Study of Pseudo-magnetic fields in NSR Exotic 5 th force experiment. Axial-axial potential 1. gives rise to pseudo-magnetic field via

Size: px
Start display at page:

Download "Study of Pseudo-magnetic fields in NSR Exotic 5 th force experiment. Axial-axial potential 1. gives rise to pseudo-magnetic field via"

Transcription

1 Study of Pseudo-magnetic fields in NSR Exotic 5 th force experiment Axial-axial potential V AA ppppp r = g A 2 ħc 2 16 π mc 2 σ v c r r 1 λ c + 1 r e r/λ c r gives rise to pseudo-magnetic field via V = 1 2 γ nħσ B

2 Solving for pseudo-magnetic field by equating above equations we get a differential field due to a bulk material db AA = g A 2 ħc N γ n 8 π mc 2 v y z z s v z (y y s ) v z x x s v x (z z s ) v x y y s v y (x x s ) 1 λ c + 1 r z e r/λ r 2 dddddd y x Matlab code sums over slab source points [x s y s z s ] to calculate pseudo magnetic field due to finite slab. Note: For semi-infinite slab with beam parallel to surface, let v = v z. This eliminates B z and symmetry of semi-infinite slab eliminates B y, leaving only a horizontal pseudo-magnetic field. Using cylindrical coordinates to integrate over the semi-infinite slab, where r 0,, θ 0,2π, y, 0, yields the equation from Piegsa and Pignol. [JoP: Conf. Series 340 (2012) , eq. 7], where Δy is the vertical distance from the slab surface to the field point. B AA = 1 γ n g A 2 4 N ħc mc 2 λ c(v e y ) e Δy/λ c

3 Semi-infinite slab approximation with N Cu =1.9*10 29 /m 3, λ c =1mm at y=0.7mm, v=660m/s gives B=1.8pT which agrees with a 10-mm thick slab away from edges. 1-mm thick slab gives slightly smaller field. Note that B z = 0 when v=v z. Code focuses on corner region of slab, x~- 25mm, z~0mm.

4 λ c =1mm Cu (N=1.9E29/m 3 ) 1 slab versus 4 glass (N=0.75E29/m 3 )

5 λ c =1mm Cu (N=1.9E29/m 3 ) 1 slab

6 λ c =1mm 4 slabs glass (N=0.75E29/m 3 ) +1.1pT -1.8pT

7 λ c =3mm Cu (N=1.9E29/m 3 ) 1 slab

8 λ c =3mm 4 slabs glass (N=0.75E29/m 3 ) +1.2pT -1.8pT

9 λ c =3.0mm 8 slabs +1.43pT -2.25pT

10 λ c =0.3mm 4 slabs glass (N=0.75E29/m 3 ) +0.27pT -0.51pT

11 B x versus x, y, z Eight 1-mm thick slabs with 2-mm vacuum gaps v=[0,0,660m/s], λ c =1.0mm Note: Because of slabs above and below the gap, the y-dependence is almost linear rather than exponential.

12 B x versus x, y, z Eight 1-mm thick slabs with 2-mm vacuum gaps v=[0,0,660m/s], λ c =3.0mm

13 B x versus x, y, z Eight 1-mm thick slabs with 2-mm vacuum gaps v=[0,0,660m/s], λ c =0.3 mm Note: Since λ c is 1/3 the thickness of the slab, the slab approximates the semi-infinite slab case in the bulk region away from the edges.

14 Averaging over volumes in vacuum gap. These micro-radian rotations, φ, are done separately (φ=-γ n BL/v) for x- and y- components. φ x means rotation about B x g A =1E-8 v=v z =660m/s λ c =0.3 mm λ c =1.0 mm λ c =3.0 mm Avg B x (pt) corner* Avg B x (pt) bulk Avg B x (pt) Semi-Inf Avg B y (pt) corner Avg φ x (µrad) bulk Avg φ x (µrad) full Avg φ x (µrad) Semi-Inf Avg φ y (µrad) full *corner width = 5λ c

15 v x =7.3m/s, v z =660m/s (m=0.65 glass), λ c =1.0 mm Eight 1-mm thick slabs with 2-mm vacuum gaps v=[2.6,0,660]m/s, λ c =1.0 mm Note: B x and B y are essentially unchanged. B z is quite small.

16 v x =7.3m/s, v z =660m/s (m=0.65 glass), λ c =1.0 mm

17 No-bounce acceptance is 2mm/500mm=4mrad, so expect lots of bounces. Angular acceptance from multiple bounces is limited by glass m ggggg = 0.65, θ c ggggg 10A = 11mrad v x =7.3m/s, v z =660m/s g A =1E-8 v x =7.3m/s v z =660m/s λ c =1.0 mm λ c =3.0 mm Avg B x (pt) corner* Avg B x (pt) bulk Avg B x (pt) Semi-Inf Avg B y (pt) corner Avg B z (pt) bulk Avg φ x (µrad) bulk Avg φ x (µrad) full Avg φ x (µrad) Semi-Inf Avg φ y (µrad) full Avg φ z (µrad) full So with maximum divergence, z-rotation component is still quite small. Y-rotation component is sizable, but beam polarized along y.

18 Since all rotations are small and if field ~constant along trajectory, treat as one classical rotation of the polarization vector (for µrad, order doesn t matter): p = R φ y R φ z R φ x = cos φ y sin φ z cos φ x + sin φ y sin φ x cos φ z cos φ x sin φ y sin φ z cos φ x + cos φ y sin φ x sin φ z 1 sin φ x p φ z 1 φ x ; where φ z is at most 1% of φ x. The z-rotation is very small for even most divergent neutrons and since we start polarized in y-direction and y-rotation is also small, the net rotation is essentially only dependent on rotation from B x. So, the simulation code can focus only on size of B x (x, y, z) in vacuum gap region.

19 Field is not constant. How to deal with in simulation (nsimdark) Fringing on front and back (z): small ~4mm/500mm<1% effect Ignore Fringing on sides (x): not too small, 1 10% depending on λ c scale field size by an average of polynomial fit of B x (x) within x-range of trajectory if trajectory is mostly in side region. Moving through different y-values, field changes significantly. Use analytic integration of polynomial fit of B x (y) along trajectory to determine φ. For example, for λ c = 1.0mm B x y = 0.28y 3 y y 2.4 (pt) for y[0,2], where y = y o + y f y i z f z i (z z i ) So z f z i φ = γ n B v x y z dd= n

20

21

Status of the MAGIX Spectrometer Design. Julian Müller MAGIX collaboration meeting 2017

Status of the MAGIX Spectrometer Design. Julian Müller MAGIX collaboration meeting 2017 Status of the MAGIX Spectrometer Design Julian Müller MAGIX collaboration meeting 2017 Magneto Optic Design Requirements relative momentum resolution Δp p < 10 4 resolution of the scattering angle Δθ

More information

8: Source-Sink Problems in 1 Energy Group

8: Source-Sink Problems in 1 Energy Group 8: Source-Sink Problems in 1 Energy Group B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 015 Sept.-Dec. 015 September 1 Contents Solving the 1-group diffusion

More information

+2Q. c. V A V B = ( 20 V) ( 10 V) = 10 V 1975B2

+2Q. c. V A V B = ( 20 V) ( 10 V) = 10 V 1975B2 AP Physics Free Response Practice Electrostatics ANSWERS 1974B5 Since the potential increases as you near the cylinder on the right, it must also have a positive charge. Remember, negative charges move

More information

Depths of Field & Focus

Depths of Field & Focus Depths of Field & Focus Depth of Field: If the resolution is, then the entire object is in focus when: d D d D depth of field Depth of Focus: d D Image in focus if: d M D M M 1 M M D M M depth of focus

More information

Depths of Field & Focus (I) First identify the location and size of the image of a flat (2-D) object by tracing a number of rays.

Depths of Field & Focus (I) First identify the location and size of the image of a flat (2-D) object by tracing a number of rays. Depths of Field & Focus (I) d First identify the location and sie of the image of a flat (-D) object by tracing a number of rays. d Depths of Field & Focus (II) The image of a point on the object will

More information

Electron Transport Line for Mu2e Calibration System. August 7, Abstract

Electron Transport Line for Mu2e Calibration System. August 7, Abstract Electron Transport Line for Mu2e Calibration System Tim He a, John Alsterda a, Grace Bluhm a,c, George Gollin a,1, Guangyong Koh a, Matthew McHugh a, Daniel Pershey a,b a Department of Physics, University

More information

STATICALLY INDETERMINATE STRUCTURES

STATICALLY INDETERMINATE STRUCTURES STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal

More information

Department of Physics PRELIMINARY EXAMINATION 2015 Part II. Long Questions

Department of Physics PRELIMINARY EXAMINATION 2015 Part II. Long Questions Department of Physics PRELIMINARY EXAMINATION 2015 Part II. Long Questions Friday May 15th, 2014, 14-17h Examiners: Prof. J. Cline, Prof. H. Guo, Prof. G. Gervais (Chair), and Prof. D. Hanna INSTRUCTIONS

More information

Jackson 7.6 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 7.6 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 7.6 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: A plane wave of frequency ω is incident normally from vacuum on a semi-infinite slab of material

More information

Electrodynamics Qualifier Examination

Electrodynamics Qualifier Examination Electrodynamics Qualifier Examination August 15, 2007 General Instructions: In all cases, be sure to state your system of units. Show all your work, write only on one side of the designated paper, and

More information

PHY2049 Fall11. Final Exam Solutions (1) 700 N (2) 350 N (3) 810 N (4) 405 N (5) 0 N

PHY2049 Fall11. Final Exam Solutions (1) 700 N (2) 350 N (3) 810 N (4) 405 N (5) 0 N Exam Solutions 1. Three charges form an equilateral triangle of side length d = 2 cm. The top charge is q3 = 3 μc, while the bottom two are q1 = q2 = - 6 μc. What is the magnitude of the net force acting

More information

Physics 208 Review Questions

Physics 208 Review Questions Physics 208 Review Questions These problems are shorter than exam problems, closer to a sub-part of a problem or slightly more, so that you can move through several of them quickly. 1) Two charges of 1.0

More information

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 4 Two-Dimensional Kinematics Units of Chapter 4 Motion in Two Dimensions Projectile Motion: Basic Equations Zero Launch Angle General Launch Angle Projectile Motion: Key Characteristics 4-1 Motion

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Physics 234 Homework Chapter 35 Q3, P3, P24, P32, P55, P81, P91. air

Physics 234 Homework Chapter 35 Q3, P3, P24, P32, P55, P81, P91. air Physics 34 Homework Chapter 35 Q3, P3, P4, P3, P55, P8, P9 Q a) r = r a r b = 5d 3d = d. b) r = /. c) / = d = r. Also, r = 3(/), 5(/), etc., works. d) / = d so d = /4. P3) (a) We take the phases of both

More information

Profs. Y. Takano, P. Avery, S. Hershfield. Final Exam Solution

Profs. Y. Takano, P. Avery, S. Hershfield. Final Exam Solution PHY2049 Fall 2008 Profs. Y. Takano, P. Avery, S. Hershfield Final Exam Solution Note that each problem has three versions, each with different numbers and answers (separated by ). The numbers for each

More information

Supermirror Polarizer for the FnPB Cold Line

Supermirror Polarizer for the FnPB Cold Line Supermirror Polarizer for the FnPB Cold Line Chris Crawford 7--4 A ballistic neutron transport simulation has been performed to optimize construction of a supermirror bender polarizer for the cold neutron

More information

Xiaobiao Huang Accelerator Physics August 28, The Dipole Passmethod for Accelerator Toolbox

Xiaobiao Huang Accelerator Physics August 28, The Dipole Passmethod for Accelerator Toolbox STANFORD SYNCHROTRON RADIATION LABORATORY Accelerator Physics Note CODE SERIAL PAGE 021 8 AUTHOR GROUP DATE/REVISION Xiaobiao Huang Accelerator Physics August 28, 2009 TITLE The Dipole Passmethod for Accelerator

More information

Chapter 5 Three phase induction machine (1) Shengnan Li

Chapter 5 Three phase induction machine (1) Shengnan Li Chapter 5 Three phase induction machine (1) Shengnan Li Main content Structure of three phase induction motor Operating principle of three phase induction motor Rotating magnetic field Graphical representation

More information

To explore and investigate projectile motion and how it can be applied to various problems.

To explore and investigate projectile motion and how it can be applied to various problems. NAME: ΔY = 0 Projectile Motion Computer Lab Purpose: To explore and investigate projectile motion and how it can be applied to various problems. Procedure: 1. First, go to the following web site http://galileoandeinstein.physics.virginia.edu/more_stuff/applets/projectile

More information

Exam 4 Solutions. a. 1,2,and 3 b. 1 and 2, not 3 c. 1 and 3, not 2 d. 2 and 3, not 1 e. only 2

Exam 4 Solutions. a. 1,2,and 3 b. 1 and 2, not 3 c. 1 and 3, not 2 d. 2 and 3, not 1 e. only 2 Prof. Darin Acosta Prof. Greg Stewart April 8, 007 1. Which of the following statements is true? 1. In equilibrium all of any excess charge stored on a conductor is on the outer surface.. In equilibrium

More information

Final Exam. PHY2049 Fall11

Final Exam. PHY2049 Fall11 Exam 1. Three charges form an equilateral triangle of side length d = 2 cm. The top charge is q3 = 3 μc, while the bottom two are q1 = q2 = - 6 μc. What is the magnitude of the net force acting on q3?

More information

Synchrotron Radiation a Tool for Precise Beam Energy Measurements at the ILC

Synchrotron Radiation a Tool for Precise Beam Energy Measurements at the ILC Synchrotron Radiation a Tool for Precise Beam Energy Measurements at the ILC K.Hiller, R.Makarov, H.J.Schreiber, E.Syresin and B.Zalikhanov a BPM based magnetic spectrometer example E b see LC-DET-2004-031

More information

Single Particle Motion

Single Particle Motion Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

More information

Physics 4C. Chapter 35: Conceptual Questions: 2, 8, 12 Problems: 9, 21, 25, 26, 39, 40, 55, 72, 82, 83, 93

Physics 4C. Chapter 35: Conceptual Questions: 2, 8, 12 Problems: 9, 21, 25, 26, 39, 40, 55, 72, 82, 83, 93 Physics 4C Solutions to Chapter 35 HW Chapter 35: Conceptual Questions:, 8, 1 Problems: 9, 1, 5, 6, 39, 40, 55, 7, 8, 83, 93 Question 35- (a) increase (b) 1λ Question 35-8 (a) 300 nm (b) exactly out of

More information

GEANT4 Emittance Diagnostics Simulations for the ERL Injector Prototype

GEANT4 Emittance Diagnostics Simulations for the ERL Injector Prototype GEANT4 Emittance Diagnostics Simulations for the ERL Injector Prototype Colwyn Gulliford Physics Department, New College of Florida, Sarasota, Florida, 34243 (Dated: August 16, 2006) The injector for the

More information

m e = m/s. x = vt = t = x v = m

m e = m/s. x = vt = t = x v = m 5. (a) The textbook uses geomagnetic north to refer to Earth s magnetic pole lying in the northern hemisphere. Thus, the electrons are traveling northward. The vertical component of the magnetic field

More information

US LHC Accelerator Research Program BNL - FNAL- LBNL - SLAC Hollow e-beam Lens for LHC Scraping

US LHC Accelerator Research Program BNL - FNAL- LBNL - SLAC Hollow e-beam Lens for LHC Scraping US LHC Accelerator Research Program BNL - FNAL- LBNL - SLAC Hollow e-beam Lens for LHC Scraping Jeff Smith SLAC Vladmir Shiltsev, Shasha Drozhdin FNAL 9 April, 2009 1 Motivation As of now, there are no

More information

Steady and unsteady diffusion

Steady and unsteady diffusion Chapter 5 Steady and unsteady diffusion In this chapter, we solve the diffusion and forced convection equations, in which it is necessary to evaluate the temperature or concentration fields when the velocity

More information

For more sample papers visit :

For more sample papers visit : For more sample papers visit : www.4ono.com PHYSCS Paper 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time)

More information

Kinematics. Vector solutions. Vectors

Kinematics. Vector solutions. Vectors Kinematics Study of motion Accelerated vs unaccelerated motion Translational vs Rotational motion Vector solutions required for problems of 2- directional motion Vector solutions Possible solution sets

More information

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system).

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system). Use the following to answer question 1. Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. 1. Which combination of charges will yield

More information

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2.

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2. PC1143 2011/2012 Exam Solutions Question 1 a) Assumption: shells are conductors. Notes: the system given is a capacitor. Make use of spherical symmetry. Energy density, =. in this case means electric field

More information

Wave Phenomena Physics 15c. Lecture 15 Reflection and Refraction

Wave Phenomena Physics 15c. Lecture 15 Reflection and Refraction Wave Phenomena Physics 15c Lecture 15 Reflection and Refraction What We (OK, Brian) Did Last Time Discussed EM waves in vacuum and in matter Maxwell s equations Wave equation Plane waves E t = c E B t

More information

PHY 2049 SPRING 2001 FINAL EXAM

PHY 2049 SPRING 2001 FINAL EXAM PHY 049 SPRING 0 FINA EXAM 1 Three charges of the same sign and value q are placed in the corners of an equilateral triangle and free to move One more charge Q is placed in the center of the triangle so

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 9, 2012 3:10PM to 5:10PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted for

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 2 Fall 2018 Semester Prof. Matthew Jones Cross Sections Reaction rate: R = L σ The cross section is proportional to the probability of

More information

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then Question [ Work ]: A constant force, F, is applied to a block of mass m on an inclined plane as shown in Figure. The block is moved with a constant velocity by a distance s. The coefficient of kinetic

More information

ISP209 Fall Exam #2. Name: Student #:

ISP209 Fall Exam #2. Name: Student #: ISP209 Fall 2012 Exam #2 Name: Student #: Please write down your name and student # on both the exam and the scoring sheet. After you are finished with the exam, please place the scoring sheet inside the

More information

1. zero. Where an electric field line crosses an equipotential surface, the angle between the field line and the equipotential is

1. zero. Where an electric field line crosses an equipotential surface, the angle between the field line and the equipotential is Week 5 Where an electric field line crosses an equipotential surface, the angle between the field line and the equipotential is 1. zero 2. between zero and 90 3. 90 4. not enough information given to

More information

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1. Problem 4.1 A cube m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density

More information

Intensity of Interference Patterns

Intensity of Interference Patterns Intensity of Interference Patterns Wish to find I on a screen far away Let consider the E fields coming from the double slits: S 2 S 1 r r 2 1 E field from S 2 has a phase lag due to the extra path difference,

More information

Graduate Written Examination Fall 2014 Part I

Graduate Written Examination Fall 2014 Part I Graduate Written Examination Fall 2014 Part I University of Minnesota School of Physics and Astronomy Aug. 19, 2014 Examination Instructions Part 1 of this exam consists of 10 problems of equal weight.

More information

Simple Harmonic Motion

Simple Harmonic Motion [International Campus Lab] Objective Investigate simple harmonic motion using an oscillating spring and a simple pendulum. Theory ----------------------------- Reference -------------------------- Young

More information

Final Exam Spring 2014 May 05, 2014

Final Exam Spring 2014 May 05, 2014 95.141 Final Exam Spring 2014 May 05, 2014 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided.

More information

Exam 3 Solutions. Answer: 1830 Solution: Because of equal and opposite electrical forces, we have conservation of momentum, m e

Exam 3 Solutions. Answer: 1830 Solution: Because of equal and opposite electrical forces, we have conservation of momentum, m e Exam 3 Solutions Prof. Paul Avery Prof. Zongan iu Apr. 27, 2013 1. An electron and a proton, located far apart and initially at rest, accelerate toward each other in a location undisturbed by any other

More information

Chapter 2: Numeric, Cell, and Structure Arrays

Chapter 2: Numeric, Cell, and Structure Arrays Chapter 2: Numeric, Cell, and Structure Arrays Topics Covered: Vectors Definition Addition Multiplication Scalar, Dot, Cross Matrices Row, Column, Square Transpose Addition Multiplication Scalar-Matrix,

More information

Optical fibers. Weak guidance approximation in cylindrical waveguides

Optical fibers. Weak guidance approximation in cylindrical waveguides Optical fibers Weak guidance approximation in cylindrical waveguides Propagation equation with symmetry of revolution r With cylindrical coordinates : r ( r,θ) 1 ψ( r,θ) 1 ψ( r,θ) ψ + + r r + r θ [ ( )

More information

J09M.1 - Coupled Pendula

J09M.1 - Coupled Pendula Part I - Mechanics J09M.1 - Coupled Pendula J09M.1 - Coupled Pendula Two simple pendula, each of length l and mass m, are coupled by a spring of force constant k. The spring is attached to the rods of

More information

For more sample papers visit :

For more sample papers visit : PHYSICS (THEORY) (Three hours) For more sample papers visit : www.4ono.com Answer all questions in Part I and six questions from Part II, choosing two questions from each of the Sections A, B and C. All

More information

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004 You have 3 hours Do all eight problems You may use calculators Massachusetts Institute of Technology Physics 8.03 Fall 004 Final Exam Thursday, December 16, 004 This is a closed-book exam; no notes are

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 efore Starting All of your grades should now be posted

More information

Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas

Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas T.Okada, Y.Mikado and A.Abudurexiti Tokyo University of Agriculture and Technology, Tokyo -5, Japan

More information

Electric Circuits Fall 2015 Solution #5

Electric Circuits Fall 2015 Solution #5 RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermeate steps: a correct solution without an explanation will get zero cret.

More information

Ohm s Law. R = L ρ, (2)

Ohm s Law. R = L ρ, (2) Ohm s Law Ohm s Law which is perhaps the best known law in all of Physics applies to most conducting bodies regardless if they conduct electricity well or poorly, or even so poorly they are called insulators.

More information

Physics 8.02 Exam Two Equation Sheet Spring 2004

Physics 8.02 Exam Two Equation Sheet Spring 2004 Physics 8.0 Exam Two Equation Sheet Spring 004 closed surface EdA Q inside da points from inside o to outside I dsrˆ db 4o r rˆ points from source to observer V moving from a to b E ds 0 V b V a b E ds

More information

QUALIFYING EXAMINATION, Part 1. Solutions. Problem 1: Mathematical Methods. r r r 2 r r2 = 0 r 2. d 3 r. t 0 e t dt = e t

QUALIFYING EXAMINATION, Part 1. Solutions. Problem 1: Mathematical Methods. r r r 2 r r2 = 0 r 2. d 3 r. t 0 e t dt = e t QUALIFYING EXAMINATION, Part 1 Solutions Problem 1: Mathematical Methods (a) For r > we find 2 ( 1 r ) = 1 ( ) 1 r 2 r r2 = 1 ( 1 ) r r r 2 r r2 = r 2 However for r = we get 1 because of the factor in

More information

General Physics (PHYC 252) Exam 4

General Physics (PHYC 252) Exam 4 General Physics (PHYC 5) Exam 4 Multiple Choice (6 points). Circle the one best answer for each question. For Questions 1-3, consider a car battery with 1. V emf and internal resistance r of. Ω that is

More information

Surface Plasmon Polaritons on Metallic Surfaces

Surface Plasmon Polaritons on Metallic Surfaces Surface Plasmon Polaritons on Metallic Surfaces Masud Mansuripur, Armis R. Zakharian and Jerome V. Moloney Recent advances in nano-fabrication have enabled a host of nano-photonic experiments involving

More information

and S is in the state ( )

and S is in the state ( ) Physics 517 Homework Set #8 Autumn 2016 Due in class 12/9/16 1. Consider a spin 1/2 particle S that interacts with a measuring apparatus that is another spin 1/2 particle, A. The state vector of the system

More information

Make sure you show all your work and justify your answers in order to get full credit.

Make sure you show all your work and justify your answers in order to get full credit. PHYSICS 7B, Lecture 3 Spring 5 Final exam, C. Bordel Tuesday, May, 5 8- am Make sure you show all your work and justify your answers in order to get full credit. Problem : Thermodynamic process ( points)

More information

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet.

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet. Chapters 15-30 PHYS 1402 - Brooks This practice test is similar to the actual final. The final exam will focus on questions involving solving problems, and not so much on conceptual questions. The final

More information

Tridib s Physics Tutorials. NCERT-XII / Unit- 4 Moving charge and magnetic field

Tridib s Physics Tutorials. NCERT-XII / Unit- 4 Moving charge and magnetic field MAGNETIC FIELD DUE TO A CURRENT ELEMENT The relation between current and the magnetic field, produced by it is magnetic effect of currents. The magnetic fields that we know are due to currents or moving

More information

2-D Vector Equations have the same form as 1-D Kinematics. f i i

2-D Vector Equations have the same form as 1-D Kinematics. f i i 2-D Vector Equations have the same form as 1-D Kinematics v = v + at f i 1 r = r + v t+ at f i i 2 2 2-D Vector Equations have the same form as 1-D Kinematics v = viˆ+ v ˆj f x y = ( v + ati ) ˆ+ ( v +

More information

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology Doping Meisner CuO 2 Spin Glass Magnetic Field

More information

McGill University. PHYS 101 (Introduction to Mechanics for the Life Sciences) FINAL EXAM SOLUTIONS

McGill University. PHYS 101 (Introduction to Mechanics for the Life Sciences) FINAL EXAM SOLUTIONS McGill University PHYS 101 (Introduction to Mechanics for the Life Sciences) FINAL EXAM SOLUTIONS 2006 PHYS 101 Final exam Examiner: K.J. Ragan x6518 Short answer questions (answer all): you should not

More information

Gauss s Law & Potential

Gauss s Law & Potential Gauss s Law & Potential Lecture 7: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Flux of an Electric Field : In this lecture we introduce Gauss s law which happens to

More information

Graduate Preliminary Examination, Thursday, January 6, Part I 2

Graduate Preliminary Examination, Thursday, January 6, Part I 2 Graduate Preliminary Examination, Thursday, January 6, 2011 - Part I 2 Section A. Mechanics 1. ( Lasso) Picture from: The Lasso: a rational guide... c 1995 Carey D. Bunks A lasso is a rope of linear mass

More information

THEORETICAL COMPETITION. 1A. SPRING CYLINDER WITH MASSIVE PISTON (5 points)

THEORETICAL COMPETITION. 1A. SPRING CYLINDER WITH MASSIVE PISTON (5 points) Question 1 1A. SPRING CYLINDER WITH MASSIVE PISTON (5 points) Consider n=2 moles of ideal Helium gas at a pressure P 0, volume V 0 and temperature T 0 = 300 K placed in a vertical cylindrical container

More information

CHAPTER 30. Answer to Checkpoint Questions. 1. (a), (c), (b) 2. b, c, a 3. d, tie of a and c, then b 4. (d), (a), tie of (b) and (c) (zero)

CHAPTER 30. Answer to Checkpoint Questions. 1. (a), (c), (b) 2. b, c, a 3. d, tie of a and c, then b 4. (d), (a), tie of (b) and (c) (zero) 800 CHAPTER 30 AMPERE S LAW CHAPTER 30 Answer to Checkpoint Questions. (a), (c), (b). b, c, a 3. d, tie of a and c, then b. (d), (a), tie of (b) and (c) (zero) Answer to Questions. (c), (d), then (a) and

More information

Forward nucleon tagging at EIC. J.H. Lee BNL

Forward nucleon tagging at EIC. J.H. Lee BNL Forward nucleon tagging at EIC J.H. Lee BNL EIC User Group Meeting 218 Outline EIC physics with (far-)forward nucleon tagging focusing on protons with Roman Pots Interaction Region integration Requirement

More information

Chapter 4. Synchronous Generators. Basic Topology

Chapter 4. Synchronous Generators. Basic Topology Basic Topology Chapter 4 ynchronous Generators In stator, a three-phase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.

More information

Homework (lecture 11): 3, 5, 9, 13, 21, 25, 29, 31, 40, 45, 49, 51, 57, 62

Homework (lecture 11): 3, 5, 9, 13, 21, 25, 29, 31, 40, 45, 49, 51, 57, 62 Homework (lecture ): 3, 5, 9, 3,, 5, 9, 3, 4, 45, 49, 5, 57, 6 3. An electron that has velocity: moves through the uniform magnetic field (a) Find the force on the electron. (b) Repeat your calculation

More information

SENIOR_ 2017_CLASS_12_PHYSICS_ RAPID REVISION_1_ DERIVATIONS IN FIRST FIVE LESSONS Page 1

SENIOR_ 2017_CLASS_12_PHYSICS_ RAPID REVISION_1_ DERIVATIONS IN FIRST FIVE LESSONS Page 1 INDIAN SCHOOL MUSCAT Department of Physics Class XII Rapid Revision -1 DERIVATIONS IN FIRST FIVE LESSONS 1) Field due to an infinite long straight charged wire Consider an uniformly charged wire of infinite

More information

LCLS-II Undulator Tolerance Budget*

LCLS-II Undulator Tolerance Budget* LCLS-TN-13-5 rev2 April 16, 2013 LCLS-II Undulator Tolerance Budget* Heinz-Dieter Nuhn, Stanford Linear Accelerator Center, MS-18, 2575 Sandhill Road, Menlo Park, California 94025. 1 Introduction This

More information

MEMORANDUM-4. n id (n 2 + n2 S) 0 n n 0. Det[ɛ(ω, k)]=0 gives the Dispersion relation for waves in a cold magnetized plasma: ω 2 pα ω 2 cα ω2, ω 2

MEMORANDUM-4. n id (n 2 + n2 S) 0 n n 0. Det[ɛ(ω, k)]=0 gives the Dispersion relation for waves in a cold magnetized plasma: ω 2 pα ω 2 cα ω2, ω 2 Fundamental dispersion relation MEMORANDUM-4 n S) id n n id n + n S) 0 } n n 0 {{ n P } ɛω,k) E x E y E z = 0 Det[ɛω, k)]=0 gives the Dispersion relation for waves in a cold magnetized plasma: n P ) [

More information

PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT

PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT PHYSICS 202 203: CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT MM MARKS: 70] [TIME: 3 HOUR General Instructions: All the questions are compulsory Question no. to 8 consist of one marks questions, which

More information

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2 55) The diagram shows the path of a light ray in three different materials. The index of refraction for each material is shown in the upper right portion of the material. What is the correct order for

More information

Harold s AP Physics Cheat Sheet 23 February Electricity / Magnetism

Harold s AP Physics Cheat Sheet 23 February Electricity / Magnetism Harold s AP Physics Cheat Sheet 23 February 206 Kinematics Position (m) (rad) Translation Horizontal: x = x 0 + v x0 t + 2 at2 Vertical: y = y 0 + v y0 t 2 gt2 x = x 0 + vt s = rθ x = v / Rotational Motion

More information

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5)

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5) LECTURE 12 Maxwell Velocity Distribution Suppose we have a dilute gas of molecules, each with mass m. If the gas is dilute enough, we can ignore the interactions between the molecules and the energy will

More information

lim = F F = F x x + F y y + F z

lim = F F = F x x + F y y + F z Physics 361 Summary of Results from Lecture Physics 361 Derivatives of Scalar and Vector Fields The gradient of a scalar field f( r) is given by g = f. coordinates f g = ê x x + ê f y y + ê f z z Expressed

More information

Exam 4 (Final) Solutions

Exam 4 (Final) Solutions PHY049 Spring 006 Prof. Darin Acosta Prof. Greg Stewart May 1, 006 Exam 4 (Final) Solutions 1. Four charges are arranged into a square with side length a=1 cm as shown in the figure. The charges (clockwise

More information

PHYSICS 113: Contemporary Physics Final Exam Solution Key (2016)

PHYSICS 113: Contemporary Physics Final Exam Solution Key (2016) PHYSICS 113: Contemporary Physics Final Exam Solution Key (2016) 1. [25 points] (5 points each) Short Answers (a) The central reaction that governs the weak nuclear reactions of the sun reduces to: 4 p

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

US LHC Accelerator Research Program BNL - FNAL- LBNL - SLAC Hollow e-beam Lens for LHC Scraping

US LHC Accelerator Research Program BNL - FNAL- LBNL - SLAC Hollow e-beam Lens for LHC Scraping US LHC Accelerator Research Program BNL - FNAL- LBNL - SLAC Hollow e-beam Lens for LHC Scraping Jeff Smith SLAC Vladmir Shiltsev, Shasha Drozhdin, V. Kuznetsov, L. Vorobiev and Alex Valishev FNAL 2 April,

More information

Gen. Phys. II Exam 3 - Chs. 24,25,26 - EM Waves, Ray Optics, Optical Instruments Mar. 26, 2018

Gen. Phys. II Exam 3 - Chs. 24,25,26 - EM Waves, Ray Optics, Optical Instruments Mar. 26, 2018 Gen. Phys. II Exam 3 - Chs. 24,25,26 - EM Waves, Ray Optics, Optical Instruments Mar. 26, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with

More information

6.013 Lecture 12: Magnetic Forces and Devices

6.013 Lecture 12: Magnetic Forces and Devices 6.013 Lecture 12: Magnetic Forces and Devices A. Overview Magnetic forces are central to a wide array of actuators and sensors. These forces can be calculated using either energy methods or the Lorentz

More information

1 Superfluidity and Bose Einstein Condensate

1 Superfluidity and Bose Einstein Condensate Physics 223b Lecture 4 Caltech, 04/11/18 1 Superfluidity and Bose Einstein Condensate 1.6 Superfluid phase: topological defect Besides such smooth gapless excitations, superfluid can also support a very

More information

Beam optics analysis of large-acceptance superconducting in-flight separator BigRIPS at RIKEN RI Beam Factory (RIBF)

Beam optics analysis of large-acceptance superconducting in-flight separator BigRIPS at RIKEN RI Beam Factory (RIBF) Beam optics analysis of large-acceptance superconducting in-flight separator BigRIPS at RIKEN RI Beam Factory (RIBF) Magnetic spectrometer used for the production of radioactive isotope (RI) beams based

More information

Chapter 35. Interference

Chapter 35. Interference Chapter 35 Interference The concept of optical interference is critical to understanding many natural phenomena, ranging from color shifting in butterfly wings to intensity patterns formed by small apertures.

More information

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson VI October 3, 2017

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson VI October 3, 2017 Conceptual Physics Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson VI October 3, 2017 https://arxiv.org/abs/1711.07445 L. A. Anchordoqui (CUNY)

More information

10 (4π 10 7 ) 2σ 2( = (1 + j)(.0104) = = j.0001 η c + η j.0104

10 (4π 10 7 ) 2σ 2( = (1 + j)(.0104) = = j.0001 η c + η j.0104 CHAPTER 1 1.1. A uniform plane wave in air, E + x1 E+ x10 cos(1010 t βz)v/m, is normally-incident on a copper surface at z 0. What percentage of the incident power density is transmitted into the copper?

More information

Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II

Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II Physics 212 Jonathan Dowling Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II Jean-Baptiste Biot (1774-1862) Felix Savart (1791 1841) Electric Current: A Source of Magnetic Field Observation:

More information

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01 Final Exam: Physics2331 - Spring, 2017 May 8, 2017 Version 01 NAME (Please Print) Your exam should have 11 pages. This exam consists of 18 multiple-choice questions (2 points each, worth 36 points), and

More information

PLEASE BE SURE THIS PACKET HAS 20 PAGES!

PLEASE BE SURE THIS PACKET HAS 20 PAGES! Your Name Discussion Instructor's Name: Discussion Section #: Physics 2213 Final Exam May 17, 2011 7-9:30 PM PLEASE BE SUE THIS PACKET HAS 20 PAGES! (This includes this cover sheet.) This packet contains

More information

Chapter 21. Electric Fields

Chapter 21. Electric Fields Chapter 21 Electric Fields The Origin of Electricity The electrical nature of matter is inherent in the atoms of all substances. An atom consists of a small relatively massive nucleus that contains particles

More information

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. 1. The TI-89 calculator says, reasonably enough, that x 1) 1/3 1 ) 3 = 8. lim

More information

Today: Work, Kinetic Energy, Potential Energy. No Recitation Quiz this week

Today: Work, Kinetic Energy, Potential Energy. No Recitation Quiz this week Today: Work, Kinetic Energy, Potential Energy HW #4 due Thursday, 11:59 p.m. pm No Recitation Quiz this week 1 What is Energy? Mechanical Electromagnetic PHY 11 PHY 13 Chemical CHE 105 Nuclear PHY 555

More information

for non-homogeneous linear differential equations L y = f y H

for non-homogeneous linear differential equations L y = f y H Tues March 13: 5.4-5.5 Finish Monday's notes on 5.4, Then begin 5.5: Finding y P for non-homogeneous linear differential equations (so that you can use the general solution y = y P y = y x in this section...

More information

Electromagnetic Field Theory (EMT)

Electromagnetic Field Theory (EMT) Electromagnetic Field Theory (EMT) Lecture # 9 1) Coulomb s Law and Field Intensity 2) Electric Fields Due to Continuous Charge Distributions Line Charge Surface Charge Volume Charge Coulomb's Law Coulomb's

More information