Operational Reactor Safety

Size: px
Start display at page:

Download "Operational Reactor Safety"

Transcription

1 Operational Reactor Safety / Professor Andrew C. Kadak Professor of the Practice Lecture 3 Reactor Kinetics and Control Page 1

2 Topics to Be Covered Time Dependent Diffusion Equation Prompt Neutrons Delayed Neutrons Point Kinetics Equation Reactivity Inhour Equation Feedback - Fuel-Doppler, Moderator, Power Reactor Control Page 2

3 Key Concepts Time Dependent Diffusion Equation Rate of change = rate of production rate of absorption rate of leakage Prompt neutron keff Reactivity ρ = (k -1)/k Mean neutron generation time l* = 10-7 sec Reactor Period T = l*/ρ Time to increase power by factor of e Page 3

4 Impact of Delayed Neutrons 99 % of Neutrons are Prompt released at time of fission Fission Products also release neutrons with some delay based on half life - Precursors 20 Precursors grouped into 6 groups with half lives ranging from 0.25 sec to 1 minute Delayed neutron fraction ß i = delayed neutrons from precursor group C i /v Page 4

5 Delayed Neutrons Figures Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see Page 5

6 Neutron Balance Prompt source Delayed source Time Dependent Neutron Balance Equation Page 6

7 Key Kinetics Equations Point Kinetics Equations Inhour Equation Page 7

8 Average Delayed Neutron from Uranium and Plutonium Delayed neutrons are produced at about ½ the energy of prompt neutrons Figures Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see Page 8

9 Reactivity Insertions Reactor follows point kinetics equations Prompt jump drop Asymptotic Period considering delayed neutrons Prompt critical transition to prompt from delayed control ρ = ß Period of core used to start up reactor 80 sec. Page 9

10 $ = ρ/ß Page 10 Figures Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

11 Reactivity Feedbacks Fuel Temperature Thermal expansion Doppler Moderator/Coolant Fuel Motion bowing Page 11

12 Reactivity Coefficients Fuel Temperature Moderator Temperature Moderator Density Void Coefficient Power Coefficient Page 12

13 Doppler Broadening Figures Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see Page 13

14 Reactivity Feedback Figures Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see Page 14

15 Page 15 Figures Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

16 Reactor Control Inherent feedback mechanism Fast fuel Slow moderator Control Rods Relatively fast but rod worth an issue - Rod ejection - Rapid withdrawal Soluable Boron effect on Moderator Temp. Coefficient Page 16

17 Homework Assignment Knief Chapter 5 Problems: 1,4,6,9 Read Chapter 6 for next class Page 17

18 MIT OpenCourseWare Nuclear Reactor Safety Spring 2008 For information about citing these materials or our Terms of Use, visit:

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 18 Nuclear Reactor Theory IV Reactivity Insertions 1 Spiritual Thought 2 Mosiah 2:33 33 For behold, there is a wo pronounced upon him who

More information

Delayed neutrons in nuclear fission chain reaction

Delayed neutrons in nuclear fission chain reaction Delayed neutrons in nuclear fission chain reaction 1 Critical state Temporal flow Loss by leakage Loss by Absorption If the number of neutrons (the number of fission reactions) is practically constant

More information

CANDU Safety #3 - Nuclear Safety Characteristics Dr. V.G. Snell Director Safety & Licensing

CANDU Safety #3 - Nuclear Safety Characteristics Dr. V.G. Snell Director Safety & Licensing CANDU Safety #3 - Nuclear Safety Characteristics Dr. V.G. Snell Director Safety & Licensing 24/05/01 CANDU Safety - #3 - Nuclear Safety Characteristics.ppt Rev. 0 vgs 1 What Makes A Safe Nuclear Design?

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 5. Title: Reactor Kinetics and Reactor Operation

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 5. Title: Reactor Kinetics and Reactor Operation Lectures on Nuclear Power Safety Lecture No 5 Title: Reactor Kinetics and Reactor Operation Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture (1) Reactor Kinetics Reactor

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 4. Title: Control Rods and Sub-critical Systems

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 4. Title: Control Rods and Sub-critical Systems Lectures on Nuclear Power Safety Lecture No 4 Title: Control Rods and Sub-critical Systems Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture Control Rods Selection of Control

More information

Reactor Operation Without Feedback Effects

Reactor Operation Without Feedback Effects 22.05 Reactor Physics - Part Twenty-Six Reactor Operation Without Feedback Effects 1. Reference Material: See pp. 363-368 of the article, Light Water Reactor Control Systems, in Wiley Encyclopedia of Electrical

More information

Fundamentals of Nuclear Reactor Physics

Fundamentals of Nuclear Reactor Physics Fundamentals of Nuclear Reactor Physics E. E. Lewis Professor of Mechanical Engineering McCormick School of Engineering and Applied Science Northwestern University AMSTERDAM BOSTON HEIDELBERG LONDON NEW

More information

Lesson 14: Reactivity Variations and Control

Lesson 14: Reactivity Variations and Control Lesson 14: Reactivity Variations and Control Reactivity Variations External, Internal Short-term Variations Reactivity Feedbacks Reactivity Coefficients and Safety Medium-term Variations Xe 135 Poisoning

More information

Lecture 18 Neutron Kinetics Equations

Lecture 18 Neutron Kinetics Equations 24.505 Lecture 18 Neutron Kinetics Equations Prof. Dean Wang For a nuclear reactor to operate at a constant power level, the rate of neutron production via fission reactions should be exactly balanced

More information

Reactivity Power and Temperature Coefficients Determination of the TRR

Reactivity Power and Temperature Coefficients Determination of the TRR Reactivity and Temperature Coefficients Determination of the TRR ABSTRACT Ahmad Lashkari Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran Tehran 14399-51113,

More information

Lecture 27 Reactor Kinetics-III

Lecture 27 Reactor Kinetics-III Objectives In this lecture you will learn the following In this lecture we will understand some general concepts on control. We will learn about reactivity coefficients and their general nature. Finally,

More information

Reactor Kinetics and Operation

Reactor Kinetics and Operation Reactor Kinetics and Operation Course No: N03-002 Credit: 3 PDH Gilbert Gedeon, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 0980 P: (877) 322-5800 F: (877) 322-4774

More information

"Control Rod Calibration"

Control Rod Calibration TECHNICAL UNIVERSITY DRESDEN Institute of Power Engineering Training Reactor Reactor Training Course Experiment "Control Rod Calibration" Instruction for Experiment Control Rod Calibration Content: 1...

More information

Lamarsh, "Introduction to Nuclear Reactor Theory", Addison Wesley (1972), Ch. 12 & 13

Lamarsh, Introduction to Nuclear Reactor Theory, Addison Wesley (1972), Ch. 12 & 13 NEEP 428 REACTOR PULSING Page 1 April 2003 References: Lamarsh, "Introduction to Nuclear Reactor Theory", Addison Wesley (1972), Ch. 12 & 13 Notation: Lamarsh (2), "Introduction to Nuclear Engineering",(1975),

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 1. Title: Neutron Life Cycle

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 1. Title: Neutron Life Cycle Lectures on Nuclear Power Safety Lecture No 1 Title: Neutron Life Cycle Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture Infinite Multiplication Factor, k Four Factor Formula

More information

Chem 481 Lecture Material 4/22/09

Chem 481 Lecture Material 4/22/09 Chem 481 Lecture Material 4/22/09 Nuclear Reactors Poisons The neutron population in an operating reactor is controlled by the use of poisons in the form of control rods. A poison is any substance that

More information

Control Rod Calibration and Worth Calculation for Optimized Power Reactor 1000 (OPR-1000) Using Core Simulator OPR1000

Control Rod Calibration and Worth Calculation for Optimized Power Reactor 1000 (OPR-1000) Using Core Simulator OPR1000 World Journal of Nuclear Science and Technology, 017, 7, 15-3 http://www.scirp.org/journal/wjnst ISSN Online: 161-6809 ISSN Print: 161-6795 Control Rod Calibration and Worth Calculation for Optimized Power

More information

Reactivity Balance & Reactor Control System

Reactivity Balance & Reactor Control System Reactivity Balance & Reactor Control System K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 6 Table of Contents 1 MULTIPLICATION

More information

Introduction to Reactivity and Reactor Control

Introduction to Reactivity and Reactor Control Introduction to Reactivity and Reactor Control Larry Foulke Adjunct Professor Director of Nuclear Education Outreach University of Pittsburgh IAEA Workshop on Desktop Simulation October 2011 Learning Objectives

More information

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature.

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. Moderator Temperature Coefficient MTC 1 Moderator Temperature Coefficient The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. α

More information

N U C L : R E A C T O R O P E R A T I O N A N D R E G U L A T O R Y P O L I C Y, I

N U C L : R E A C T O R O P E R A T I O N A N D R E G U L A T O R Y P O L I C Y, I N U C L 6 0 6 0 : R E A C T O R O P E R A T I O N A N D R E G U L A T O R Y P O L I C Y, I FALL 2013 INSTRUCTORS: Gregory Moffitt & Ryan Schow LECTURES: MONDAY & WEDNESDAY 11:50 AM 1:10 PM MEB 1206 OFFICE

More information

Nuclear Theory - Course 227 REACTIVITY EFFECTS DUE TO TEMPERATURE CHANGES

Nuclear Theory - Course 227 REACTIVITY EFFECTS DUE TO TEMPERATURE CHANGES Nuclear Theory - Course 227 REACTIVITY EFFECTS DUE TO TEMPERATURE CHANGES In the lesson on reactor kinetics we ignored any variations ln reactivity due to changes in power. As we saw in the previous lesson

More information

3. State each of the four types of inelastic collisions, giving an example of each (zaa type example is acceptable)

3. State each of the four types of inelastic collisions, giving an example of each (zaa type example is acceptable) Nuclear Theory - Course 227 OBJECTIVES to: At the conclusion of this course the trainee will be able 227.00-1 Nuclear Structure 1. Explain and use the ZXA notation. 2. Explain the concept of binding energy.

More information

Reactivity Coefficients

Reactivity Coefficients Reactivity Coefficients B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Reactivity Changes In studying kinetics, we have seen

More information

CRITICAL AND SUBCRITICAL EXPERIMENTS USING THE TRAINING NUCLEAR REACTOR OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

CRITICAL AND SUBCRITICAL EXPERIMENTS USING THE TRAINING NUCLEAR REACTOR OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS CRITICAL AND SUBCRITICAL EXPERIMENTS USING THE TRAINING NUCLEAR REACTOR OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS É. M. Zsolnay Department of Nuclear Techniques, Budapest University of Technology

More information

Reactivity Coefficients

Reactivity Coefficients Revision 1 December 2014 Reactivity Coefficients Student Guide GENERAL DISTRIBUTION GENERAL DISTRIBUTION: Copyright 2014 by the National Academy for Nuclear Training. Not for sale or for commercial use.

More information

NUCLEAR SCIENCE ACAD BASIC CURRICULUM CHAPTER 5 NEUTRON LIFE CYCLE STUDENT TEXT REV 2. L th. L f U-235 FUEL MODERATOR START CYCLE HERE THERMAL NEUTRON

NUCLEAR SCIENCE ACAD BASIC CURRICULUM CHAPTER 5 NEUTRON LIFE CYCLE STUDENT TEXT REV 2. L th. L f U-235 FUEL MODERATOR START CYCLE HERE THERMAL NEUTRON ACAD BASIC CURRICULUM NUCLEAR SCIENCE CHAPTER 5 NEUTRON LIFE CYCLE 346 RESONANCE LOSSES p 038 THERMAL NEUTRON 2 THERMAL NEUTRON LEAKAGE 52 THERMAL ABSORBED BY NON-FUEL ATOMS L th 07 THERMAL f 965 THERMAL

More information

Nuclear Theory - Course 227

Nuclear Theory - Course 227 Lesson 227.00-2 NEUTRON BALANCE Nuclear Theory - Course 227 DURNG STEADY REACTOR OPERATON We have seen, in the previous lesson, what type of neutrons are produced and how they are produced in a reactor.

More information

u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig [1]

u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig [1] 1 (a) Fig. 6.1 shows the quark composition of some particles. proton neutron A B u u d u d d u d u u u u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig. 6.1. (ii) State

More information

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η Neutron reproduction factor k eff = 1.000 What is: Migration length? Critical size? How does the geometry affect the reproduction factor? x 0.9 Thermal utilization factor f x 0.9 Resonance escape probability

More information

APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS

APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS Michel GONNET and Michel CANAC FRAMATOME Tour Framatome. Cedex 16, Paris-La

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

turbine (a) (i) Which part of the power station provides thermal (heat) energy from a chain reaction?

turbine (a) (i) Which part of the power station provides thermal (heat) energy from a chain reaction? Nuclear fission and radiation 1 The diagram shows parts of a nuclear power station. control rods boiler steam generator electricity out turbine condenser nuclear reactor (a) (i) Which part of the power

More information

17 Neutron Life Cycle

17 Neutron Life Cycle 17 Neutron Life Cycle A typical neutron, from birth as a prompt fission neutron to absorption in the fuel, survives for about 0.001 s (the neutron lifetime) in a CANDU. During this short lifetime, it travels

More information

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN s Present address: J.L. Kloosterman Interfaculty Reactor Institute Delft University of Technology Mekelweg 15, NL-2629 JB Delft, the Netherlands Fax: ++31

More information

Research Article Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code

Research Article Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code Hindawi Science and Technology of Nuclear Installations Volume 2017, Article ID 5151890, 8 pages https://doi.org/10.1155/2017/5151890 Research Article Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal

More information

Lecture 28 Reactor Kinetics-IV

Lecture 28 Reactor Kinetics-IV Objectives In this lecture you will learn the following In this lecture we will understand the transient build up of Xenon. This can lead to dead time in reactors. Xenon also induces power oscillations

More information

Nuclear Theory - Course 127 EFFECTS OF FUEL BURNUP

Nuclear Theory - Course 127 EFFECTS OF FUEL BURNUP Nuclear Theory - Course 127 EFFECTS OF FUEL BURNUP The effect of fuel burnup wa~ considered, to some extent, in a previous lesson. During fuel burnup, U-235 is used up and plutonium is produced and later

More information

PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART

PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART Mathieu Hursin and Thomas Downar University of California Berkeley, USA mhursin@nuc.berkeley.edu,downar@nuc.berkeley.edu ABSTRACT During the past

More information

SUB-CHAPTER D.1. SUMMARY DESCRIPTION

SUB-CHAPTER D.1. SUMMARY DESCRIPTION PAGE : 1 / 12 CHAPTER D. REACTOR AND CORE SUB-CHAPTER D.1. SUMMARY DESCRIPTION Chapter D describes the nuclear, hydraulic and thermal characteristics of the reactor, the proposals made at the present stage

More information

Question Answer Marks Guidance 1 (a) The neutrons interact with other uranium (nuclei) / the neutrons cause further (fission) reactions

Question Answer Marks Guidance 1 (a) The neutrons interact with other uranium (nuclei) / the neutrons cause further (fission) reactions Question Answer Marks Guidance 1 (a) The neutrons interact with other uranium (nuclei) / the neutrons cause further (fission) reactions Not: neutrons interact with uranium atoms / molecules / particles

More information

PHYSICS AND KINETICS OF TRIGA REACTOR. H. Böck and M. Villa AIAU 27307

PHYSICS AND KINETICS OF TRIGA REACTOR. H. Böck and M. Villa AIAU 27307 PHYSICS AND KINETICS OF TRIGA REACTOR H. Böck and M. Villa AIAU 27307 *prepared for NTEC Overview This training module is written as an introduction to reactor physics for reactor operators. It assumes

More information

VI. Chain Reaction. Two basic requirements must be filled in order to produce power in a reactor:

VI. Chain Reaction. Two basic requirements must be filled in order to produce power in a reactor: VI. Chain Reaction VI.1. Basic of Chain Reaction Two basic requirements must be filled in order to produce power in a reactor: The fission rate should be high. This rate must be continuously maintained.

More information

Term 3 Week 2 Nuclear Fusion & Nuclear Fission

Term 3 Week 2 Nuclear Fusion & Nuclear Fission Term 3 Week 2 Nuclear Fusion & Nuclear Fission Tuesday, November 04, 2014 Nuclear Fusion To understand nuclear fusion & fission Nuclear Fusion Why do stars shine? Stars release energy as a result of fusing

More information

NEUTRON MODERATION. LIST three desirable characteristics of a moderator.

NEUTRON MODERATION. LIST three desirable characteristics of a moderator. Reactor Theory (eutron Characteristics) DOE-HDBK-1019/1-93 EUTRO MODERATIO EUTRO MODERATIO In thermal reactors, the neutrons that cause fission are at a much lower energy than the energy level at which

More information

Subcritical Multiplication and Reactor Startup

Subcritical Multiplication and Reactor Startup 22.05 Reactor Physics - Part Twenty-Five Subcritical Multiplication and Reactor Startup 1. Reference Material See pp. 357-363 of the article, Light Water Reactor Control Systems, in Wiley Encyclopedia

More information

Power Changes in a Critical Reactor. The Critical Reactor

Power Changes in a Critical Reactor. The Critical Reactor Chapter 8 Power Changes in a Critical Reactor n For very small reactivity increases n For small reactivity increases n For large reactivity increases/decreases The Critical Reactor < k = hfpel f L t =

More information

Energy. on this world and elsewhere. Visiting today: Prof. Paschke

Energy. on this world and elsewhere. Visiting today: Prof. Paschke Energy on this world and elsewhere Visiting today: Prof. Paschke Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu,

More information

Lecture 20 Reactor Theory-V

Lecture 20 Reactor Theory-V Objectives In this lecture you will learn the following We will discuss the criticality condition and then introduce the concept of k eff.. We then will introduce the four factor formula and two group

More information

Closing the nuclear fuel cycle

Closing the nuclear fuel cycle Closing the nuclear fuel cycle Potential of the Gas Cooled Fast Reactor (GCFR) Godart van Gendt Physics of Nuclear Reactors (PNR) Department of R3 Faculty TNW TU Delft Supervisors: Dr. ir. W.F.G. van Rooijen

More information

Reactors and Fuels. Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV

Reactors and Fuels. Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV Reactors and Fuels Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV July 19-21, 2011 This course is partially based on work supported by

More information

OECD/NEA Transient Benchmark Analysis with PARCS - THERMIX

OECD/NEA Transient Benchmark Analysis with PARCS - THERMIX OECD/NEA Transient Benchmark Analysis with PARCS - THERMIX Volkan Seker Thomas J. Downar OECD/NEA PBMR Workshop Paris, France June 16, 2005 Introduction Motivation of the benchmark Code-to-code comparisons.

More information

Nuclear Reactor Physics I Final Exam Solutions

Nuclear Reactor Physics I Final Exam Solutions .11 Nuclear Reactor Physics I Final Exam Solutions Author: Lulu Li Professor: Kord Smith May 5, 01 Prof. Smith wants to stress a couple of concepts that get people confused: Square cylinder means a cylinder

More information

Nuclear Physics 2. D. atomic energy levels. (1) D. scattered back along the original direction. (1)

Nuclear Physics 2. D. atomic energy levels. (1) D. scattered back along the original direction. (1) Name: Date: Nuclear Physics 2. Which of the following gives the correct number of protons and number of neutrons in the nucleus of B? 5 Number of protons Number of neutrons A. 5 6 B. 5 C. 6 5 D. 5 2. The

More information

Lewis 2.1, 2.2 and 2.3

Lewis 2.1, 2.2 and 2.3 Chapter 2(and 3) Cross-Sections TA Lewis 2.1, 2.2 and 2.3 Learning Objectives Understand different types of nuclear reactions Understand cross section behavior for different reactions Understand d resonance

More information

Metropolitan Community College COURSE OUTLINE FORM LAB: 3.0

Metropolitan Community College COURSE OUTLINE FORM LAB: 3.0 Metropolitan Community College COURSE OUTLINE FORM Course Title: Nuclear Plant Operation II Course Prefix & No.: LEC: PROT - 2420 3.0 COURSE DESCRIPTION: LAB: 0 Credit Hours: 3.0 This course introduces

More information

Power Installations based on Activated Nuclear Reactions of Fission and Synthesis

Power Installations based on Activated Nuclear Reactions of Fission and Synthesis Yu.V. Grigoriev 1,2, A.V. Novikov-Borodin 1 1 Institute for Nuclear Research RAS, Moscow, Russia 2 Joint Institute for Nuclear Research, Dubna, Russia Power Installations based on Activated Nuclear Reactions

More information

RTC-METHOD FOR THE CONTROL OF NUCLEAR REACTOR POWER

RTC-METHOD FOR THE CONTROL OF NUCLEAR REACTOR POWER KYBERNETIKA VOLUME 34 (1998), NUMBER 2, PAGES 189-198 RTC-METHOD FOR THE CONTROL OF NUCLEAR REACTOR POWER WAJDI M. RATEMI In this paper, a new concept of the Reactivity Trace Curve (RTC) for reactor power

More information

Malcolm Bean AT THE MAY All Rights Reserved. Signature of Author: Malcolm Bean Department of Nuclear Science and Engineering

Malcolm Bean AT THE MAY All Rights Reserved. Signature of Author: Malcolm Bean Department of Nuclear Science and Engineering COMPUTATIONAL NEUTRONICS ANALYSIS OF TRIGA REACTORS DURING POWER PULSING ARCHIIVE By Malcolm Bean SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENT

More information

VERIFICATION OF REACTOR DYNAMICS CALCULATIONS USING THE COUPLED CODE SYSTEM FAST

VERIFICATION OF REACTOR DYNAMICS CALCULATIONS USING THE COUPLED CODE SYSTEM FAST Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications Palais des Papes, Avignon, France, September 12-15, 2005, on CD-ROM, American Nuclear Society, LaGrange

More information

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Lecture 14, 8/9/2017 Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place

More information

MEASUREMENT AND COMPARISON OF CONTROL ROD WORTH OF BTRR USING INHOUR EQUATION AND PERIOD REACTIVITY CONVERSION TABLE

MEASUREMENT AND COMPARISON OF CONTROL ROD WORTH OF BTRR USING INHOUR EQUATION AND PERIOD REACTIVITY CONVERSION TABLE J. Bangladesh Acad. Sci., Vol. 41, No. 1, 95-103, 2017 MEASUREMENT AND COMPARISON OF CONTROL ROD WORTH OF BTRR USING INHOUR EQUATION AND PERIOD REACTIVITY CONVERSION TABLE MD. IQBAL HOSAN, M. A. M. SONER

More information

R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada

R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada REACTVTY CHANGES R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Reactivity Coefficient, Fuel Burnup, Xenon, Samarium, Temperature Contents 1. ntroduction

More information

20.1 Xenon Production Xe-135 is produced directly in only 0.3% of all U-235 fissions. The following example is typical:

20.1 Xenon Production Xe-135 is produced directly in only 0.3% of all U-235 fissions. The following example is typical: 20 Xenon: A Fission Product Poison Many fission products absorb neutrons. Most absorption cross-sections are small and are not important in short-term operation. Xenon- has a cross-section of approximately

More information

The discovery of nuclear reactions need not bring about the destruction of mankind any more than the discovery of matches - Albert Einstein

The discovery of nuclear reactions need not bring about the destruction of mankind any more than the discovery of matches - Albert Einstein The world has achieved brilliance without wisdom, power without conscience. Ours is a world of nuclear giants and ethical infants. - Omar Bradley (US general) The discovery of nuclear reactions need not

More information

A Taylor series solution of the reactor point kinetics equations

A Taylor series solution of the reactor point kinetics equations 1 A Taylor series solution of the reactor point kinetics equations David McMahon and Adam Pierson Department of Nuclear Safety Analysis,Sandia National Laboratories, Albuquerque, NM 87185-1141 E-mail address:

More information

Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name:

Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name: Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name: Atomic structure and radioactivity Give a definition for each of these key words: Atom Isotope Proton Neutron Electron Atomic nucleus

More information

Quiz, Physics & Chemistry

Quiz, Physics & Chemistry Eight Sessions 1. Pressurized Water Reactor 2. Quiz, Thermodynamics & HTFF 3. Quiz, Physics & Chemistry 4. Exam #1, Electrical Concepts & Systems 5. Quiz, Materials Science 6. Quiz, Strength of Materials

More information

Nuclear Physics (13 th lecture)

Nuclear Physics (13 th lecture) uclear Physics ( th lecture) Cross sections of special neutron-induced reactions UCLR FISSIO Mechanism and characteristics of nuclear fission. o The fission process o Mass distribution of the fragments

More information

Study of Control rod worth in the TMSR

Study of Control rod worth in the TMSR Nuclear Science and Techniques 24 (2013) 010601 Study of Control rod worth in the TMSR ZHOU Xuemei * LIU Guimin 1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

More information

Mechanical Engineering Introduction to Nuclear Engineering /12

Mechanical Engineering Introduction to Nuclear Engineering /12 Mechanical Engineering Objectives In this lecture you will learn the following In this lecture the population and energy scenario in India are reviewed. The imminent rapid growth of nuclear power is brought

More information

REACTOR PHYSICS FOR NON-NUCLEAR ENGINEERS

REACTOR PHYSICS FOR NON-NUCLEAR ENGINEERS International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011) Rio de Janeiro, RJ, Brazil, May 8-12, 2011, on CD-ROM, Latin American Section (LAS)

More information

Chain Reactions. Table of Contents. List of Figures

Chain Reactions. Table of Contents. List of Figures Chain Reactions 1 Chain Reactions prepared by Wm. J. Garland, Professor, Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada More about this document Summary: In the chapter

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

but mostly as the result of the beta decay of its precursor 135 I (which has a half-life of hours).

but mostly as the result of the beta decay of its precursor 135 I (which has a half-life of hours). 8. Effects of 135Xe The xenon isotope 135 Xe plays an important role in any power reactor. It has a very large absorption cross section for thermal neutrons and represents therefore a considerable load

More information

A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis

A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis A. Aures 1,2, A. Pautz 2, K. Velkov 1, W. Zwermann 1 1 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) ggmbh Boltzmannstraße

More information

Shutdown Margin. Xenon-Free Xenon removes neutrons from the life-cycle. So, xenonfree is the most reactive condition.

Shutdown Margin. Xenon-Free Xenon removes neutrons from the life-cycle. So, xenonfree is the most reactive condition. 22.05 Reactor Physics - Part Thirty-One Shutdown Margin 1. Shutdown Margin: Shutdown margin (abbreviated here as SDM) is defined as the amount of reactivity by which a reactor is subcritical from a given

More information

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland Fundamentals of Nuclear Power Original slides provided by Dr. Daniel Holland Nuclear Fission We convert mass into energy by breaking large atoms (usually Uranium) into smaller atoms. Note the increases

More information

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT R. KHAN, M. VILLA, H. BÖCK Vienna University of Technology Atominstitute Stadionallee 2, A-1020, Vienna, Austria ABSTRACT The Atominstitute

More information

Analysis of Anticipated Transient Without Scram Accident for Thermal Reactor

Analysis of Anticipated Transient Without Scram Accident for Thermal Reactor Physics Journal Vol. 1, No. 3, 2015, pp. 233-244 http://www.aiscience.org/journal/pj Analysis of Anticipated Transient Without Scram Accident for Thermal Reactor Hend M. Saad 1, *, M. Aziz 1, H. Mansour

More information

ISIS TRAINING REACTOR: A REACTOR DEDICATED TO EDUCATION AND TRAINING FOR STUDENTS AND PROFESSIONALS

ISIS TRAINING REACTOR: A REACTOR DEDICATED TO EDUCATION AND TRAINING FOR STUDENTS AND PROFESSIONALS ISIS TRAINING REACTOR: A REACTOR DEDICATED TO EDUCATION AND TRAINING FOR STUDENTS AND PROFESSIONALS F. FOULON : francois.foulon@cea.fr French Atomic Energy and Alternative Energies Commission CEA FRANCE

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. Describe briefly one scattering experiment to investigate the size of the nucleus of the atom. Include a description of the properties of the incident radiation which makes

More information

Cost Analtsis for a Nuclear Power Plant with Standby Redundant Reactor Vessel

Cost Analtsis for a Nuclear Power Plant with Standby Redundant Reactor Vessel Research Journal of Mathematics and Statistics 2(3): 91-96, 2010 ISSN: 2040-7505 Maxwell Scientific Organization, 2010 Submitted Date: March 09, 2010 Accepted Date: April 30, 2010 Published Date: September

More information

ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor

ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor Ade afar Abdullah Electrical Engineering Department, Faculty of Technology and Vocational Education Indonesia University of

More information

Belarus activity in ADS field

Belarus activity in ADS field Joint Institute for Power&Nuclear Research-Sosny National Academy of Sciences of Belarus Belarus activity in ADS field H. Kiyavitskaya, Yu. Fokov, Ch. Routkovskaya, V. Bournos, S. Sadovich, S. Mazanik,

More information

Write down the nuclear equation that represents the decay of neptunium 239 into plutonium 239.

Write down the nuclear equation that represents the decay of neptunium 239 into plutonium 239. Q1.A rod made from uranium 238 ( U) is placed in the core of a nuclear reactor where it absorbs free neutrons. When a nucleus of uranium 238 absorbs a neutron it becomes unstable and decays to neptunium

More information

Neutronic Issues and Ways to Resolve Them. P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM,

Neutronic Issues and Ways to Resolve Them. P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM, GT-MHR Project High-Temperature Reactor Neutronic Issues and Ways to Resolve Them P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM, GT-MHR PROJECT MISSION

More information

Development of 3D Space Time Kinetics Model for Coupled Neutron Kinetics and Thermal hydraulics

Development of 3D Space Time Kinetics Model for Coupled Neutron Kinetics and Thermal hydraulics Development of 3D Space Time Kinetics Model for Coupled Neutron Kinetics and Thermal hydraulics WORKSHOP ON ADVANCED CODE SUITE FOR DESIGN, SAFETY ANALYSIS AND OPERATION OF HEAVY WATER REACTORS October

More information

Physics 3204 UNIT 3 Test Matter Energy Interface

Physics 3204 UNIT 3 Test Matter Energy Interface Physics 3204 UNIT 3 Test Matter Energy Interface 2005 2006 Time: 60 minutes Total Value: 33 Marks Formulae and Constants v = f λ E = hf h f = E k + W 0 E = m c 2 p = h λ 1 A= A T 0 2 t 1 2 E k = ½ mv 2

More information

Incineration of Plutonium in PWR Using Hydride Fuel

Incineration of Plutonium in PWR Using Hydride Fuel Incineration of Plutonium in PWR Using Hydride Fuel Francesco Ganda and Ehud Greenspan University of California, Berkeley ARWIF-2005 Oak-Ridge, TN February 16-18, 2005 Pu transmutation overview Many approaches

More information

Neutronic Calculations of Ghana Research Reactor-1 LEU Core

Neutronic Calculations of Ghana Research Reactor-1 LEU Core Neutronic Calculations of Ghana Research Reactor-1 LEU Core Manowogbor VC*, Odoi HC and Abrefah RG Department of Nuclear Engineering, School of Nuclear Allied Sciences, University of Ghana Commentary Received

More information

XV. Fission Product Poisoning

XV. Fission Product Poisoning XV. Fission Product Poisoning XV.1. Xe 135 Buil-Up As we already know, temperature changes bring short-term effects. That is to say, once a power change is produced it is rapidly manifested as a change

More information

Simulating the Behaviour of the Fast Reactor JOYO

Simulating the Behaviour of the Fast Reactor JOYO IYNC 2008 Interlaken, Switzerland, 20 26 September 2008 Paper No. 163 Simulating the Behaviour of the Fast Reactor JOYO ABSTRACT Pauli Juutilainen VTT Technical Research Centre of Finland, P.O. Box 1000,

More information

EXPERIMENTAL DETERMINATION OF NEUTRONIC PARAMETERS IN THE IPR-R1 TRIGA REACTOR CORE

EXPERIMENTAL DETERMINATION OF NEUTRONIC PARAMETERS IN THE IPR-R1 TRIGA REACTOR CORE 2011 International Nuclear Atlantic Conference - INAC 2011 Belo Horizonte,MG, Brazil, October 24-28, 2011 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-04-5 EXPERIMENTAL DETERMINATION

More information

Key Words Student Paper, Nuclear Engineering

Key Words Student Paper, Nuclear Engineering Development of Educational Undergraduate Course Modules for Interactive Reactor Physics Nader Satvat, Purdue University Shanjie Xiao, Purdue University Kevin Muller, Purdue University Charlton Campbell,

More information

BN-600 Full MOX Core Benchmark Analysis

BN-600 Full MOX Core Benchmark Analysis PHYSOR 24 -The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments Chicago, Illinois, April 25-29, 24, on CD-ROM, American Nuclear Society, Lagrange Park, IL. (24) BN-6 Full MOX Core

More information

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Journal of Nuclear and Particle Physics 2016, 6(3): 61-71 DOI: 10.5923/j.jnpp.20160603.03 The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Heba K. Louis

More information

Study on SiC Components to Improve the Neutron Economy in HTGR

Study on SiC Components to Improve the Neutron Economy in HTGR Study on SiC Components to Improve the Neutron Economy in HTGR Piyatida TRINURUK and Assoc.Prof.Dr. Toru OBARA Department of Nuclear Engineering Research Laboratory for Nuclear Reactors Tokyo Institute

More information

Control of the fission chain reaction

Control of the fission chain reaction Control of the fission chain reaction Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 April 8, 2011 NUCS 342 (Lecture 30) April 8, 2011 1 / 29 Outline 1 Fission chain reaction

More information

He, Ne, and Ar have shells.

He, Ne, and Ar have shells. 5.111 Lecture Summary #8 Monday September 22, 2014 Readings for today: Section 1.14 Electronic Structure and the Periodic Table, Section 1.15, 1.16, 1.17, 1.18, and 1.20 - The Periodicity of Atomic Properties.

More information