resonance escape probability

More information

Nuclear Energy Learning Outcomes

Nuclear Energy Learning Outcomes 1 Nuclear Energy Learning Outcomes Describe the principles underlying fission and fusion. Interpret nuclear reactions. Discuss nuclear weapons. Describe the structure and operation of a nuclear reactor.

More information

Nuclear Energy Learning Outcomes. Nuclear Fission. Chain Reaction

Nuclear Energy Learning Outcomes. Nuclear Fission. Chain Reaction by fastfission public domain by fastfission public domain 1 Nuclear Energy Learning Outcomes Describe the principles underlying fission and fusion. Interpret nuclear reactions. Discuss nuclear weapons.

More information

The Attenuation of Neutrons in Barite Concrete

The Attenuation of Neutrons in Barite Concrete Universities Research Journal 2011, Vol. 4, No. 4 The Attenuation of Neutrons in Barite Concrete Wunna Ko Abstract The aim of this research is to study the neutron attenuation in barite concrete as a result

More information

Chemistry 132 NT. Nuclear Chemistry. Review. You can t escape death and taxes. But, at least, death doesn t get worse. Will Rogers

Chemistry 132 NT. Nuclear Chemistry. Review. You can t escape death and taxes. But, at least, death doesn t get worse. Will Rogers Chemistry 3 NT You can t escape death and taxes. But, at least, death doesn t get worse. Will Rogers Chem 3 NT Nuclear Chemistry Module 3 Energy and Nuclear Reactions The core of a nuclear reactor used

More information

molar mass = 0.239kg (1) mass needed = = kg (1) [7]

molar mass = 0.239kg (1) mass needed = = kg (1) [7] PhysicsAndMathsTutor.com 1 1. (a) (i) proton number 82 and nucleon number 214 (ii) Pb 2 (b) (i) kinetic energy [or electrostatic potential energy] (ii) m = 8.6 E 2 c 1 10 = 8 2 (10 ) = 9.6 10 0 kg [5]

More information

Chain Reactions. Table of Contents. List of Figures

Chain Reactions. Table of Contents. List of Figures Chain Reactions 1 Chain Reactions prepared by Wm. J. Garland, Professor, Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada More about this document Summary: In the chapter

More information

THE CHART OF NUCLIDES

THE CHART OF NUCLIDES THE CHART OF NUCLIDES LAB NR 10 INTRODUCTION The term nuclide refers to an atom or nucleus as characterized by the number of protons (Z) and neutrons (N) that the nucleus contains. A chart of nuclides

More information

Step 2: Calculate the total amount of U-238 present at time=0. Step 4: Calculate the rate constant for the decay process.

Step 2: Calculate the total amount of U-238 present at time=0. Step 4: Calculate the rate constant for the decay process. LP#9. A meteor contains 0.556 g of Pb-206 to every 1.00g U-238. Determine the age of the meteor. Step 1: Calculate the moles of each nuclide present. 0.566g Pb-206 x 1.00g U-238 x Step 2: Calculate the

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Nuclear Reactions. Fission Fusion

Nuclear Reactions. Fission Fusion Nuclear Reactions Fission Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place when a nucleus is struck by another nucleus or particle. Compare with chemical reactions!

More information

Lewis 2.1, 2.2 and 2.3

Lewis 2.1, 2.2 and 2.3 Chapter 2(and 3) Cross-Sections TA Lewis 2.1, 2.2 and 2.3 Learning Objectives Understand different types of nuclear reactions Understand cross section behavior for different reactions Understand d resonance

More information

Chapter 3: Neutron Activation and Isotope Analysis

Chapter 3: Neutron Activation and Isotope Analysis Chapter 3: Neutron Activation and Isotope Analysis 3.1. Neutron Activation Techniques 3.2. Neutron Activation of Paintings 3.3. From Qumran to Napoleon 3.4. Neutron Activation with Accelerators 3.5. Isotope

More information

NUCLEI. Atomic mass unit

NUCLEI. Atomic mass unit 13 NUCLEI Atomic mass unit It is a unit used to express the mass of atoms and particles inside it. One atomic mass unit is the mass of atom. 1u = 1.660539 10. Chadwick discovered neutron. The sum of number

More information

Energy Changes in Chemical and Nuclear Reactions

Energy Changes in Chemical and Nuclear Reactions Energy Changes in Chemical and Nuclear Reactions What happens when matter undergoes change? Clearly, new substances or states are produced, but energy changes also occur. If chemistry is the study of matter

More information

Science A 52 Lecture 22 May 1, 2006 Nuclear Power. What is it? What are its problems and prospects?

Science A 52 Lecture 22 May 1, 2006 Nuclear Power. What is it? What are its problems and prospects? Science A 52 Lecture 22 May 1, 2006 Nuclear Power What is it? What are its problems and prospects? Lecture 22, 1 Nuclear Fission On of the most interesting accounts a fission and the discovery of the release

More information

Nuclear Reactions. This is an example of nuclear reaction. Now consider a chemical reaction

Nuclear Reactions. This is an example of nuclear reaction. Now consider a chemical reaction Nuclear Reactions. Introduction REDs are important while yellow is less. Nuclear reactions are the transformations that occur when two nuclei collide. The first such reaction was observed by Rutherford

More information

Lecture 5 Nuclear Reactions

Lecture 5 Nuclear Reactions Objectives In this lecture you will learn the following We shall understand the concept of kinetic energy from the perspective of particle physics. We shall conclude that for all practical purposes, mass

More information

Solving the neutron slowing down equation

Solving the neutron slowing down equation Solving the neutron slowing down equation Bertrand Mercier, Jinghan Peng To cite this version: Bertrand Mercier, Jinghan Peng. Solving the neutron slowing down equation. 2014. HAL Id: hal-01081772

More information

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 4. Title: Control Rods and Sub-critical Systems

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 4. Title: Control Rods and Sub-critical Systems Lectures on Nuclear Power Safety Lecture No 4 Title: Control Rods and Sub-critical Systems Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture Control Rods Selection of Control

More information

Nuclear Energy; Effects and Uses of Radiation

Nuclear Energy; Effects and Uses of Radiation Nuclear Energy; Effects and Uses of Radiation Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place when a nucleus is struck by another nucleus or particle. Compare with chemical

More information

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY QUESTION BANK UNIT II -TWOMARKS. UNIT-II NUCLEAR POWER PLANTS:

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY QUESTION BANK UNIT II -TWOMARKS. UNIT-II NUCLEAR POWER PLANTS: -TWOMARKS. UNIT-II NUCLEAR POWER PLANTS: 1.What is meant by radioactivity? It refers to the german name of Radio-Activitat. Radioactivity is the spontaneous disintegration of atomic nuclei. The nucleus

More information

(a) (i) State the proton number and the nucleon number of X.

(a) (i) State the proton number and the nucleon number of X. PhysicsAndMathsTutor.com 1 1. Nuclei of 218 84Po decay by the emission of an particle to form a stable isotope of an element X. You may assume that no emission accompanies the decay. (a) (i) State the

More information

Nuclear Theory - Course 227 THERMAL REACTORS (BASIC DESIGN)

Nuclear Theory - Course 227 THERMAL REACTORS (BASIC DESIGN) Nuclear Theory - Course 227 THERMAL REACTORS (BASC DESGN) When a U-235 nucleus fissions an average of 2.5 neutrons are released in addition to the energy. This suggests that these neutrons could be used

More information

Nicholas J. Giordano. Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 30 Nuclear Physics Marilyn Akins, PhD Broome Community College Atomic Nuclei Rutherford s discovery of the atomic nucleus caused scientists

More information

Reactors and Fuels. Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV

Reactors and Fuels. Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV Reactors and Fuels Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV July 19-21, 2011 This course is partially based on work supported by

More information

Binding Energy and Mass defect

Binding Energy and Mass defect Binding Energy and Mass defect Particle Relative Electric Charge Relative Mass Mass (kg) Charge (C) (u) Electron -1-1.60 x 10-19 5.485779 x 10-4 9.109390 x 10-31 Proton +1 +1.60 x 10-19 1.007276 1.672623

More information

1. What is the phenomenon that best explains why greenhouse gases absorb infrared radiation? D. Diffraction (Total 1 mark)

1. What is the phenomenon that best explains why greenhouse gases absorb infrared radiation? D. Diffraction (Total 1 mark) 1. What is the phenomenon that best explains why greenhouse gases absorb infrared radiation? A. Resonance B. Interference C. Refraction D. Diffraction 2. In which of the following places will the albedo

More information

SHAWNEE ENVIRONMENTAL SERVICES, INC Identify the definitions of the following terms: a. Nucleon b. Nuclide c. Isotope

SHAWNEE ENVIRONMENTAL SERVICES, INC Identify the definitions of the following terms: a. Nucleon b. Nuclide c. Isotope Course Title: Radiological Control Technician Module Title: uclear Physics Module umber: 1.04 Objectives: 1.04.01 Identify the definitions of the following terms: a. ucleon b. uclide c. Isotope 1.04.02

More information

Energy Dependence of Neutron Flux

Energy Dependence of Neutron Flux Energy Dependence of Neutron Flux B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents We start the discussion of the energy

More information

Nuclear reactions and nuclear ssion

Nuclear reactions and nuclear ssion Nuclear reactions and nuclear ssion March 19, 2002 1 Cross sections and reaction rates ² Consider a thin target of thickness dx and number density of targets n t being bombarded by a beam of number density

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

Delayed neutrons in nuclear fission chain reaction

Delayed neutrons in nuclear fission chain reaction Delayed neutrons in nuclear fission chain reaction 1 Critical state Temporal flow Loss by leakage Loss by Absorption If the number of neutrons (the number of fission reactions) is practically constant

More information

2. The Steady State and the Diffusion Equation

2. The Steady State and the Diffusion Equation 2. The Steady State and the Diffusion Equation The Neutron Field Basic field quantity in reactor physics is the neutron angular flux density distribution: Φ( r r, E, r Ω,t) = v(e)n( r r, E, r Ω,t) -- distribution

More information

One nucleus splits into two smaller nuclei and typically a few neutrons by the bombardment of a neutron. U-235 is the only naturally occurring

One nucleus splits into two smaller nuclei and typically a few neutrons by the bombardment of a neutron. U-235 is the only naturally occurring One nucleus splits into two smaller nuclei and typically a few neutrons by the bombardment of a neutron. U-235 is the only naturally occurring nuclide that fissions However, both U-238 and Th-232 can be

More information

PHYSICS AND KINETICS OF TRIGA REACTOR. H. Böck and M. Villa AIAU 27307

PHYSICS AND KINETICS OF TRIGA REACTOR. H. Böck and M. Villa AIAU 27307 PHYSICS AND KINETICS OF TRIGA REACTOR H. Böck and M. Villa AIAU 27307 *prepared for NTEC Overview This training module is written as an introduction to reactor physics for reactor operators. It assumes

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

UNIT 13: NUCLEAR CHEMISTRY

UNIT 13: NUCLEAR CHEMISTRY UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For

More information

Nuclear Reactions. Nuclear Reactions

Nuclear Reactions. Nuclear Reactions Nuclear Reactions Result from transformations in the nucleus Involve protons and neutrons Often result in transmutation into more stable elements Participants: Energy Type Symbol(s) Charge Mass (g/particle)

More information

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions Atomic and Nuclear Physics Topic 7.3 Nuclear Reactions Nuclear Reactions Rutherford conducted experiments bombarding nitrogen gas with alpha particles from bismuth-214. He discovered that fast-moving particles

More information

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose Introduction to Radiological Sciences Neutron Detectors Neutron counting Theory of operation Slow neutrons Fast neutrons Types of detectors Source calibration Survey for Dose 2 Neutrons, what are they?

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 1 (2/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 1 (2/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications .54 Neutron Interactions and Applications (Spring 004) Chapter 1 (/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications There are many references in the vast literature on nuclear

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

Chapter 10. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) (i) 238. (ii) β particle(s) 1 Electron antineutrinos 1

Chapter 10. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) (i) 238. (ii) β particle(s) 1 Electron antineutrinos 1 (a) (i) 238 92 U + 0 n 239 92 U (ii) β particle(s) Electron antineutrinos (b) For: Natural uranium is 98% uranium-238 which would be otherwise unused. Plutonium-239 would not need to be stored long-term

More information

What do the nuclei of different molybdenum isotopes have in common?

What do the nuclei of different molybdenum isotopes have in common? Q1.(a) There are many isotopes of the element molybdenum (Mo). What do the nuclei of different molybdenum isotopes have in common? The isotope molybdenum-99 is produced inside some nuclear power stations

More information