Harold s AP Physics Cheat Sheet 23 February Electricity / Magnetism

Size: px
Start display at page:

Download "Harold s AP Physics Cheat Sheet 23 February Electricity / Magnetism"

Transcription

1 Harold s AP Physics Cheat Sheet 23 February 206 Kinematics Position (m) (rad) Translation Horizontal: x = x 0 + v x0 t + 2 at2 Vertical: y = y 0 + v y0 t 2 gt2 x = x 0 + vt s = rθ x = v / Rotational Motion θ = θ 0 + ω 0 t + 2 αt2 x = A cos(ωt) x = A cos(2πft) 0 24 = yocto 0 2 = zepto 0 8 = atto 0 5 = femto 0 2 = pico 0 9 = nano 0 6 = micro 0 3 = milli 0 0 = 0 3 = kilo 0 6 = mega 0 9 = giga 0 2 = tera 0 5 = peta 0 8 = exa 0 2 = zetta 0 24 = yotta P + ρgy + 2 ρv 2 = P 2 + ρgy ρv 2 2 (Conservation of Mass) ρ = m V l = αl 0 T : s i + s o = f L = mλ d sin θ = mλ L = L 0 Copyright by Harold Toomey, WyzAnt Tutor

2 Velocity (m/s) (rad/s) v = d t = x t = dx v = v 0 + at v 2 = v a(x x 0 ) v = v 0 + v 2 v = rω v = ω r v = a ω = θ t = θ t = dθ ω = ω 0 + αt ω 2 = ω α(θ θ 0 ) ω = ω 0 + ω 2 ω = 2π T = 2πf ω = k m = g l Speed of Light: c 3.00 x 0 8 m s = 299,792,458 m s A v = A 2 v 2 v rms = 3RT M v rms = 3k BT μ : v = fλ n = c v n sin θ = n 2 sin θ 2 v(t) = v 0 Acceleratio n (m/s 2 ) (rad/s 2 ) a = v t = v t = dv a = F m = F net m a = rα g = m s 2 g = ft s 2 Tangential: α = a T r = ω t = dω α = τ I = τ net I Centripetal: a c = v2 r = ω2 r a 2 = a + a T 2 Jerk (Jolt) (m/s 3 ) (rad/s 3 ) j = a t = a t = da ζ = α t = α t = dα Copyright by Harold Toomey, WyzAnt Tutor 2

3 Dynamics Mass (kg) / Moment of Inertia (kg m 2 ) Momentum (kg m/s) (kg m 2 /s) m = actual mass I = effective mass p = mv p = m v Conservation of Momentum: p i = p f I = mr 2 I = r 2 dm I = r dm L = Iω L = r p L = r v dm m e = kg m p m n = kg p = ρg m = m 0 Nuclear: λ = h p p = mv Copyright by Harold Toomey, WyzAnt Tutor 3

4 Force (N = kg m/s 2 ) / Torque (J = N m) F = ma F g = mg F = F net = ma F = p t = p t = dp F fric μn F s = kx F G = Gm m 2 r 2 F G = Gm m 2 r 2 r τ = rf sin θ τ = τ net = Iα τ = rf = Iα τ = r F τ = dl F = ma c F = mv2 r F = mrω 2 Electricity: F = k q q 2 r 2 F = q q 2 4πε 0 r 2 F = Eq : F B = qvb sin θ F B = BIl sin θ F B = qv B F B = Il B F = I dl B F = PA P = F A = ρhg F buoy = ρvg PV = nrt = Nk B T J R = 8.3 (mol K) k B = J K Impulse (N s) (N m s) J = F t = p = m v J = F = p H = τ t = L = I ω H = τ = L Yank (N/s 2 ) / Rotatum (J/s) Y = m J Y = F t = F t = df P = r Y P = τ t = τ t = dτ Copyright by Harold Toomey, WyzAnt Tutor 4

5 Energy W = Fd W = τ θ : W = P V Work (J = N m) W = F x cos θ W = τ (θ θ 0 ) W = QV e = W Q H Kinetic Energy (J) Potential Energy (J) W = F dr K = 2 mv2 U g = mgh U G = Gm m 2 r G = W = τ dθ K = 2 Iω2 Coiled spring: U s = 2 kx2 ev = J U E = qv U E = q q 2 4πε 0 r U c = 2 QV U c = 2 CV2 U L = 2 LI2 e c = T H T C T H P + ρgy + 2 ρv2 = constant : K avg = 3 2 k BT P = P 0 + ρgh : U = Q + W Nuclear: K max = hf φ m 0 K = ( ) Nuclear: E = hf = pc E = m E = ( m) E = m ( ) Copyright by Harold Toomey, WyzAnt Tutor 5

6 : H = ka T L Heat Energy (J) Conservation of Energy: E i = E f E = W + Q + K + U g + U G + U s + U E + U c + U L + = constant Q = mh f Q = mh v E = Q = mc T mc T = mc(t f T i ) C H2 O = 480 J/Kg K T f = m C T i + m 2 C 2 T 2 m C + m 2 C 2 P = W t = Fv P = W t = τω P = IV Power (W) P = E t = de P = Fv cos θ P = F v P = W t = dw P = τω cos θ P = τ ω P = I 2 R P = V2 R Copyright by Harold Toomey, WyzAnt Tutor 6

7 Engineering Application T = f = 2π ω : Period / Frequency (Hz) T = f f = T T s = 2π m k T p = 2π l g T = 2π b For: y = sin(bθ) y = cos(bθ) f = λ v t = t 0 x CM = m x + m 2 x 2 m + m 2 Center of Mass (m) x CM = m ix i m i x = M M x dm 0 r CM = mr m : M = h i = s i h o s o (magnification) M where M = dm 0 and dm = ρ dz dy dx Rigid Bodies F y = mg = 0 (Down = ) τ = F y x CM = 0 (CW = ) Copyright by Harold Toomey, WyzAnt Tutor 7

8 Electricity Electricity E = F q C = Q V E avg = V d C = ε 0A d Electric Field (V/m) (N/C) E = dv dr Gauss s Law: Capacitance (F) C = κε 0A d C p = C i i E da = Q ε 0 E = ρj = C s i C i V = IR R = V I Potential (V) V = Q C V = k q i i r i Resistance (Ω) R = ρl A R s = R i i V = q i 4πε 0 i r i = R p i R i I avg = Q t Current (A) I = dq I = V R I = Nev d A EMF (V) Faraday s Law of Induction: E dl = φ m t ε = L di e = C Copyright by Harold Toomey, WyzAnt Tutor 8

9 B = μ 0 2π I r Solenoid: B s = μ 0 ni Magnetic Field (T) where n = N turns per meter l Ampere s Circuit Law: B dl = μ o I db = μ 0 4π I dl r r 3 (T m) 7 μ 0 = 4π 0 A Magnetic Flux (Wb) φ m = BA cos θ Gauss s Law for : φ m = B da EMF (V) ε avg = φ m t ε = Blv Copyright by Harold Toomey, WyzAnt Tutor 9

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main 1 FOUNDATION STUDIES EXAMINATIONS June 2015 PHYSICS Semester One February Main Time allowed 2 hours for writing 10 minutes for reading This paper consists of 6 questions printed on 10 pages. PLEASE CHECK

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

E = K + U. p mv. p i = p f. F dt = p. J t 1. a r = v2. F c = m v2. s = rθ. a t = rα. r 2 dm i. m i r 2 i. I ring = MR 2.

E = K + U. p mv. p i = p f. F dt = p. J t 1. a r = v2. F c = m v2. s = rθ. a t = rα. r 2 dm i. m i r 2 i. I ring = MR 2. v = v i + at x = x i + v i t + 1 2 at2 E = K + U p mv p i = p f L r p = Iω τ r F = rf sin θ v 2 = v 2 i + 2a x F = ma = dp dt = U v dx dt a dv dt = d2 x dt 2 A circle = πr 2 A sphere = 4πr 2 V sphere =

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

PHY Tables & Formulas. You may refer to this handout on quizzes & exams. Do not add additional information. m

PHY Tables & Formulas. You may refer to this handout on quizzes & exams. Do not add additional information. m PHY 132 - Tables & Formulas You may refer to this handout on quizzes & exams. Do not add additional information. m Things you should know from PHY 131 and other prerequisites. (If you don t, learn them

More information

Angular Displacement. θ i. 1rev = 360 = 2π rads. = "angular displacement" Δθ = θ f. π = circumference. diameter

Angular Displacement. θ i. 1rev = 360 = 2π rads. = angular displacement Δθ = θ f. π = circumference. diameter Rotational Motion Angular Displacement π = circumference diameter π = circumference 2 radius circumference = 2πr Arc length s = rθ, (where θ in radians) θ 1rev = 360 = 2π rads Δθ = θ f θ i = "angular displacement"

More information

Physics Equations Course Comparison

Physics Equations Course Comparison Physics Equatios Couse Compaiso Ietify you couse. You may use ay of the equatios beeath a to the left of you couse. Math A A PeCalculus Calculus AB o BC A to B is OR A:B is (Cocuet) (Cocuet) B B Algeba

More information

kg C 10 C = J J = J kg C 20 C = J J = J J

kg C 10 C = J J = J kg C 20 C = J J = J J Seat: PHYS 1500 (Spring 2007) Exam #3, V1 Name: 5 pts 1. A pendulum is made with a length of string of negligible mass with a 0.25 kg mass at the end. A 2nd pendulum is identical except the mass is 0.50

More information

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main 1 FOUNDATION STUDIES EXAMINATIONS June 2013 PHYSICS Semester One February Main Time allowed 2 hours for writing 10 minutes for reading This paper consists of 4 questions printed on 10 pages. PLEASE CHECK

More information

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Chapter 10. Rotation of a Rigid Object about a Fixed Axis Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small

More information

Phys102 Final-132 Zero Version Coordinator: A.A.Naqvi Wednesday, May 21, 2014 Page: 1

Phys102 Final-132 Zero Version Coordinator: A.A.Naqvi Wednesday, May 21, 2014 Page: 1 Coordinator: A.A.Naqvi Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B -V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R =105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? A).3 V

More information

Additional Formula Sheet for Final Exam

Additional Formula Sheet for Final Exam Additional Formula Sheet for Final Exam eading and thoroughly familiarizing yourself with this formula sheet is an important part of, but it is not a substitute for, proper exam preparation. The latter

More information

16 19 Study Guide. Pocket physics. a handy guide for bright stars

16 19 Study Guide. Pocket physics. a handy guide for bright stars 6 9 Study Guide Pocket physics a handy guide for bright stars Miscellaneous Ideal gases Pressure (P) pascal (Pa) : Pa = newton per square metre. P = 3 t c where ρ is the density of the gas and _ c² _ is

More information

Physics Final Exam Formulas

Physics Final Exam Formulas INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator. Show all of your work in the blue book. For problems II-VI,

More information

16 19 Study Guide. Pocket physics. a handy guide for bright stars

16 19 Study Guide. Pocket physics. a handy guide for bright stars 6 9 Study Guide Pocket physics a handy guide for bright stars Miscellaneous Ideal gases Pressure (P) pascal (Pa) : Pa = newton per square metre. P = 3 t c where ρ is the density of the gas and _ c² _ is

More information

Quiz 3 July 31, 2007 Chapters 16, 17, 18, 19, 20 Phys 631 Instructor R. A. Lindgren 9:00 am 12:00 am

Quiz 3 July 31, 2007 Chapters 16, 17, 18, 19, 20 Phys 631 Instructor R. A. Lindgren 9:00 am 12:00 am Quiz 3 July 31, 2007 Chapters 16, 17, 18, 19, 20 Phys 631 Instructor R. A. Lindgren 9:00 am 12:00 am No Books or Notes allowed Calculator without access to formulas allowed. The quiz has two parts. The

More information

FOUNDATION STUDIES EXAMINATIONS September 2009

FOUNDATION STUDIES EXAMINATIONS September 2009 1 FOUNDATION STUDIES EXAINATIONS September 2009 PHYSICS First Paper July Fast Track Time allowed 1.5 hour for writing 10 minutes for reading This paper consists of 4 questions printed on 7 pages. PLEASE

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 3 9 T K T o C 73.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC L pv nrt 3 Ktr nrt 3 CV R ideal monatomic gas 5 CV R ideal diatomic gas w/o vibration V W pdv V U Q W W Q e Q Q e Carnot

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Physics 2020 Exam 2 Constants and Formulae

Physics 2020 Exam 2 Constants and Formulae Physics 2020 Exam 2 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 c = 3.00 10 8 m/s ɛ = 8.85 10 12 C 2 /(N m 2 ) µ = 4π 10 7 T m/a e = 1.602 10 19 C h = 6.626 10 34 J s m p = 1.67

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid

More information

MET 487 Instrumentation and Automatic Control. Lecture 3

MET 487 Instrumentation and Automatic Control. Lecture 3 MET 487 Instrumentation and Automatic Control Lecture 3 Electrical Circuits and Components http://www.etcs.ipfw.edu/~lin Lecture 2 - By P. Lin 1 Electrical Circuits and Components Basic Electrical Elements

More information

Chapter 10: Rotation

Chapter 10: Rotation Chapter 10: Rotation Review of translational motion (motion along a straight line) Position x Displacement x Velocity v = dx/dt Acceleration a = dv/dt Mass m Newton s second law F = ma Work W = Fdcosφ

More information

Queen s University at Kingston. Faculty of Arts and Science. Department of Physics PHYSICS 106. Final Examination.

Queen s University at Kingston. Faculty of Arts and Science. Department of Physics PHYSICS 106. Final Examination. Page 1 of 5 Queen s University at Kingston Faculty of Arts and Science Department of Physics PHYSICS 106 Final Examination April 16th, 2009 Professor: A. B. McLean Time allowed: 3 HOURS Instructions This

More information

Formula Sheet for Exam #2

Formula Sheet for Exam #2 Formula Sheet for Exam #2 Reading and thoroughly familiarizing yourself with this formula sheet is an important part of, but it is not a substitute for, proper exam preparation. The latter requires, among

More information

Final Exam. June 10, 2008, 1:00pm

Final Exam. June 10, 2008, 1:00pm PHYSICS 101: Fundamentals of Physics Final Exam Final Exam Name TA/ Section # June 10, 2008, 1:00pm Recitation Time You have 2 hour to complete the exam. Please answer all questions clearly and completely,

More information

Physics Midterm #2 Two Hours, Closed Book

Physics Midterm #2 Two Hours, Closed Book Physics 102-1 Midterm #2 Two Hours, Closed Book These are the same instructions as given on the first exam. Instructions for taking the exam in the Science Library: Pick up and return the exam from the

More information

FOUNDATION STUDIES EXAMINATIONS January 2016

FOUNDATION STUDIES EXAMINATIONS January 2016 1 FOUNDATION STUDIES EXAMINATIONS January 2016 PHYSICS Seester 2 Exa July Fast Track Tie allowed 2 hours for writing 10 inutes for reading This paper consists of 4 questions printed on 11 pages. PLEASE

More information

PHYS General Physics for Engineering II FIRST MIDTERM

PHYS General Physics for Engineering II FIRST MIDTERM Çankaya University Department of Mathematics and Computer Sciences 2010-2011 Spring Semester PHYS 112 - General Physics for Engineering II FIRST MIDTERM 1) Two fixed particles of charges q 1 = 1.0µC and

More information

Table of Information and Equation Tables for AP Physics Exams

Table of Information and Equation Tables for AP Physics Exams Table of Information and Equation Tables for AP Physics Exams The accompanying Table of Information and Equation Tables will be provided to students when they take the AP Physics Exams. Therefore, students

More information

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 9- Rotational Dynamics Torque Center of Gravity Newton s 2 nd Law- Angular Rotational Work & Energy Angular Momentum Angular

More information

Physics 8, Fall 2011, equation sheet work in progress

Physics 8, Fall 2011, equation sheet work in progress 1 year 3.16 10 7 s Physics 8, Fall 2011, equation sheet work in progress circumference of earth 40 10 6 m speed of light c = 2.9979 10 8 m/s mass of proton or neutron 1 amu ( atomic mass unit ) = 1 1.66

More information

PH 221-3A Fall 2009 ROTATION. Lectures Chapter 10 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 221-3A Fall 2009 ROTATION. Lectures Chapter 10 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 1-3A Fall 009 ROTATION Lectures 16-17 Chapter 10 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 10 Rotation In this chapter we will study the rotational motion of rigid bodies

More information

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for

More information

Principles of Physics II

Principles of Physics II Principles of Physics II J. M. Veal, Ph. D. version 18.05.4 Contents 1 Fluid Mechanics 3 1.1 Fluid pressure............................ 3 1. Buoyancy.............................. 3 1.3 Fluid flow..............................

More information

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Louisiana State University Physics 2102, Exam 2, March 5th, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 2, March 5th, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

b) (4) How large is the current through the 2.00 Ω resistor, and in which direction?

b) (4) How large is the current through the 2.00 Ω resistor, and in which direction? General Physics II Exam 2 - Chs. 19 21 - Circuits, Magnetism, EM Induction - Sep. 29, 2016 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results

More information

SI base units. SI : Système International d'unités (International System of Units)

SI base units. SI : Système International d'unités (International System of Units) 2 Units SI base units SI : Système International d'unités (International System of Units) Unite name (symbol) Definition established mass kilogram (kg) The mass of the International Prototype of the Kilogram

More information

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Momentum Collisions between objects can be evaluated using the laws of conservation of energy and of momentum. Momentum

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Department of Physics

Department of Physics Department of Physics PHYS101-051 FINAL EXAM Test Code: 100 Tuesday, 4 January 006 in Building 54 Exam Duration: 3 hrs (from 1:30pm to 3:30pm) Name: Student Number: Section Number: Page 1 1. A car starts

More information

Physics 1B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS:

Physics 1B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Physics 1B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Closed book. No work needs to be shown for multiple-choice questions. 1. Four charges are at the corners of a square, with B and C on opposite

More information

b) (6) What is the volume of the iron cube, in m 3?

b) (6) What is the volume of the iron cube, in m 3? General Physics I Exam 4 - Chs. 10,11,12 - Fluids, Waves, Sound Nov. 14, 2012 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential steps, and results

More information

ω = 0 a = 0 = α P = constant L = constant dt = 0 = d Equilibrium when: τ i = 0 τ net τ i Static Equilibrium when: F z = 0 F net = F i = ma = d P

ω = 0 a = 0 = α P = constant L = constant dt = 0 = d Equilibrium when: τ i = 0 τ net τ i Static Equilibrium when: F z = 0 F net = F i = ma = d P Equilibrium when: F net = F i τ net = τ i a = 0 = α dp = 0 = d L = ma = d P = 0 = I α = d L = 0 P = constant L = constant F x = 0 τ i = 0 F y = 0 F z = 0 Static Equilibrium when: P = 0 L = 0 v com = 0

More information

Chapter 10: Rotation. Chapter 10: Rotation

Chapter 10: Rotation. Chapter 10: Rotation Chapter 10: Rotation Change in Syllabus: Only Chapter 10 problems (CH10: 04, 27, 67) are due on Thursday, Oct. 14. The Chapter 11 problems (Ch11: 06, 37, 50) will be due on Thursday, Oct. 21 in addition

More information

Physics 4A Solutions to Chapter 10 Homework

Physics 4A Solutions to Chapter 10 Homework Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 0-4 (a) positive (b) zero (c) negative (d) negative Q 0-6

More information

AP Physics B 2014 Free-Response Questions

AP Physics B 2014 Free-Response Questions AP Physics B 014 Free-Response Questions 014 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central

More information

Physics 8, Fall 2013, equation sheet work in progress

Physics 8, Fall 2013, equation sheet work in progress (Chapter 1: foundations) 1 year 3.16 10 7 s Physics 8, Fall 2013, equation sheet work in progress circumference of earth 40 10 6 m speed of light c = 2.9979 10 8 m/s mass of proton or neutron 1 amu ( atomic

More information

Final Exam Spring 2014 May 05, 2014

Final Exam Spring 2014 May 05, 2014 95.141 Final Exam Spring 2014 May 05, 2014 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided.

More information

8. (6) Consider the circuit here with resistors R A, R B and R C. Rank the

8. (6) Consider the circuit here with resistors R A, R B and R C. Rank the General Physics II Exam 2 - Chs. 18B 21 - Circuits, Magnetism, EM Induction - Oct. 3, 2013 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results

More information

FOUNDATION STUDIES EXAMINATIONS November PHYSICS Semester Two February Main

FOUNDATION STUDIES EXAMINATIONS November PHYSICS Semester Two February Main FOUNDATION STUDIES EXAMINATIONS November 203 PHYSICS Semester Two February Main Time allowed 2 hours for writing 0 minutes for reading This paper consists of 5 questions printed on 0 pages. PLEASE CHECK

More information

Final Exam April 21, a) No books, notes, or other such materials are permitted.

Final Exam April 21, a) No books, notes, or other such materials are permitted. Phys 5 Spring 004 Name: Final Exam April, 004 INSTRUCTIONS: a) No books, notes, or other such materials are permitted. b) You may use a calculator. c) You must solve all problems beginning with the equations

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science DECEMBER 2013 EXAMINATIONS PHY 151H1F Duration - 3 hours Attempt all questions. Each question is worth 10 points. Points for each part-question are shown

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018 Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with correct

More information

Physics 102 Exam 2 Spring Last Name: First Name Network-ID

Physics 102 Exam 2 Spring Last Name: First Name Network-ID Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators cannot be shared. This is a

More information

11. Rotational Motion 11. Rotasiebeweging

11. Rotational Motion 11. Rotasiebeweging Rotation Transparencies.doc:. Rotational Kinematics 3/05/0 :57:00. Rotational Motion. Rotasiebeweging. Rotational Kinematics (HRW 0- to 0-5) Rotational variables. Rotasiekinematika (HRW 0- tot 0-5) Rotasieveranderlikes

More information

Physics 102 Exam 1 Fall Last Name: First Name Network-ID

Physics 102 Exam 1 Fall Last Name: First Name Network-ID Physics 0 Exam Fall 03 Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators cannot

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

Write your name legibly on the top right hand corner of this paper

Write your name legibly on the top right hand corner of this paper NAME Phys 631 Summer 2007 Quiz 2 Tuesday July 24, 2007 Instructor R. A. Lindgren 9:00 am 12:00 am Write your name legibly on the top right hand corner of this paper No Books or Notes allowed Calculator

More information

Lecture II: Rigid-Body Physics

Lecture II: Rigid-Body Physics Rigid-Body Motion Previously: Point dimensionless objects moving through a trajectory. Today: Objects with dimensions, moving as one piece. 2 Rigid-Body Kinematics Objects as sets of points. Relative distances

More information

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018 Quiz 4 (Discussion ession) Phys 1302W.400 pring 2018 This group quiz consists of one problem that, together with the individual problems on Friday, will determine your grade for quiz 4. For the group problem,

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Physics 111. Exam #1. February 14, 2014

Physics 111. Exam #1. February 14, 2014 Physics 111 Exam #1 February 14, 2014 Name Please read and follow these instructions carefully: Read all problems carefully before attempting to solve them. Your work must be legible, and the organization

More information

= 560 W C. Watt = second but kilowatt. hr = 1000 J s. 3600s = J This last is a unit of work nor of power.

= 560 W C. Watt = second but kilowatt. hr = 1000 J s. 3600s = J This last is a unit of work nor of power. AP Physics Physics B Exam - 998 Solutions to Multiple Choice BASIC IDEA SOLUTION ANSWER #. v = at + v i The acceleration of all object near the earth surface and in B a vacuum is the same, that is 9.8

More information

PHYS 3313 Section 001 Lecture #12

PHYS 3313 Section 001 Lecture #12 PHYS 3313 Section 001 Lecture #12 Monday, Feb. 24, 2014 Rutherford Scattering Experiment and Rutherford Atomic Model The Classic Atomic Model The Bohr Model of the Hydrogen Atom 1 Quiz 2 results Class

More information

b) (6) With 10.0 N applied to the smaller piston, what pressure force F 2 (in newtons) is produced on the larger piston?

b) (6) With 10.0 N applied to the smaller piston, what pressure force F 2 (in newtons) is produced on the larger piston? General Physics I Exam 4 - Chs. 10,11,12 - Fluids, Waves, Sound Nov. 17, 2010 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential steps, and results

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 1: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational / / 1/ m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv / / 1/ I

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive

More information

Two-Dimensional Rotational Kinematics

Two-Dimensional Rotational Kinematics Two-Dimensional Rotational Kinematics Rigid Bodies A rigid body is an extended object in which the distance between any two points in the object is constant in time. Springs or human bodies are non-rigid

More information

Final Exam. Useful tables. 1 : [10 pts] 2 : [10 pts] 3 : [10 pts] 4 : [10 pts] 5 : [10 pts] 6 : [10 pts] 7 : [10 pts] 8 : [10 pts] TOTAL:

Final Exam. Useful tables. 1 : [10 pts] 2 : [10 pts] 3 : [10 pts] 4 : [10 pts] 5 : [10 pts] 6 : [10 pts] 7 : [10 pts] 8 : [10 pts] TOTAL: Final Exam Name Score Please PRINT your name. Read the question carefully. Show your steps. Use letter symbols first if convenient. Give units on final answers. Diagrams help. Do all work on these pages,

More information

Questions A hair dryer is rated as 1200 W, 120 V. Its effective internal resistance is (A) 0.1 Ω (B) 10 Ω (C) 12Ω (D) 120 Ω (E) 1440 Ω

Questions A hair dryer is rated as 1200 W, 120 V. Its effective internal resistance is (A) 0.1 Ω (B) 10 Ω (C) 12Ω (D) 120 Ω (E) 1440 Ω Questions 4-41 36. Three 1/ µf capacitors are connected in series as shown in the diagram above. The capacitance of the combination is (A).1 µf (B) 1 µf (C) /3 µf (D) ½ µf (E) 1/6 µf 37. A hair dryer is

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter

More information

PHYSICS 1 (LIFE SCIENCES) ELECTRICITY

PHYSICS 1 (LIFE SCIENCES) ELECTRICITY THE UNIVERSITY OF SYDNEY PHYSICS 1 (LIFE SCIENCES) ELECTRICITY ELEVENTH EDITION SI stands for Système International SI UNITS SI base units Quantity Unit Symbol Mass kilogram kg Distance metre m Time second

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at

A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at Option B Quiz 1. A Ferris wheel in Japan has a radius of 50m and a mass of 1. x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at rest, what is the wheel s angular acceleration?

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

Tute M4 : ROTATIONAL MOTION 1

Tute M4 : ROTATIONAL MOTION 1 Tute M4 : ROTATIONAL MOTION 1 The equations dealing with rotational motion are identical to those of linear motion in their mathematical form. To convert equations for linear motion to those for rotational

More information

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r.

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r. SUMMARY Phys 53 (University Physics II) Compiled by Prof. Erickson q 1 q Coulomb s Law: F 1 = k e r ˆr where k e = 1 4π =8.9875 10 9 N m /C, and =8.85 10 1 C /(N m )isthepermittivity of free space. Generally,

More information

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is:

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is: Chapter 1 Kinematics 1.1 Basic ideas r(t) is the position of a particle; r = r is the distance to the origin. If r = x i + y j + z k = (x, y, z), then r = r = x 2 + y 2 + z 2. v(t) is the velocity; v =

More information

[variable] = units (or dimension) of variable.

[variable] = units (or dimension) of variable. Dimensional Analysis Zoe Wyatt wyatt.zoe@gmail.com with help from Emanuel Malek Understanding units usually makes physics much easier to understand. It also gives a good method of checking if an answer

More information

Physics First examinations 2009 Last examinations Diploma Programme. Data booklet

Physics First examinations 2009 Last examinations Diploma Programme. Data booklet Pysics First examinations 9 Last examinations 5 Diploma Programme Data booklet Diploma Programme Pysics Data booklet First examinations 9 Last examinations 5 International Baccalaureate Organization Buenos

More information

APPENDIX D UNIT CONVERSION TABLES. Sl SYMBOLS AND PREFIXES

APPENDIX D UNIT CONVERSION TABLES. Sl SYMBOLS AND PREFIXES UNIT CONVERSION TABLES Sl SYMBOLS AND PREFIXES BASE UNITS Quantity Unit Symbol Length Meter m Mass Kilogram kg Time Second s Electric current Ampere A Thermodynamic temperature Kelvin K Amount of substance

More information

Physics Exam 1 Formulas

Physics Exam 1 Formulas INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Review of rotational kinematics equations Review and more on rotational inertia Rolling motion as rotation and translation Rotational kinetic energy

More information

Solutions to PS 6 Physics 401a

Solutions to PS 6 Physics 401a Solutions to PS 6 Physics 401a 1. Let B point along the z axis. Then by circuar symmetry, we have B(r, t) =B(r, t)e z (1) Using Faraday s Law, we can find the electric field at radius r to be E(r, t) dl

More information

SI UNITS AND SOME CONVERSION FACTORS. A. Woldai, B. Makkawi, and D. Al-Gobaisi International Center for Water and Energy Systems, Abu Dhabi, UAE

SI UNITS AND SOME CONVERSION FACTORS. A. Woldai, B. Makkawi, and D. Al-Gobaisi International Center for Water and Energy Systems, Abu Dhabi, UAE SI UNITS AND SOME CONVERSION FACTORS A. Woldai, B. Makkawi, and D. Al-Gobaisi International Center for Water and Energy Systems, Abu Dhabi, UAE Keywords : SI units, Dynamic viscosity, Surface tension,

More information

Physics Final Exam Formulas

Physics Final Exam Formulas INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is:

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is: Term: 13 Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B -V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R=105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? Figure 1 A).3 V B) +.3

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

N5 H AH Physical Quantity Symbol Unit Unit Abbrev. 5 absorbed dose D gray Gy

N5 H AH Physical Quantity Symbol Unit Unit Abbrev. 5 absorbed dose D gray Gy 5 absorbed dose D gray Gy 5 absorbed dose rate D gray per second gray per hour gray per year Gys -1 Gyh -1 Gyy -1 5 6 7 acceleration a metre per second per second m s -2 5 6 7 acceleration due to gravity

More information

CIRCULAR MOTION AND ROTATION

CIRCULAR MOTION AND ROTATION 1. UNIFORM CIRCULAR MOTION So far we have learned a great deal about linear motion. This section addresses rotational motion. The simplest kind of rotational motion is an object moving in a perfect circle

More information

1.1 - Scientific Theory

1.1 - Scientific Theory 1.1 - Scientific Theory Babylonians/Egyptians Observation for the practical Religious Agriculture Pseudosciences (science + nonscience) Alchemy Astrology, etc. Greeks Good Theoreticians (knowledge for

More information

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 2 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Part of a long, straight insulated wire carrying current i is bent into a circular

More information

AP Physics 1: Algebra-Based

AP Physics 1: Algebra-Based 08 AP Physics : Algebra-Based Free-Response Questions 08 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board.

More information

Chapter 8. Rotational Motion

Chapter 8. Rotational Motion Chapter 8 Rotational Motion Rotational Work and Energy W = Fs = s = rθ Frθ Consider the work done in rotating a wheel with a tangential force, F, by an angle θ. τ = Fr W =τθ Rotational Work and Energy

More information

Name (Last, First): You may use only scientific or graphing calculators. In particular you may not use the calculator app on your phone or tablet!

Name (Last, First): You may use only scientific or graphing calculators. In particular you may not use the calculator app on your phone or tablet! Final Exam : Physics 2113 Fall 2014 5:30PM MON 8 DEC 2014 Name (Last, First): Section # Instructor s name: Answer all 6 problems & all 8 questions. Be sure to write your name. Please read the questions

More information

force per unit length

force per unit length Physics 153 Sample Examination for Fourth Unit As you should know, this unit covers magnetic fields, how those fields interact with charged particles, how they are produced, how they can produce electric

More information