8: Source-Sink Problems in 1 Energy Group

Size: px
Start display at page:

Download "8: Source-Sink Problems in 1 Energy Group"

Transcription

1 8: Source-Sink Problems in 1 Energy Group B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 015 Sept.-Dec. 015 September 1

2 Contents Solving the 1-group diffusion equation in the presence of external sources. 015 September

3 Source-Sink Problems Before studying reactor problems, we will study source-sink problems in diffusion theory. Source-sink problems are situations where the only neutron sources present are independent of the neutron flux, i.e., the environment is not really multiplying, it has only scattering and capture cross sections. We will study simple source-sink problems in 1-group diffusion theory. 015 September 3

4 Source-Sink Problems Because source-sink problems are situations which are driven by an external source (or sources), there is always a solution for the flux distribution, even if the solution cannot be easily obtained, for instance where the problem configuration is complex. i.e., the neutrons are emitted by the source, and they must go somewhere, so there is necessarily a flux distribution around the source(s), depending on the medium outside the source(s). We will see later that, in contrast, in critical systems there is not always a time-independent solution. 015 September 4

5 The Diffusion Equation The starting diffusion equation in 1 energy group was derived in a previous learning module: Sr r r r r Dr r 0 (1) f a In source-sink problems, f = 0. We will study the flux distribution: First, for a simple source extending throughout space And, secondly, for situations where the source has no extent in at least one spatial dimension. 015 September 5

6 Uniform Source in Infinite, Uniform Medium Assume a uniform source S(r) = S, constant independent of location r. If the medium is uniform, the nuclear properties are constant, i.e., a (r) = and D(r) = D, independent of location. In this completely uniform space, every point is equivalent to every other point. Therefore the leakage term (last term in Eq. 1) into or out of any point can only be 0! Also, the f term is 0. Eq. (1) becomes S r, and the solution is a spatially uniform flux a 0 r a 015 September 6 S

7 The Diffusion Equation Now consider cases where the source has no extent in at least one dimension. We still have the equation : S r r r r r Dr r 0 (1) f a In source-sink problems, f = 0. We will study the flux distribution outside the source, i.e., in regions where S(r) = 0. Let us also assume that the medium outside the source is homogeneous (uniform), i.e., the nuclear properties D and a are independent of r. The diffusion equation outside the source then becomes: D r r 0, or D r r 0 () a a 015 September 7

8 Exercise What is the operator form of Eq. ()? 015 September 8

9 Operator Form of Equation () The operator form of Eq. () (outside the source) is M r r Φ r where Φr M D r 0 and a r 015 September 9

10 Introduce the Diffusion Length and Area Define the quantity L diffusion length by L D a, i. e. L D a (3) L is called the diffusion area. and the diffusion equation can be rewritten in the form 1 r r 0 (4) L 015 September 10

11 Plane Source in Infinite Medium Let study the case of an infinite plane source in an infinite medium. Take the plane source to be the y-z axis located at x = 0. Everything is then a function of x only. If S is the source strength per cm, then the neutron current in either direction off the plane is S/, i.e. lim J x 0 x S : this becomes the " boundary" condition at x 0 (5) d In one dimension reduces to dx (6) 015 September 11

12 Flux from Plane Source in Infinite Medium The diffusion equation for the plane source becomes: x The x x d 1 x 0 (7) dx L The basic solutions to this equation are e The 1 flux (the appropriate one) By symmetry we must also have the same C on each side. : J most C e Ce x 0 general x / L cannot i. e., the general x / L C (9) solution x / L become solution The current at, say, the e is (8) can survive on each must right x d lim D x0 dx then be edge the source. CD S SL Comparing this to Eq.(5) gives, i. e., C (11) L D SL x / L The flux due to the plane source is x e (1) 015 September D 1 x0 of the CD L x / L infinite, only one of lim side e x / L and of e x / L the plane source is CD L. exponentials (10)

13 Current from Infinite Plane Source The current in an infinite uniform medium from an infinite plane source on the y-z plane is J x / L ˆ x / L x D x D e i e iˆ where and and [ The the source, iˆ is for Similarly the sign x for direction away unit in 0. front other of vector the of from the d dx iˆ SL D in locations must current the is plane.] of positive be the taken inf x inite S as perpendicular direction for 0 plane source. to x the plane 015 September 13

14 Exercise What happens if the medium is not infinite? How would our solution strategy change, if at all? What kind of boundary conditions would we apply? 015 September 14

15 If Medium Is Finite If the medium is not infinite, then the positive exponential is a perfectly good solution. We cannot argue to throw it out. The general solution would then indeed be a sum of the positive and negative exponentials. We would have to determine the coefficients of the two exponentials by applying boundary conditions at the source and at the outer boundary of the medium (most likely a vacuum boundary condition at the outer edges of the medium). 015 September 15

16 Point Source in Infinite Medium Let us now study the case of a point source in an infinite medium. Take the source to be located at r = 0. We assume the source is isotropic. Everything is then a function of r only. If S p is the source strength (neutrons emitted per s), then the neutron current away from the source in any direction must be S p /4, i.e., lim 4 r J r 0 r S (13) p cont d 015 September 16

17 Point Source in Infinite Medium To solve the diffusion equation for this problem, we need to write the divergence operator in terms of r (for situations where there is no dependence on the angular variables and ): r 1 d dr r d dr (14) The diffusion equation outside the point source then becomes d dr This looks complicated, but someone got the brilliant idea of attacking this by writing d dr r dr r r r dr r r L cont d 015 September 17 r 0 (16) d dr (15)

18 Exercise Where does the brilliant idea of changing variables according to Eq. (16) take us? Derive the new form of Eq. (15) in terms of the new variable. Can you identify particular solutions of this equation? 015 September 18

19 Point Source in Infinite Medium In terms of the new function, Eq. (15) becomes d dr r r L 0 (17) e r/l and e -r/l are basic the solutions of this equation The general mathematical solution of this is then a linear combination of these functions: r / L r / L r C e C e (18) September 19

20 Point Source in Infinite Medium (cont.) An infinitely growing positive exponential is not a physical flux. We are then left with: r The neutron flux as a function of r is then Now we must determine the magnitude C 1 from the boundary condition at the origin, Eq. (13). From Eq. (0) 4r J r 4r 4C 1 r / L C e (19) r / L r C (0) d D dr Dr e 1 1 r r / L e r 1 1 rl r 4C D1 (1) 015 September 0 1 r L

21 Point Source in Infinite Medium (cont.) Applying the limit at r = 0 and comparing to Eq. (13): 4C 1 D S p S p r (3) 4D r / L 4D () This then is the final formula for the 1-group flux distribution around an isotropic point source. Note that we used the boundary condition at one end of the range (r = ) to ensure a physical solution, and a boundary condition at the other end (r = 0) to fix the magnitude of the flux. This is a typical strategy. e C r 1 S p 015 September 1

22 Current from Point Source The current in an infinite uniform medium from a point source at the origin is r / L d S p e J r Dr D rˆ dr 4 D r where rˆ is the unit vector in the direction location Similarly of for the point other source locations to of the the point S p 4 from r. 1 L the point source. 1 r e r / L r rˆ 015 September

23 Meaning of Diffusion Length We can use the flux distribution from a point source to derive an interpretation of the diffusion length L. Let us calculate the mean square distance from the origin to the point where the neutron is absorbed. The absorption rate at any point is a (r). Therefore the mean square distance to absorption r r 0 0 ( r)4r a a ( r)4r dr dr (4) 015 September 3

24 Exercise Using the flux shape for the case of the point source, evaluate the integral in Eq. (4) in terms of L, to get a physical interpretation of L 015 September 4

25 Meaning of Diffusion Length (cont.) Evaluating the integral in Eq. (4) gives the following result: r r 6L, i. e. L (5), interpreting the meaning of L 6 as the square root of one sixth of the average square of distance from the point source tothepoint of absorption. the 015 September 5

26 Flux from a Number of Sources A very important property of the diffusion equation (Eq. 4) is that it is linear. This means that the total flux from a number of external sources can be determined by summing up the flux solutions from the various sources. 015 September 6

27 Flux Curvature Curvature is the mathematical term for the second derivative of a function. What is the nd derivative of the 1-group flux shape from a plane source? From Eq. (1), for x > 0: d dx d SL D x / L S e DL x / L The same result is obtained for x < 0 dx e (6) i.e., the curvature of the flux is positive everywhere September 7

28 Exercise Show also that in the case of the 1-group flux shape from a point source, the curvature is positive. Further, show how it is inherent, from the 1-group diffusion equation around an isolated source, that the flux shape decreases away from the source with a positive curvature. 015 September 8

29 Positive Flux Curvature Let s take the nd derivative of the flux around a point source, from Eq. (15): d dr i. e., the d dr 0 flux S p 4D r / S p e 4D rl has L e a r / L r e r S p 4D r / L L positive e r e r curvature And generally, from the 1-group diffusion equation outside a source, i.e. Eq. (): a r r D r ar 0 r 0 Dr again showing a positive flux curvature We will see that this will be different in critical systems! 015 September 9 d dr r / L L r / e rl L r / L 3 e r r / L

30 Positive Flux Curvature & In-Leakage A positive flux curvature, as in the source-sink problems we have studied (absence of a multiplying medium), is associated with net neutron in-leakage: Consider any little volume in the medium, away from the source. Neutrons are streaming out of the source and passing through that little volume. Some neutrons come in ( leak in ), and some neutrons fly out ( leak out ). But since the medium is absorptive, and is not multiplying, then some of the neutrons are absorbed within the little volume. Therefore fewer neutrons leak out than leak in. The neutron current out (derivative of the flux) must be smaller than the current in, i.e., the derivative of the flux diminishes with distance from the source, i.e., the nd derivative is positive. Net in-leakage of neutrons is associated with positive flux curvature. 015 September 30

31 END 015 September 31

Lecture 20 Reactor Theory-V

Lecture 20 Reactor Theory-V Objectives In this lecture you will learn the following We will discuss the criticality condition and then introduce the concept of k eff.. We then will introduce the four factor formula and two group

More information

Energy Dependence of Neutron Flux

Energy Dependence of Neutron Flux Energy Dependence of Neutron Flux B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents We start the discussion of the energy

More information

3: Mathematics Review

3: Mathematics Review 3: Mathematics Review B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 015 Sept.-Dec. 015 September 1 Review of: Table of Contents Co-ordinate systems (Cartesian,

More information

III. Chain Reactions and Criticality

III. Chain Reactions and Criticality III. Chain Reactions and Criticality Introduction We know that neutron production and loss rates determine the behavior of a nuclear reactor. In this chapter we introduce some terms that help us describe

More information

Xenon Effects. B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec.

Xenon Effects. B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. enon Effects B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents We study the importance of e-135 in the operation of

More information

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec.

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2: Fission and Other Neutron Reactions B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents Concepts: Fission and other

More information

Lesson 6: Diffusion Theory (cf. Transport), Applications

Lesson 6: Diffusion Theory (cf. Transport), Applications Lesson 6: Diffusion Theory (cf. Transport), Applications Transport Equation Diffusion Theory as Special Case Multi-zone Problems (Passive Media) Self-shielding Effects Diffusion Kernels Typical Values

More information

CHAPTER 4 Reactor Statics. Table of Contents

CHAPTER 4 Reactor Statics. Table of Contents CHAPTER 4 Reactor Statics Prepared by Dr. Benjamin Rouben, & Consulting, Adjunct Proessor, McMaster University & University o Ontario Institute o Technology (UOIT) and Dr. Eleodor Nichita, Associate Proessor,

More information

Fundamentals of Transport Processes Prof. Kumaran Indian Institute of Science, Bangalore Chemical Engineering

Fundamentals of Transport Processes Prof. Kumaran Indian Institute of Science, Bangalore Chemical Engineering Fundamentals of Transport Processes Prof. Kumaran Indian Institute of Science, Bangalore Chemical Engineering Module No # 05 Lecture No # 25 Mass and Energy Conservation Cartesian Co-ordinates Welcome

More information

VIII. Neutron Moderation and the Six Factors

VIII. Neutron Moderation and the Six Factors Introduction VIII. Neutron Moderation and the Six Factors 130 We continue our quest to calculate the multiplication factor (keff) and the neutron distribution (in position and energy) in nuclear reactors.

More information

Chapter 1: Useful definitions

Chapter 1: Useful definitions Chapter 1: Useful definitions 1.1. Cross-sections (review) The Nuclear and Radiochemistry class listed as a prerequisite is a good place to start. The understanding of a cross-section being fundamentai

More information

Reactivity Coefficients

Reactivity Coefficients Reactivity Coefficients B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Reactivity Changes In studying kinetics, we have seen

More information

17 Neutron Life Cycle

17 Neutron Life Cycle 17 Neutron Life Cycle A typical neutron, from birth as a prompt fission neutron to absorption in the fuel, survives for about 0.001 s (the neutron lifetime) in a CANDU. During this short lifetime, it travels

More information

Power Series. Part 2 Differentiation & Integration; Multiplication of Power Series. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 2 Differentiation & Integration; Multiplication of Power Series. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 2 Differentiation & Integration; Multiplication of Power Series 1 Theorem 1 If a n x n converges absolutely for x < R, then a n f x n converges absolutely for any continuous function

More information

2. The Steady State and the Diffusion Equation

2. The Steady State and the Diffusion Equation 2. The Steady State and the Diffusion Equation The Neutron Field Basic field quantity in reactor physics is the neutron angular flux density distribution: Φ( r r, E, r Ω,t) = v(e)n( r r, E, r Ω,t) -- distribution

More information

Lesson 8: Slowing Down Spectra, p, Fermi Age

Lesson 8: Slowing Down Spectra, p, Fermi Age Lesson 8: Slowing Down Spectra, p, Fermi Age Slowing Down Spectra in Infinite Homogeneous Media Resonance Escape Probability ( p ) Resonance Integral ( I, I eff ) p, for a Reactor Lattice Semi-empirical

More information

13: Diffusion in 2 Energy Groups

13: Diffusion in 2 Energy Groups 3: Diffusion in Energy Groups B. Rouben McMster University Course EP 4D3/6D3 Nucler Rector Anlysis (Rector Physics) 5 Sept.-Dec. 5 September Contents We study the diffusion eqution in two energy groups

More information

X. Assembling the Pieces

X. Assembling the Pieces X. Assembling the Pieces 179 Introduction Our goal all along has been to gain an understanding of nuclear reactors. As we ve noted many times, this requires knowledge of how neutrons are produced and lost.

More information

Selected Topics in Mathematical Physics Prof. Balakrishnan Department of Physics Indian Institute of Technology, Madras

Selected Topics in Mathematical Physics Prof. Balakrishnan Department of Physics Indian Institute of Technology, Madras Selected Topics in Mathematical Physics Prof. Balakrishnan Department of Physics Indian Institute of Technology, Madras Module - 11 Lecture - 29 Green Function for (Del Squared plus K Squared): Nonrelativistic

More information

Pressurized Water Reactor (PWR)

Pressurized Water Reactor (PWR) Pressurized Water Reactor (PWR) Models: Involve neutron transport, thermal-hydraulics, chemistry Inherently multi-scale, multi-physics CRUD Measurements: Consist of low resolution images at limited number

More information

Order of Magnitude Astrophysics - a.k.a. Astronomy 111. Photon Opacities in Matter

Order of Magnitude Astrophysics - a.k.a. Astronomy 111. Photon Opacities in Matter 1 Order of Magnitude Astrophysics - a.k.a. Astronomy 111 Photon Opacities in Matter If the cross section for the relevant process that scatters or absorbs radiation given by σ and the number density of

More information

Chapter 21. Electric Fields

Chapter 21. Electric Fields Chapter 21 Electric Fields The Origin of Electricity The electrical nature of matter is inherent in the atoms of all substances. An atom consists of a small relatively massive nucleus that contains particles

More information

Q ( q(m, t 0 ) n) S t.

Q ( q(m, t 0 ) n) S t. THE HEAT EQUATION The main equations that we will be dealing with are the heat equation, the wave equation, and the potential equation. We use simple physical principles to show how these equations are

More information

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes Power Series 6.4 Introduction In this Section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio

More information

Exercise 1 Atomic line spectra 1/9

Exercise 1 Atomic line spectra 1/9 Exercise 1 Atomic line spectra 1/9 The energy-level scheme for the hypothetical one-electron element Juliettium is shown in the figure on the left. The potential energy is taken to be zero for an electron

More information

Electric Field. Electric field direction Same direction as the force on a positive charge Opposite direction to the force on an electron

Electric Field. Electric field direction Same direction as the force on a positive charge Opposite direction to the force on an electron Electric Field Electric field Space surrounding an electric charge (an energetic aura) Describes electric force Around a charged particle obeys inverse-square law Force per unit charge Electric Field Electric

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 1. Title: Neutron Life Cycle

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 1. Title: Neutron Life Cycle Lectures on Nuclear Power Safety Lecture No 1 Title: Neutron Life Cycle Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture Infinite Multiplication Factor, k Four Factor Formula

More information

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Module No. # 01 Lecture No. # 22 Adiabatic Invariance of Magnetic Moment and Mirror Confinement Today, we

More information

NUCLEAR SCIENCE ACAD BASIC CURRICULUM CHAPTER 5 NEUTRON LIFE CYCLE STUDENT TEXT REV 2. L th. L f U-235 FUEL MODERATOR START CYCLE HERE THERMAL NEUTRON

NUCLEAR SCIENCE ACAD BASIC CURRICULUM CHAPTER 5 NEUTRON LIFE CYCLE STUDENT TEXT REV 2. L th. L f U-235 FUEL MODERATOR START CYCLE HERE THERMAL NEUTRON ACAD BASIC CURRICULUM NUCLEAR SCIENCE CHAPTER 5 NEUTRON LIFE CYCLE 346 RESONANCE LOSSES p 038 THERMAL NEUTRON 2 THERMAL NEUTRON LEAKAGE 52 THERMAL ABSORBED BY NON-FUEL ATOMS L th 07 THERMAL f 965 THERMAL

More information

Chapter 4. Electric Fields in Matter

Chapter 4. Electric Fields in Matter Chapter 4. Electric Fields in Matter 4.1.2 Induced Dipoles What happens to a neutral atom when it is placed in an electric field E? The atom now has a tiny dipole moment p, in the same direction as E.

More information

Continuous Energy Neutron Transport

Continuous Energy Neutron Transport Continuous Energy Neutron Transport Kevin Clarno Mark Williams, Mark DeHart, and Zhaopeng Zhong A&M Labfest - Workshop IV on Parallel Transport May 10-11, 2005 College Station, TX clarnokt@ornl.gov (865)

More information

An Analytic Basis for Heat Conduction in a Fuel Rods

An Analytic Basis for Heat Conduction in a Fuel Rods An Analytic Basis for Heat Conduction in a Fuel Rods Dan Shields December 15, 211 Introduction It is important in nuclear science and engineering to understand heat flow in and around fuel in reactors.

More information

Next we shall remove the only unphysical approximation we made in this CASE, which is that we ignored delayed neutrons.

Next we shall remove the only unphysical approximation we made in this CASE, which is that we ignored delayed neutrons. 71 Several observations are in order: 1. Because the terms in the [ ] are defined in terms of n, which depends on t, they will in general depend on t. (But not on position or energy, because position and

More information

Power series and Taylor series

Power series and Taylor series Power series and Taylor series D. DeTurck University of Pennsylvania March 29, 2018 D. DeTurck Math 104 002 2018A: Series 1 / 42 Series First... a review of what we have done so far: 1 We examined series

More information

6. LIGHT SCATTERING 6.1 The first Born approximation

6. LIGHT SCATTERING 6.1 The first Born approximation 6. LIGHT SCATTERING 6.1 The first Born approximation In many situations, light interacts with inhomogeneous systems, in which case the generic light-matter interaction process is referred to as scattering

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Electric Flux Electric flux is the product of the magnitude of the electric field and the surface area, A, perpendicular to the field Φ E = EA Defining Electric Flux EFM06AN1 Electric

More information

Finite element investigations for the construction of composite solutions of even-parity transport equation

Finite element investigations for the construction of composite solutions of even-parity transport equation Finite element investigations for the construction of composite solutions of even-parity transport equation Anwar M. Mirza and Shaukat Iqbal Abstract. Finite element investigations have been carried out

More information

CHAPTER 26. Radiative Transfer

CHAPTER 26. Radiative Transfer CHAPTER 26 Radiative Transfer Consider an incoming signal of specific intensity I ν,0 passing through a cloud (i.e., any gaseous region). As the radiation transits a small path length dr through the cloud,

More information

Electrostatics : Electric Field & Potential

Electrostatics : Electric Field & Potential Electrostatics : Electric Field & Potential Lecture 6: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay In the present module of Electrostatics, we will deal with properties

More information

Reactors and Fuels. Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV

Reactors and Fuels. Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV Reactors and Fuels Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV July 19-21, 2011 This course is partially based on work supported by

More information

Study of Pseudo-magnetic fields in NSR Exotic 5 th force experiment. Axial-axial potential 1. gives rise to pseudo-magnetic field via

Study of Pseudo-magnetic fields in NSR Exotic 5 th force experiment. Axial-axial potential 1. gives rise to pseudo-magnetic field via Study of Pseudo-magnetic fields in NSR Exotic 5 th force experiment Axial-axial potential V AA ppppp r = g A 2 ħc 2 16 π mc 2 σ v c r r 1 λ c + 1 r e r/λ c r gives rise to pseudo-magnetic field via V =

More information

Neutron Diffusion Theory: One Velocity Model

Neutron Diffusion Theory: One Velocity Model 22.05 Reactor Physics - Part Ten 1. Background: Neutron Diffusion Theory: One Velocity Model We now have sufficient tools to begin a study of the second method for the determination of neutron flux as

More information

Welcome. to Electrostatics

Welcome. to Electrostatics Welcome to Electrostatics Outline 1. Coulomb s Law 2. The Electric Field - Examples 3. Gauss Law - Examples 4. Conductors in Electric Field Coulomb s Law Coulomb s law quantifies the magnitude of the electrostatic

More information

Lesson 9: Multiplying Media (Reactors)

Lesson 9: Multiplying Media (Reactors) Lesson 9: Multiplying Media (Reactors) Laboratory for Reactor Physics and Systems Behaviour Multiplication Factors Reactor Equation for a Bare, Homogeneous Reactor Geometrical, Material Buckling Spherical,

More information

Electro Magnetic Field Dr. Harishankar Ramachandran Department of Electrical Engineering Indian Institute of Technology Madras

Electro Magnetic Field Dr. Harishankar Ramachandran Department of Electrical Engineering Indian Institute of Technology Madras Electro Magnetic Field Dr. Harishankar Ramachandran Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 7 Gauss s Law Good morning. Today, I want to discuss two or three

More information

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero?

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero? Lecture 4-1 Physics 219 Question 1 Aug.31.2016. Where (if any) is the net electric field due to the following two charges equal to zero? y Q Q a x a) at (-a,0) b) at (2a,0) c) at (a/2,0) d) at (0,a) and

More information

PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 4 Diffusion theory

PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 4 Diffusion theory PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 4 Diffusion theory Jaakko Leppänen (Lecturer), Ville Valtavirta (Assistant) Department of Applied Physics Aalto University, School of Science Jaakko.Leppanen@aalto.fi

More information

Radiation Heat Transfer Prof. J. Srinivasan Centre for Atmospheric and Oceanic Sciences Indian Institute of Science, Bangalore

Radiation Heat Transfer Prof. J. Srinivasan Centre for Atmospheric and Oceanic Sciences Indian Institute of Science, Bangalore Radiation Heat Transfer Prof. J. Srinivasan Centre for Atmospheric and Oceanic Sciences Indian Institute of Science, Bangalore Lecture - 10 Applications In the last lecture, we looked at radiative transfer

More information

Gauss s Law & Potential

Gauss s Law & Potential Gauss s Law & Potential Lecture 7: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Flux of an Electric Field : In this lecture we introduce Gauss s law which happens to

More information

Overview spherical accretion

Overview spherical accretion Spherical accretion - AGN generates energy by accretion, i.e., capture of ambient matter in gravitational potential of black hole -Potential energy can be released as radiation, and (some of) this can

More information

Tutorial Divergence. (ii) Explain why four of these integrals are zero, and calculate the other two.

Tutorial Divergence. (ii) Explain why four of these integrals are zero, and calculate the other two. (1) Below is a graphical representation of a vector field v with a z-component equal to zero. (a) Draw a box somewhere inside this vector field. The box is 3-dimensional. To make things easy, it is a good

More information

PhD Qualifying Exam Nuclear Engineering Program. Part 1 Core Courses

PhD Qualifying Exam Nuclear Engineering Program. Part 1 Core Courses PhD Qualifying Exam Nuclear Engineering Program Part 1 Core Courses 9:00 am 12:00 noon, November 19, 2016 (1) Nuclear Reactor Analysis During the startup of a one-region, homogeneous slab reactor of size

More information

Angular momentum Vector product.

Angular momentum Vector product. Lecture 19 Chapter 11 Physics I 04.09.2014 Angular momentum Vector product. Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph CHAPTER 6 VECTOR CALCULUS We ve spent a lot of time so far just looking at all the different ways you can graph things and describe things in three dimensions, and it certainly seems like there is a lot

More information

STOCHASTIC & DETERMINISTIC SOLVERS

STOCHASTIC & DETERMINISTIC SOLVERS STOCHASTIC & DETERMINISTIC SOLVERS Outline Spatial Scales of Optical Technologies & Mathematical Models Prototype RTE Problems 1-D Transport in Slab Geometry: Exact Solution Stochastic Models: Monte Carlo

More information

Shutdown Margin. Xenon-Free Xenon removes neutrons from the life-cycle. So, xenonfree is the most reactive condition.

Shutdown Margin. Xenon-Free Xenon removes neutrons from the life-cycle. So, xenonfree is the most reactive condition. 22.05 Reactor Physics - Part Thirty-One Shutdown Margin 1. Shutdown Margin: Shutdown margin (abbreviated here as SDM) is defined as the amount of reactivity by which a reactor is subcritical from a given

More information

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016 PHYS 500 - Southern Illinois University October 13, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 13, 2016 1 / 10 The Laplacian in Spherical Coordinates The Laplacian is given

More information

Nuclear Reactor Physics I Final Exam Solutions

Nuclear Reactor Physics I Final Exam Solutions .11 Nuclear Reactor Physics I Final Exam Solutions Author: Lulu Li Professor: Kord Smith May 5, 01 Prof. Smith wants to stress a couple of concepts that get people confused: Square cylinder means a cylinder

More information

A 2. The potential difference across the capacitor is F m N m /C m. R R m m R m R m 0

A 2. The potential difference across the capacitor is F m N m /C m. R R m m R m R m 0 30.53. Model: The charged metal spheres are isolated and far from each other and anything else. Solve: (a) The charge on a sphere of radius r, charged to a potential V 0 is given by the equations: The

More information

Reactor Physics: Basic Definitions and Perspectives. Table of Contents

Reactor Physics: Basic Definitions and Perspectives. Table of Contents Reactor Physics - Basic Definitions and Perspectives Reactor Physics: Basic Definitions and Perspectives prepared by Wm. J. Garland, Professor, Department of Engineering Physics, McMaster University, Hamilton,

More information

The University of the West Indies, St. Augustine, Trinidad and Tobago. The University of the West Indies, St. Augustine, Trinidad and Tobago

The University of the West Indies, St. Augustine, Trinidad and Tobago. The University of the West Indies, St. Augustine, Trinidad and Tobago Unsteady MHD Free Convection Couette Flow Through a Vertical Channel in the Presence of Thermal Radiation With Viscous and Joule Dissipation Effects Using Galerkin's Finite Element Method Victor M. Job

More information

KEYWORDS: chord length sampling, random media, radiation transport, Monte Carlo method, chord length probability distribution function.

KEYWORDS: chord length sampling, random media, radiation transport, Monte Carlo method, chord length probability distribution function. On the Chord Length Sampling in 1-D Binary Stochastic Media Chao Liang and Wei Ji * Department of Mechanical, Aerospace, and Nuclear Engineering Rensselaer Polytechnic Institute, Troy, NY 12180-3590 *

More information

The Comparison Test & Limit Comparison Test

The Comparison Test & Limit Comparison Test The Comparison Test & Limit Comparison Test Math4 Department of Mathematics, University of Kentucky February 5, 207 Math4 Lecture 3 / 3 Summary of (some of) what we have learned about series... Math4 Lecture

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Exam 1 Review 1 Chapter 1 - Fundamentals 2 Nuclear units Elementary particles/particle physics Isotopic nomenclature Atomic weight/number density

More information

Absorptivity, Reflectivity, and Transmissivity

Absorptivity, Reflectivity, and Transmissivity cen54261_ch21.qxd 1/25/4 11:32 AM Page 97 97 where f l1 and f l2 are blackbody functions corresponding to l 1 T and l 2 T. These functions are determined from Table 21 2 to be l 1 T (3 mm)(8 K) 24 mm K

More information

On the Chord Length Sampling in 1-D Binary Stochastic Media

On the Chord Length Sampling in 1-D Binary Stochastic Media On the Chord Length Sampling in 1-D Binary Stochastic Media Chao Liang and Wei Ji * Department of Mechanical, Aerospace, and Nuclear Engineering Rensselaer Polytechnic Institute, Troy, NY 12180-3590 *

More information

Homework 6 solutions PHYS 212 Dr. Amir

Homework 6 solutions PHYS 212 Dr. Amir Homework 6 solutions PHYS 1 Dr. Amir Chapter 8 18. (II) A rectangular loop of wire is placed next to a straight wire, as shown in Fig. 8 7. There is a current of.5 A in both wires. Determine the magnitude

More information

3.9 Derivatives of Exponential and Logarithmic Functions

3.9 Derivatives of Exponential and Logarithmic Functions 322 Chapter 3 Derivatives 3.9 Derivatives of Exponential and Logarithmic Functions Learning Objectives 3.9.1 Find the derivative of exponential functions. 3.9.2 Find the derivative of logarithmic functions.

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

5. Electric field (theoretical approach) and Gauss s law

5. Electric field (theoretical approach) and Gauss s law 5. Electric field (theoretical approach) and Gauss s law Announcement: Lab schedule will be posted later today I went to the tutorial session yesterday A. yes B. No C. I don t remember The tutorial session

More information

VII. Hydrodynamic theory of stellar winds

VII. Hydrodynamic theory of stellar winds VII. Hydrodynamic theory of stellar winds observations winds exist everywhere in the HRD hydrodynamic theory needed to describe stellar atmospheres with winds Unified Model Atmospheres: - based on the

More information

Electrodynamics Exam Solutions

Electrodynamics Exam Solutions Electrodynamics Exam Solutions Name: FS 215 Prof. C. Anastasiou Student number: Exercise 1 2 3 4 Total Max. points 15 15 15 15 6 Points Visum 1 Visum 2 The exam lasts 18 minutes. Start every new exercise

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

Reactivity Balance & Reactor Control System

Reactivity Balance & Reactor Control System Reactivity Balance & Reactor Control System K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 6 Table of Contents 1 MULTIPLICATION

More information

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward the end of the discussion of what happens for post-main

More information

The Ones That Got Away: Neutron Leakage Spectra

The Ones That Got Away: Neutron Leakage Spectra The Ones That Got Away: Neutron Leakage Spectra Some neutrons are able to exit the surface before being captured The energies of these neutrons depend on their scattering history Fast neutrons that scatter

More information

We have completed a discussion of one of the photon interaction processes, the photoelectric effect. We will now begin a discussion of the process of

We have completed a discussion of one of the photon interaction processes, the photoelectric effect. We will now begin a discussion of the process of We have completed a discussion of one of the photon interaction processes, the photoelectric effect. We will now begin a discussion of the process of coherent scatter. 1 In this lecture we are going to

More information

Fall 2004 Physics 3 Tu-Th Section

Fall 2004 Physics 3 Tu-Th Section Fall 2004 Physics 3 Tu-Th Section Claudio Campagnari Lecture 9: 21 Oct. 2004 Web page: http://hep.ucsb.edu/people/claudio/ph3-04/ 1 Last time: Gauss's Law To formulate Gauss's law, introduced a few new

More information

Using the Application Builder for Neutron Transport in Discrete Ordinates

Using the Application Builder for Neutron Transport in Discrete Ordinates Using the Application Builder for Neutron Transport in Discrete Ordinates C.J. Hurt University of Tennessee Nuclear Engineering Department (This material is based upon work supported under a Department

More information

Pilot Waves and the wave function

Pilot Waves and the wave function Announcements: Pilot Waves and the wave function No class next Friday, Oct. 18! Important Lecture in how wave packets work. Material is not in the book. Today we will define the wave function and see how

More information

5.9 Representations of Functions as a Power Series

5.9 Representations of Functions as a Power Series 5.9 Representations of Functions as a Power Series Example 5.58. The following geometric series x n + x + x 2 + x 3 + x 4 +... will converge when < x

More information

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law Electric Flux Gauss s Law: Definition Chapter 22 Gauss s Law Applications of Gauss s Law Uniform Charged Sphere Infinite Line of Charge Infinite Sheet of Charge Two infinite sheets of charge Phys 2435:

More information

Practice Final Exam Solutions for Calculus II, Math 1502, December 5, 2013

Practice Final Exam Solutions for Calculus II, Math 1502, December 5, 2013 Practice Final Exam Solutions for Calculus II, Math 5, December 5, 3 Name: Section: Name of TA: This test is to be taken without calculators and notes of any sorts. The allowed time is hours and 5 minutes.

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

Process Modelling. Table of Contents

Process Modelling. Table of Contents Process Modelling 1 Process Modelling prepared by Wm. J. Garland, Professor, Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada More about this document Summary: The general

More information

Lecture 3 (Scalar and Vector Multiplication & 1D Motion) Physics Spring 2017 Douglas Fields

Lecture 3 (Scalar and Vector Multiplication & 1D Motion) Physics Spring 2017 Douglas Fields Lecture 3 (Scalar and Vector Multiplication & 1D Motion) Physics 160-02 Spring 2017 Douglas Fields Multiplication of Vectors OK, adding and subtracting vectors seemed fairly straightforward, but how would

More information

To remain at 0 K heat absorbed by the medium must be removed in the amount of. dq dx = q(l) q(0) dx. Q = [1 2E 3 (τ L )] σ(t T 4 2 ).

To remain at 0 K heat absorbed by the medium must be removed in the amount of. dq dx = q(l) q(0) dx. Q = [1 2E 3 (τ L )] σ(t T 4 2 ). 294 RADIATIVE HEAT TRANSFER 13.7 Two infinite, isothermal plates at temperatures T 1 and T 2 are separated by a cold, gray medium of optical thickness τ L = L (no scattering). (a) Calculate the radiative

More information

How to Build a Habitable Planet Summary. Chapter 1 The Setting

How to Build a Habitable Planet Summary. Chapter 1 The Setting How to Build a Habitable Planet Summary Chapter 1 The Setting The universe as we know it began about 15 billion years ago with an explosion that is called the big bang. There is no record of any prior

More information

4 Nuclear Stability And Instability

4 Nuclear Stability And Instability 4 Nuclear Stability nd Instability Figure 4.1 Plot of N vs. Each black dot in Figure 4.1 represents a stable nuclide. Where more than one dot appears for a particular atomic number, those dots represent

More information

van Quantum tot Molecuul

van Quantum tot Molecuul 10 HC10: Molecular and vibrational spectroscopy van Quantum tot Molecuul Dr Juan Rojo VU Amsterdam and Nikhef Theory Group http://www.juanrojo.com/ j.rojo@vu.nl Molecular and Vibrational Spectroscopy Based

More information

X. Neutron and Power Distribution

X. Neutron and Power Distribution X. Neutron and Power Distribution X.1. Distribution of the Neutron Flux in the Reactor In order for the power generated by the fission reactions to be maintained at a constant level, the fission rate must

More information

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer "none of the above" may can be a valid answer

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer none of the above may can be a valid answer Multiple Choice: choose the best answer "none of the above" may can be a valid answer The (attempted) demonstration in class with the pith balls and a variety of materials indicated that () there are two

More information

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b.

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Nuclear Fission 1/v Fast neutrons should be moderated. 235 U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Fission Barriers 1 Nuclear Fission Q for 235 U + n 236 U

More information

Neutral beam plasma heating

Neutral beam plasma heating Seminar I b 1 st year, 2 nd cycle program Neutral beam plasma heating Author: Gabrijela Ikovic Advisor: prof.dr. Tomaž Gyergyek Ljubljana, May 2014 Abstract For plasma to be ignited, external heating is

More information

Gauss s Law. Lecture 4. Chapter 27. Channel 61 (clicker) Physics II

Gauss s Law. Lecture 4. Chapter 27. Channel 61 (clicker) Physics II Lecture 4 Chapter 27 Physics II 01.30.2015 Gauss s Law 95.144 Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

from which follow by application of chain rule relations y = y (4) ˆL z = i h by constructing θ , find also ˆL x ˆL y and

from which follow by application of chain rule relations y = y (4) ˆL z = i h by constructing θ , find also ˆL x ˆL y and 9 Scattering Theory II 9.1 Partial wave analysis Expand ψ in spherical harmonics Y lm (θ, φ), derive 1D differential equations for expansion coefficients. Spherical coordinates: x = r sin θ cos φ (1) y

More information

Bremsstrahlung Radiation

Bremsstrahlung Radiation Bremsstrahlung Radiation Wise (IR) An Example in Everyday Life X-Rays used in medicine (radiographics) are generated via Bremsstrahlung process. In a nutshell: Bremsstrahlung radiation is emitted when

More information

Simulated Results for Neutron Radiations Shielding Using Monte Carlo C.E. Okon *1, I. O. Akpan 2 *1 School of Physics & Astronomy,

Simulated Results for Neutron Radiations Shielding Using Monte Carlo C.E. Okon *1, I. O. Akpan 2 *1 School of Physics & Astronomy, American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Conductors and Insulators

Conductors and Insulators Conductors and Insulators Lecture 11: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Self Energy of a Charge Distribution : In Lecture 1 we briefly discussed what we called

More information

Improper Integrals. Goals:

Improper Integrals. Goals: Week #0: Improper Integrals Goals: Improper Integrals Improper Integrals - Introduction - Improper Integrals So far in our study of integration, we have dealt with functions that were always continuous

More information