Modeling issues and possible solutions in the design of high speed systems with signals at 20Gb/s

Size: px
Start display at page:

Download "Modeling issues and possible solutions in the design of high speed systems with signals at 20Gb/s"

Transcription

1 DesignCon 2008 Modeling issues and possible solutions in the design of high speed systems with signals at 20Gb/s Antonio Ciccomancini Scogna, CST of America Jianmin Zhang, Cisco Systems Kelvin Qiu, Cisco Systems Qinghua Bill Chen, Cisco Systems

2 Abstract In high speed digital systems with signals at 20 Gb/s, standard approaches used to study the signal integrity at PCB and package level are not valid anymore. IBIS models are no longer accurate and H-spice transient simulations face convergence and stability problems. With the increased operational frequency the metal losses of standard transmission lines at PCB level are not only related to the material characteristic, but they are also related to effects like surface roughness and tapered cross section. Another important issue is the preservation of passivity and causality related to the inaccurate material characterization of the electromagnetic models. How to address these problems? In the present paper some answers will be provided by considering few simple test cases as well as more complex multilayer PCBs. Electromagnetic models are discussed and validated by means of numerical methods, analytical formulation and/or measurements. A practical workflow and design rules for the analysis of differential signals in multilayer PCB is also proposed. Author(s) Biography Antonio Ciccomancini Scogna received the PhD degree in Electrical Engineering from University of L Aquila, Italy. His main interests are EMC numerical modeling and Signal Integrity analysis in high-speed digital systems. In 2004 he received the CST University Publication Award for the use of the FIT in SI applications and in 2007 he was awarded as finalist at DesignCon. Currently he is senior application engineer at CST of America. He is a member of IEEE, ACES, EMC TC-9 and TC-10 Committees Jianmin Zhang received his BSME from Southeast University, Nanjing, China, and his MSEE/PhD from University of Missouri-Rolla with Electromagnetic Compatibility Laboratory in 2003 and 2007, respectively. In February 2007, he joined CISCO Systems, San Jose, CA, as a Sr. Hardware Engineer, where he is involved in board and package design/layout for signal integrity and power integrity for high-speed interconnects modeling and analysis Kelvin Qiu received his BS and MS in Electrical Engineering from Nanjing University, Nanjing, China, and his MSEE in Computation Electromagnetics from Clemson University, SC, He joined CISCO Systems in 1998, as Sr. Signal Integrity Engineer, where he is involved in board and ASIC level signal integrity and power integrity analysis and modeling Qinghua Bill Chen is a senior engineering manager with Cisco systems Inc., working on high speed high performance networking product R&D. Previously he worked for Andiamo systems Inc as manager and technical leader, in charge of high speed signal integrity activities. He worked also for RFI, Nplab and Texas Instruments Inc. as technical leader / sr. design engineer working on high speed IC/system designs. Dr. Chen earned his Ph.D. from Texas A& Univ and his MSEE and BSEE from Tsinghua Univ. Beijing, China

3 Introduction The actual trend on the silicon industry toward higher levels of integration generates chips with densities of tens of millions of transistors. Consequently the signal switching frequency on the modem digital equipment is well beyond the gigahertz range. These high performance systems require high quality point-to-point connections between integrated circuits (ICs) on different printed circuit hoards (PCBs) connected by means of backplanes. When the bandwidth requirement increases, the electrical properties of the interconnections affect and limit the integrity of the traveling digital signals [1]. These phenomena impact also the electromagnetic compatibility (EMC) performances of the system, because corrupted signals can easily increase the unwanted electromagnetic interferences (EMI). Until recently, designers performing high-speed PCB simulations worried mostly about finding IBIS models for driver and receivers, but currently the complexity high speed signals have demanded additional types of models, not only for IC buffers, but also for packages, vias and connectors and this is a really challenging task, therefore 3D field solvers have to be used in order to generate touchstone files or equivalent circuit models to be used in circuit simulator like SPICE. Another important aspect in the design of high speed PCB is the specific dielectric materials with low dielectric losses, to guarantee the quality of the signals traveling on the long traces between ICs. Normally, to characterize the properties of a dielectric material in transmitting high frequency digital signals, test boards are laid-out with traces of different lengths and widths and eye diagrams are measured. This process is not always possible due to economic/time-to market constrains, therefore accurate and reliable equivalent models need to be provided. From the conductors point of view, tapered cross section and surface roughness are another important aspect to be considered since the high frequency can produce a consistent increasing of the conductor metal losses as well as impedance variation due to the non-rectangular cross section of the lines. This paper will introduce improved inputs and analysis techniques that will provide designers with the tools and the informations to make informed design and material choices while improving simulation accuracy. Furthermore skin dept and surface roughness (Hammerstad and Jensen analytical model) concepts will be discussed in terms of their impact on the signal integrity, showing how both effects can be taken into account in a 3D field solver with a relatively small computational effort, but still yielding to reasonable accurate results. In particular the results due to a 3D model of surface roughness for a simple stripline model will be compared with the well know Hammerstad and Jensen analytical model and a sensitivity analysis on the different profile for the roughness will be provided as well. Due to inherent advantage on immunity of common mode noise, differential signal routing has to be used for high speed signaling like SERDES, SATA and PCI-X, therefore the differential signaling will be discussed. Considering stack-up and cross sectional parameters of signal traces are commonly estimated using 2D field solvers, therefore by assuming the single ended lines of the differential pairs as infinitely long transmission line with no return path discontinuity. Limitation of this approach will be demonstrated and a 3D field solver will be used for the simulation and the analysis for impedance characterization of differential system,

4 considering return path discontinuities associated with the single-ended and differential signals routed through a complex PCB. Considering the return path discontinuity, performance evaluation of PCBs with differential signal nets in terms of the input differential-mode impedance and input common-mode impedance will be also treated. A multilayer PCB will be used to illustrate the modeling and the simulation methodology. Surface roughness and tapered cross section Due to the rapid increase of circuit complexity and the large scale of integration of the modern electronic devices, the circuit performance is more and more related to the interconnects [2]. Two different kinds of interconnect structures are mainly used in order to propagate signals in ICs and PCBs: microstripline and/or stripline. Stripline is constructed by sandwiching a metallic strip within a dielectric material, whose outer surfaces are metallized. The obvious benefit of the closed structure compared to the microstripline is better protection against external signals and unwanted radiation. Another benefit is the mechanical protection of the inner conductor in a hazardous environment. In the ideal world the conductor of the stripline structure would be perfectly smooth and with a rectangular cross-section. Unfortunately that is not the case in real world, since the conductors have microscopically small dips and grooves on their surface and the cross section is usually a kind of tapered (trapezoid) shape [3-5]. Furthermore copper foils are roughened in order to provide adhesion of the dielectric resin to the conductor in PCBs; adhesion at the interface between conductor and insulator must be very robust due to conditions during the manufacturing process, assembly, and standard usage to which the interconnect is subjected. When the wavelength of the signal has a length comparable to the amplitude of the roughness the attenuation can be relevant and it increases as a function of the frequency. Therefore it must be taken into account when designing stripline structures. Conductor Surface Profile (surface roughness or Rrms) and tapered cross section are related to characteristic impedance of the stripline and attenuation factor. Rrms meaning is root-mean-square (height of the surface bumps) and it represents a measure of surface roughness. A cross view of the test structure used to study the Rrms effect, along with the geometric dimensions, is illustrated in Figure 1a. It is a 400 μm (L) long copper stripline (σ=5.8e7 S/m), the width (W) is 10μm, and the height (h) is 3.5 μm. The dielectric material is Fr4 (ε r =4.9) and it is considered loss free, since the purpose is the sensitivity analysis of 1) trapezoidal etching and 2) Rrms. CST Microwave Studio (CST MWS) [6] is used as 3D field solver to perform the EM numerical simulations. The code is based on the Finite Integration Technique (FIT), an integral method which can be implemented both in time domain or frequency domain. Frequency domain solver and tetrahedral mesh is used in this case for two main reasons: 1) relative small dimensions of the structure, 2) evaluation of the attenuation factor due to conductor loss (α), not available in time domain.

5 In order to ensure a TEM structure of the electromagnetic field (essential condition for a meaningful interpretation of the scattering matrix), lumped voltage sources are not suitable because they would excite higher order modes. Because of this the TEM excitation has been realized by considering fictitious wave guide structures (waveguide port). Figure 1b illustrates the field mode pattern distribution, the line impedance value and the attenuation factor alpha (α). The detected value of the line impedance is approximately 40 ohm (see Figure 1) while α=13.59 [Neper/m]. (a) (b) Figure 1- a): Stripline simulation model used to study Rrms and tapered cross section effect, b): line impedance, alpha and beta value. Tapered Cross Section Figure 2 is a photograph of a typical board stripline cross-section with in evidences both the tapered edges and the conductor surface profile. Object of the present paragraph is to quantify the effect of the etching reduction according to the test model illustrated in Figure 2. The overall dimensions of the structure are the same of the model presented in Figure 1, but in this case a new parameter is introduced: d, which is the taper variation from the width w.

6 The DC resistance of the considered interconnect is directly proportional to the length (L), however it does not scale linearly with the width, since the actual width is smaller if compared with the once of Figure 1. The different value from the standard (rectangular cross section) case can be quantified by means of the following relation: 1 l R= σ h(w-d) (1) In the previous σ is the conductivity of the stripline, h is the height, w is the width and d is the parameter illustrated in Figure 2. From the previous it is clear that the DC resistance assumes a bigger value if compared with the standard rectangular cross-section. A parameter sweep analysis is executed by varying d in the range um. TABLE I report the values of the attenuation factor α, while Fig. 3 illustrates the line impedance variation. How it is possible to see the variation is in the range: 39.9ohm to about 42.1ohm, which means approximately 5-6 %. Figure 2 - Tapered cross section: real view and simulated cross section model TABLE I Attenuation factor d [um] α [Neper/m]

7 Figure 3 - Line impedance variation with the parameter d When increasing the length of the interconnect the variation is more evident; for example Figure 4 illustrates the insertion loss of 20mm long stripline obtained by cascading 50 blocks of the already simulated model within CST Design Studio TM (CST DS) [6]. It can be observed how the deviation ( dB) on the insertion loss is almost constant along the considered frequency range. The same model is then excited (within CST DS) by means of a rectangular waveform with rise and fall time 0.1ns, hold time 0.2ns and total time 2ns. Figure 4 Insertion loss for rectangular and tapered cross-section.

8 Figure 5 compares the output waveforms of the structure with standard rectangular cross section with the structure designed by considering the tapered edge (with d=1.2μm). Some considerations can be addressed: 1) the variation on the insertion loss due to the tapered etching effect seems to be relevant for frequencies higher than 20GHz; 2) the output waveform for the structure with tapered edge has about 5-8% attenuation on the maximum value. The eye diagram is also calculated for both configurations (rectangular and tapered cross section) and results are illustrated in Figure 6, almost no variations is observed. Figure 5- Simulated trapezoidal waveform for rectangular and tapered cross section.

9 Figure 6- Eye diagram for rectangular and tapered cross section. Surface Roughness In this section the incidence of the conductor surface profile (Rrms) on the transmission properties of a stripline is analyzed. Copper foils commonly used in PCB fabrications are made with certain surface characteristics to facilitate the bonding of the copper foil to the dielectric material, with copper surface intentionally roughened to increase the strength of the bond. As the skin depth approaches the dimension of the copper surface roughness, the smooth surface assumption breaks down and the resistance increases at a higher rate than square root of frequency. The increased losses due to surface roughness can be relevant or not, depending on the magnitude of the rectangular step characterizing the surface roughness in relation to the skin depth. The relation between conductor surface profile and loss can be defined by the following relation: α R s c = Np / m (2) Zw 0 R s surface resistivity, Z 0 impedance of the transmission line and w, trace width. Surface resistance is a material property, partially governed by Rrms, while Z 0 and w are both design parameters. Conductive loss is directly proportional to the surface resistance thought the skin effect, as signals travel at the conductor surface at different depths. Different techniques can be incorporated to generate a loss model which include the Rrms effect: 1) adjusting the classical skin effect conductor loss to higher power than the square root of the frequency, 2) increasing the dielectric loss tangent (tanδ) of the dielectric material, due to the fact that for frequencies higher than 1GHz, the difference among copper types are almost linear with respect to the frequency. Both approaches have some issues as explained in [5] so, Hammerstad and Jensen proposed an empirical formula, derived from microstripline measurements, which can be effectively used to model the frequency dependent loss by means of an additional loss term defined as: α = α K (3) ' c c sr 2 2 Δ Ksr = 1+ arctg 1.4 (4) π δ s

10 where α ' c is the attenuation for the rough surface, αc is the attenuation for smooth surface, δs is the skin depth and Δ is the Rrms surface roughness height. The previous definition is used to evaluate the insertion loss of a 200μm long stripline and to compare the obtained results with those due to the model which includes the only conductor loss (with skin effect), but not the surface profile effect (see Figure 7). The frequency range is 1-50GHz, but a consistent deviation between the two curves appears even at the lower frequency value. The value for the Rrms used to verify the variation of the conductor loss is Δ =0.2μm [4- ' 5] (see Figure7) and the modified conductor loss value α c is S/m. Figure 7- Insertion loss for model with conductor loss and increased conductor loss due to (3) In order validate the previous results a 3D model of the stripline with real surface profile is entirely modeled within CST MWS, according to the dimensions illustrated in Figure 8. Figure 8- Surface roughness: profile of the simulated cross section model

11 A view of the 3D model is represented in Figure 9a, along with a detail of the surface profile as well as the mesh representation. Due the extremely high ratio limit and the necessity to model the real dimensions/thickness of the conductor profile, in order to have accurate results, a symmetry plane is used (y-z plane); therefore the total number of tetrahedrons is counted for only half portion of the structure. Figure 9b illustrates the insertion loss and a good agreement between the results due to the full wave model of Rrms and those coming from the equivalent analytical model detailed in (3) and (4) can be observed. (a) (b) Figure 9 Correlation between Hammerstad and Jensen analytical formulation and full wave simulation; the case of model without surface roughness is also reported for reference

12 Due to the non-deterministic nature of the surface roughness (different and complex geometries for the surface profile) there is always a certain level of approximation; therefore different models should be developed depending on the surface profile type. Figure 10 shows the different surface roughness profiles used to investigate the incidence on the transmission properties of the considered stripline: a) cylindrical, b) triangular and c) rectangular profile; the geometrical parameters are d, r, h=0.5µm and a=1 µm. The surface roughness is only modelled in the top portion of the stripline in order to reduce the aspect ratio for the full wave simulation. CST DS is used to cascade 4 blocks of the 3D model in order to get the insertion loss of a 1600μm long stripline. The insertion loss profile is represented in Figure 11 and important considerations can be addressed: 1) the level of increase in conductor losses is dependent on the shape and distribution of indentation, 2) the rectangular profile produces different results from the other two cases, therefore Hammerstad and Jensen analytical formulation is only valid for a specific profile, but for more complex geometries a 3D model needs to be realized and a full wave analysis needs to be performed. Figure 10 - Different surface profiles of Rrms Figure 11 Insertion loss for the different surface roughness profiles illustrated in Figure 10.

13 Dielectric material characterization for accurate modeling A dielectric material is characterized by a complex permittivity defines as the following: ε = ε' jε '' = ε '(1 jtan δ) (5) where ε ' and ε '' are real and imaginary parts and tan δ is the loss tangent. As the behavior of the dielectric material is the response of polarized molecules oscillating to an external electric field, ε ' and ε '' are functions of the frequency. The causality requirement states that such response can not occur earlier than the excitation, further requiring the complex permittivity to satisfy the Krames-Kroning relations: + 1 ε ''(ω')dω' ε '(ω) 1= P π (ω' ω) + 1 ε '((ω') 1)dω' ε"(ω) = P π (ω' ω) (6) where P represents the Cauchy value of the integral. From (6) it can be noticed that the real and imaginary part of the permittivity are related to each other, such that the imaginary part can be computed directly if the real part is known, and vice versa. The symmetry of the Fourier transformation indicates that the real part of the permittivity is an even function of the frequency, while the imaginary part is an odd function: ε '( ω) = ε '(ω) ε ''( ω) = ε ''(ω) (7) Equation (7) implies that the loss tangent, defined as the ratio of the imaginary part to the real part, would be an odd function of the frequency, and should be zero at DC frequency. This means that the assumption of constant loss tangent for all frequencies used by conventional transmission line models violates the causality requirement. The complex permittivity defined by Debye relaxation model satisfies Krames-Kroning relations and therefore produces causal response: Δε ' ε(ω) = ε ' + jω 1+ ω 0 Where ε ' the relative permittivity at very high frequencies is, Δε ' is the change in the relative permittivity. Equation (8) predicts a change in the dielectric constant and peak in loss tangent around the frequency ω 0. (8)

14 It has been widely observed that common PCB dielectric materials exhibit gradual change in dielectric constant over a very broadband frequency range. Such dielectric behavior can be modeled by including many relaxation terms, each localized around different frequency: ε(ω) = ε ' + N i= 1 Δε i ' jω 1+ ω i In the following an example is provided which shows how an incorrect material characterization produces inaccurate results. The structure consists on a 5.3 long differential stripline and the cross section is illustrated in Figure 12. Numerical data of the dielectric material are available, while for the metal parts, copper (σ=5.8e7s/m) is used for the equivalent electromagnetic model. Figure 12 Cross section of the differential stripline model Due to the dimensions of the structure and the broadband frequency range, time domain solver is chosen in order to perform the simulation. A standard Debye model (second order) is used to fit the measured data of the dielectric properties, but the correlation is quite poor (see Figure 13 left side). This is directly reflected on the correlation between the calculated and measured insertion loss (see Figure 14). For this reason a specific macro is developed in VBA in order to guarantee a fitting with preserves the flat behavior of the real and imaginary part of the dielectric material parameters. By doing so, a very good fitting can be provided, as it is possible to see in the right parts of the same Figure 13 (New fitting curve). The comparison between calculated and simulated results in illustrated in Figure 15 and excellent agreement is observed over the all frequency range 0-20Ghz, with a relative error less than 2%.

15 Figure 13 Real and imaginary part of the considered dielectric material: measured data and modelled data Figure 14 Insertion loss: comparison between simulated and measured data.

16 Figure 15 Insertion loss: comparison between measured results and simulated results by means of the new fitting curve for the dielectric material. In order to save simulation time, a different approach is investigated and a very short portion (53 mils long) of the differential model is simulated; the full model is then calculated by consecutively cascading 100 blocks of the 3D simulated model into CST DS (see Figure 16). Even though only the coupling between the blocks and the propagation of higher order modes are neglected, the discrepancy between simulated and measured results became consistent above 4-5 GHz (see Figure 17) and it is found that even the division of the full path into only 4-5 blocks generates quite poor results. This means that from one side the subdivision of the model into sub models can certainly provide relatively faster results, but on the other the accuracy is not always acceptable when dealing with high frequencies. Figure 16 Circuit level simulation design view

17 Figure 17 Comparison among simulated results (full model), measured results and simulated model obtained by cascading multiple blocks. It should be mentioned that the problem of the fitting for the dielectric material properties doesn t existent into the frequency domain since the frequency samples of real and imaginary parts of the dielectric material can be directly used in the simulation. Nevertheless in this case the causality and the passivity are not guaranteed, therefore if the result have to be used in a circuit simulator (for instance in touchstone format) there might be stability and/or convergence problems. Furthermore in the case in which a broadband simulation is required and for more complex models, the frequency domain solver can be very expensive in terms of memory usage and sometimes can even face meshing problems, especially when dealing with models imported directly by EDA platform ( for example Gerber files format). Differential Signaling It is well known [7-8] that differential signaling reduces the noise on a connection by rejecting common-mode interference. At the end of the connection, instead of reading a single signal, the receiving device reads the difference between the two signals (see Figure 18). This is true only in the ideal world; in practice noise induced on the differential lines is likely to appear as common mode. Because the high speed digital system is complex, the discontinuities like vias and bends are inevitably. Differential via hole can be seen as a bifilar transmission lines; it is an

18 open transmission line, so the distribution of the electromagnetic field is easily affected by the conductor nearby. Figure 18 Example of differential signalling and noise cancellation Usually by considering stack-up a cross sectional parameters of the signal traces different types of impedances (such as even, odd and differential) are estimated using 2D field solvers. These impedance parameters are computed assuming the single-ended lines of the differential pairs as the continuous and infinitely long transmission lines with no return path discontinuity. In reality the differential signal pair routed in a package or boards are not infinitely long continuous transmission lines, due to the discontinuities create by vias, balls and other discontinuities. In order to develop some design guidelines it is critical to accurately characterize the signal traces considering the return path discontinuity, therefore the impedance parameters associated with both single-ended and differential pair of signals should be computed with 3D field simulator. In this section an example is provided by simulating with CST MWS a differential structure in a multilayer PCB (with 26 layers) exported by the corresponding Allegro file. Figure 19 illustrated the *.brd file and the corresponding 3D model of the extracted portion of the board. A comparison between single-ended and differential signals shows (see Figure 20) not only a consistent improvement in the insertion loss, but also a reduction in NEXT and FEXT (10-15dB). Nevertheless this behavior, clear visible till about 20 GHz, is not valid anymore for higher frequency values. In this cases infact a more accurate analysis need to be performed and other solution (rather than the only differential design signaling) should be adopted. For example it is possible to see that by changing the distance of the shorting vias from the signal vias (Figure 21) and the results are illustrated in Figure 22a, where the insertion loss is plotted for 4 different values of distances. If we consider as a figure of merit -3db of loss, we can see an improvement on the bandwidth of more than 3GHz.

19 The effect of the shorting vias on the crosstalk is also studied and in particular the incidence of the distance of the shorting vias with respect to the signal via is analyzed. Four different simulations have been performed considering 4 different distances between the 4 shorting vias and the signal via (see Figure 21). The results are illustrated in Figure 22 (b-c) where the NEXT and FEXT are represented for the frequency range 0-40GHz. Some considerations can be addressed: 1) the case of near shorting vias (a1=35mils) corresponds to a reduced NEXT and FEXT, 2) when the frequency increases (from 5-6GHz up to 40GHz) the previous observation is not valid anymore and it is really difficult to define a general rule of thumb related in order to optimize the distance between shorting vias and signal. This means that for high frequencies parameter sweeps, 3D simulations and optimization routines are really important in order to find the best solution. All the items discussed in the present paper will be applied to correctly model a complex multilayer PCB (see Figure 23) and the results will be compared with the measurements once the data will be available. (a)

20 (b) Figure 19 Allegro view of the multilayer board, b): front view and stack-up view of the corresponding 3D model.

21 Figure 20 Insertion loss, NEXT and NEXT: comparison between single-ended signalling and differential transmission.

22 Figure 21 View of the multilayer board with in evidence the 4 shorting vias (a)

23 (b) (c) Figure 22 Calculated insertion loss, NEXT and FEXT for the different distances of the shorting vias from the signal vias.

24 Figure 23 Picture of the multilayer PCB which will be analyzed by means of measurements and simulations. Conclusions The present paper briefly summarizes the most important issues when trying to model high speed systems with signals propagating at 20Gb/s. It is demonstrated how all the basic signal integrity rule of thumbs can easily generate a failure due to inaccuracies, inappropriate and/or too simplified modeling, approximation of important physical behavior. The increased complexity of multilayer PCBs, the reduced distance between signal lines and at the same time the increased operation frequency makes indispensable performing signal integrity studies (NEXT/FEXT types, eye diagram, TDR as well as S-parameters calculation) by means of accurate 3D field simulators. It is also demonstrated how analytic approaches, basic transmission line models and circuit level simulation are often not appropriate for a correct design process. Acknowledgements The authors would like to thank G. Blando with Sun Microsystems for providing the measured data of one of the modeling issue example reported in the paper.

25 References [1] G. Patel, K. Rothstein, Signal Integrity Characterization of Printed Circuit Board Traces, DesignCon 1999 Conference, January [2] X. Shi, Jian-Guo Ma, Manh Anh Do, Er-Ping Li, Sensitivity Analysis of Coupled Interconnects for RFIC Applications, IEEE Transaction on Electromagnetic Compatibility, vol. 48, November 2006, pag [3] T. Liang, S. Hall, H. Heck and G. Brist, PCB Transmission Line Modeling for Multi-Gb/s Link Analysis, DesignCon East [4] R. Kollipara et Al., Practical Design Considerations for 10 to 25 Gbps Coppewr Backplane Serial Links, DesignCon [5] G. Brist, S. Clouser, S. Hall, and T. Liang, Non-Classical Conductor Losses due to Copper Foil Roughness and Treatment, 2005 IPC Electronic Circuits World Convention, Feb [6] CST Studio Suite 2008 TM - [7] Y. Wang, W. Hong, Design of differential vias in hung speed digital circuit, in Proceedings of APMC, 2005 [8] O. Mandhana, J. Zhao, Simulation based impedance characterization of high speed differential systems, in Proceedings of ECTC, 2007.

A Method to Extract Dielectric Parameters from Transmission Lines with Conductor Surface Roughness at Microwave Frequencies

A Method to Extract Dielectric Parameters from Transmission Lines with Conductor Surface Roughness at Microwave Frequencies Progress In Electromagnetics Research M, Vol. 48, 1 8, 2016 A Method to Extract Dielectric Parameters from Transmission Lines with Conductor Surface Roughness at Microwave Frequencies Binke Huang * and

More information

Dielectric and Conductor Roughness Models Identification for Successful PCB and Packaging Interconnect Design up to 50 GHz

Dielectric and Conductor Roughness Models Identification for Successful PCB and Packaging Interconnect Design up to 50 GHz Dielectric and Conductor Roughness Models Identification for Successful PCB and Packaging Interconnect Design up to 50 GHz Yuriy Shlepnev Simberian Inc. Abstract: Meaningful interconnect design and compliance

More information

Broadband material model identification with GMS-parameters

Broadband material model identification with GMS-parameters Broadband material model identification with GMS-parameters Yuriy Olegovich Shlepnev Simberian Inc. shlepnev@simberian.com 2015 EPEPS Conference, October 27, 2015 2015 Simberian Inc. Outline Introduction

More information

Accounting for High Frequency Transmission Line Loss Effects in HFSS. Andrew Byers Tektronix

Accounting for High Frequency Transmission Line Loss Effects in HFSS. Andrew Byers Tektronix Accounting for High Frequency Transmission Line Loss Effects in HFSS Andrew Byers Tektronix Transmission Line Refresher γ = α + j β = (R + jωl) * (G + jωc) Zo = Zr + j Zi = (R + jωl) / (G + jωc) Transmission

More information

Dielectric and Conductor Roughness Model Identification for Successful PCB and Packaging Interconnect Design up to 50 GHz

Dielectric and Conductor Roughness Model Identification for Successful PCB and Packaging Interconnect Design up to 50 GHz JANUARY 28-31, 2014 SANTA CLARA CONVENTION CENTER Dielectric and Conductor Roughness Model Identification for Successful PCB and Packaging Interconnect Design up to 50 GHz Dr. Yuriy Shlepnev Simberian

More information

Signal integrity simulation strategies for accurate and fast results Correct Material Properties that simulate quickly.

Signal integrity simulation strategies for accurate and fast results Correct Material Properties that simulate quickly. Signal integrity simulation strategies for accurate and fast results Correct Material Properties that simulate quickly Tracey Vincent Loss Components Mismatch Conductor Loss Radiative Dielectric Coupling

More information

Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation. Agilent EEsof RFIC Seminar Spring 2004

Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation. Agilent EEsof RFIC Seminar Spring 2004 Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation Agilent EEsof RFIC Seminar Spring Overview Spiral Inductor Models Availability & Limitations Momentum

More information

Boundary and Excitation Training February 2003

Boundary and Excitation Training February 2003 Boundary and Excitation Training February 2003 1 Why are They Critical? For most practical problems, the solution to Maxwell s equations requires a rigorous matrix approach such as the Finite Element Method

More information

Transmission-Reflection Method to Estimate Permittivity of Polymer

Transmission-Reflection Method to Estimate Permittivity of Polymer Transmission-Reflection Method to Estimate Permittivity of Polymer Chanchal Yadav Department of Physics & Electronics, Rajdhani College, University of Delhi, Delhi, India Abstract In transmission-reflection

More information

Time Domain Modeling of Lossy Interconnects

Time Domain Modeling of Lossy Interconnects IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 24, NO. 2, MAY 2001 191 Time Domain Modeling of Lossy Interconnects Christer Svensson, Member, IEEE, and Gregory E. Dermer Abstract A new model for dielectric

More information

How Interconnects Work: Modeling Conductor Loss and Dispersion

How Interconnects Work: Modeling Conductor Loss and Dispersion How Interconnects Work: Modeling Conductor Loss and Dispersion Yuriy Shlepnev SIMBERIAN Inc., www.simberian.com Abstract: Models of transmission lines and transitions accurate over 5-6 frequency decades

More information

S-PARAMETER QUALITY METRICS AND ANALYSIS TO MEASUREMENT CORRELATION

S-PARAMETER QUALITY METRICS AND ANALYSIS TO MEASUREMENT CORRELATION S-PARAMETER QUALITY METRICS AND ANALYSIS TO MEASUREMENT CORRELATION VNA Measurement S-Parameter Quality Metrics 2 S-Parameter Quality Metrics Quality is important Reciprocity Forward and reverse transmission

More information

The Development of a Closed-Form Expression for the Input Impedance of Power-Return Plane Structures

The Development of a Closed-Form Expression for the Input Impedance of Power-Return Plane Structures 478 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 45, NO. 3, AUGUST 2003 The Development of a Closed-Form Expression for the Input Impedance of Power-Return Plane Structures Minjia Xu, Member,

More information

Analytic Solutions for Periodically Loaded Transmission Line Modeling

Analytic Solutions for Periodically Loaded Transmission Line Modeling Analytic Solutions for Periodically Loaded Transmission Line Modeling Paul G. Huray, huray@sc.edu Priya Pathmanathan, Intel priyap@qti.qualcomm.com Steve Pytel, Intel steve.pytel@ansys.com April 4, 2014

More information

ECEN720: High-Speed Links Circuits and Systems Spring 2017

ECEN720: High-Speed Links Circuits and Systems Spring 2017 ECEN70: High-Speed Links Circuits and Systems Spring 07 Lecture : Channel Components, Wires, & Transmission Lines Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Lab Lab begins

More information

Understanding EMC Basics

Understanding EMC Basics 1of 7 series Webinar #1 of 3, February 27, 2013 EM field theory, and 3 types of EM analysis Webinar Sponsored by: EurIng CEng, FIET, Senior MIEEE, ACGI AR provides EMC solutions with our high power RF/Microwave

More information

Modeling frequency-dependent conductor losses and dispersion in serial data channel interconnects

Modeling frequency-dependent conductor losses and dispersion in serial data channel interconnects Modeling frequency-dependent conductor losses and dispersion in serial data channel interconnects Yuriy Shlepnev Simberian Inc., www.simberian.com Abstract: Models of transmission lines and transitions

More information

ECE 451 Transmission Lines & Packaging

ECE 451 Transmission Lines & Packaging Transmission Lines & Packaging Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Radio Spectrum Bands The use of letters to designate bands has long ago

More information

Causal Modeling and Extraction of Dielectric Constant and Loss Tangent for Thin Dielectrics

Causal Modeling and Extraction of Dielectric Constant and Loss Tangent for Thin Dielectrics Causal Modeling and Extraction of Dielectric Constant and Loss Tangent for Thin Dielectrics A. Ege Engin 1, Abdemanaf Tambawala 1, Madhavan Swaminathan 1, Swapan Bhattacharya 1, Pranabes Pramanik 2, Kazuhiro

More information

112 Gbps In and Out of Package Challenges Design insights from electromagnetic analysis. Yuriy Shlepnev, Simberian Inc.

112 Gbps In and Out of Package Challenges Design insights from electromagnetic analysis. Yuriy Shlepnev, Simberian Inc. 112 Gbps In and Out of Package Challenges Design insights from electromagnetic analysis Yuriy Shlepnev, Simberian Inc. shlepnev@simberian.com Package and PCB scales in symbol time for 112 Gbps PAM4 Package:

More information

SIMULTANEOUS SWITCHING NOISE MITIGATION CAPABILITY WITH LOW PARASITIC EFFECT USING APERIODIC HIGH-IMPEDANCE SURFACE STRUCTURE

SIMULTANEOUS SWITCHING NOISE MITIGATION CAPABILITY WITH LOW PARASITIC EFFECT USING APERIODIC HIGH-IMPEDANCE SURFACE STRUCTURE Progress In Electromagnetics Research Letters, Vol. 4, 149 158, 2008 SIMULTANEOUS SWITCHING NOISE MITIGATION CAPABILITY WITH LOW PARASITIC EFFECT USING APERIODIC HIGH-IMPEDANCE SURFACE STRUCTURE C.-S.

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 0 Lecture : Channel Components, Wires, & Transmission Lines Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

Power Distribution Network Design for High-Speed Printed Circuit Boards

Power Distribution Network Design for High-Speed Printed Circuit Boards Power Distribution Network Design for High-Speed Printed Circuit Boards Jun Fan NCR Corporation 1 Outline Overview of PDN design in multi-layer PCBs Interconnect Inductance Individual Capacitor Values

More information

Effective Conductivity Concept for Modeling Conductor Surface Roughness G. Gold, K. Helmreich Institute of Microwaves and Photonics

Effective Conductivity Concept for Modeling Conductor Surface Roughness G. Gold, K. Helmreich Institute of Microwaves and Photonics Effective Conductivity Concept for Modeling Conductor Surface Roughness Institute of Microwaves and Photonics Friedrich-Alexander-University Erlangen-Nuremberg gerald.gold@fau.de klaus.helmreich@fau.de

More information

RECENT ADVANCES in NETWORKING, VLSI and SIGNAL PROCESSING

RECENT ADVANCES in NETWORKING, VLSI and SIGNAL PROCESSING Optimization of Reflection Issues in High Speed Printed Circuit Boards ROHITA JAGDALE, A.VENU GOPAL REDDY, K.SUNDEEP Department of Microelectronics and VLSI Design International Institute of Information

More information

Improving Power Delivery Networks (PDNs) Using Polyimide-based Thin Laminates

Improving Power Delivery Networks (PDNs) Using Polyimide-based Thin Laminates Improving Power Delivery Networks (PDNs) Using Polyimide-based Thin Laminates 2017. 7. 19. 1 Contents 1. Embedded passives technology 2. Thin laminates: material choices and applications 3. Buried capacitance

More information

Transmission Lines. Author: Michael Leddige

Transmission Lines. Author: Michael Leddige Transmission Lines Author: Michael Leddige 1 Contents PCB Transmission line structures Equivalent Circuits and Key Parameters Lossless Transmission Line Analysis Driving Reflections Systems Reactive Elements

More information

EFFECTIVE ROUGHNESS DIELECTRIC TO REPRESENT COPPER FOIL ROUGHNESS IN PRINTED CIRCUIT BOARDS 14-TH4

EFFECTIVE ROUGHNESS DIELECTRIC TO REPRESENT COPPER FOIL ROUGHNESS IN PRINTED CIRCUIT BOARDS 14-TH4 EFFECTIVE ROUGHNESS DIELECTRIC TO REPRESENT COPPER FOIL ROUGHNESS IN PRINTED CIRCUIT BOARDS 14-TH4 Marina Koledintseva (Oracle), Oleg Kashurkin (Missouri S&T), Tracey Vincent (CST of America), and Scott

More information

Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards

Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards Frank Y. Yuan Viewlogic Systems Group, Inc. 385 Del Norte Road

More information

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines TC 412 Microwave Communications Lecture 6 Transmission lines problems and microstrip lines RS 1 Review Input impedance for finite length line Quarter wavelength line Half wavelength line Smith chart A

More information

A Time Domain Approach to Power Integrity for Printed Circuit Boards

A Time Domain Approach to Power Integrity for Printed Circuit Boards A Time Domain Approach to Power Integrity for Printed Circuit Boards N. L. Mattey 1*, G. Edwards 2 and R. J. Hood 2 1 Electrical & Optical Systems Research Division, Faculty of Engineering, University

More information

SCSI Connector and Cable Modeling from TDR Measurements

SCSI Connector and Cable Modeling from TDR Measurements SCSI Connector and Cable Modeling from TDR Measurements Dima Smolyansky TDA Systems, Inc. http://www.tdasystems.com Presented at SCSI Signal Modeling Study Group Rochester, MN, December 1, 1999 Outline

More information

Microwave absorbing properties of activated carbon fibre polymer composites

Microwave absorbing properties of activated carbon fibre polymer composites Bull. Mater. Sci., Vol. 34, No. 1, February 2011, pp. 75 79. c Indian Academy of Sciences. Microwave absorbing properties of activated carbon fibre polymer composites TIANCHUN ZOU, NAIQIN ZHAO, CHUNSHENG

More information

Qualification of tabulated scattering parameters

Qualification of tabulated scattering parameters Qualification of tabulated scattering parameters Stefano Grivet Talocia Politecnico di Torino, Italy IdemWorks s.r.l. stefano.grivet@polito.it 4 th IEEE Workshop on Signal Propagation on Interconnects

More information

Electrical Characterization of 3D Through-Silicon-Vias

Electrical Characterization of 3D Through-Silicon-Vias Electrical Characterization of 3D Through-Silicon-Vias F. Liu, X. u, K. A. Jenkins, E. A. Cartier, Y. Liu, P. Song, and S. J. Koester IBM T. J. Watson Research Center Yorktown Heights, NY 1598, USA Phone:

More information

DESIGN AND OPTIMIZATION OF EQUAL SPLIT BROADBAND MICROSTRIP WILKINSON POWER DI- VIDER USING ENHANCED PARTICLE SWARM OPTI- MIZATION ALGORITHM

DESIGN AND OPTIMIZATION OF EQUAL SPLIT BROADBAND MICROSTRIP WILKINSON POWER DI- VIDER USING ENHANCED PARTICLE SWARM OPTI- MIZATION ALGORITHM Progress In Electromagnetics Research, Vol. 118, 321 334, 2011 DESIGN AND OPTIMIZATION OF EQUAL SPLIT BROADBAND MICROSTRIP WILKINSON POWER DI- VIDER USING ENHANCED PARTICLE SWARM OPTI- MIZATION ALGORITHM

More information

Impact of PCB Laminate Parameters on Suppressing Modal Resonances

Impact of PCB Laminate Parameters on Suppressing Modal Resonances DesignCon 2008 Impact of PCB Laminate Parameters on Suppressing Modal Resonances Jason R. Miller Gustavo Blando K. Barry A. Williams Istvan Novak Sun Microsystems, Inc. Tel: (781) 442-2274, e-mail: Jason.R.Miller@Sun.com

More information

Education, Xidian University, Xi an, Shaanxi , China

Education, Xidian University, Xi an, Shaanxi , China Progress In Electromagnetics Research, Vol. 142, 423 435, 2013 VERTICAL CASCADED PLANAR EBG STRUCTURE FOR SSN SUPPRESSION Ling-Feng Shi 1, 2, * and Hong-Feng Jiang 1, 2 1 Key Lab of High-Speed Circuit

More information

Technique for the electric and magnetic parameter measurement of powdered materials

Technique for the electric and magnetic parameter measurement of powdered materials Computational Methods and Experimental Measurements XIV 41 Technique for the electric and magnetic parameter measurement of powdered materials R. Kubacki,. Nowosielski & R. Przesmycki Faculty of Electronics,

More information

Fast, efficient and accurate: via models that correlate to 20 GHz

Fast, efficient and accurate: via models that correlate to 20 GHz JANUARY 28 31, 2013 SANTA CLARA CONVENTION CENTER Fast, efficient and accurate: via models that correlate to 20 GHz Michael Steinberger, SiSoft Eric Brock, SiSoft Donald Telian, SiGuys Via Presentation

More information

Microwave Network Analysis

Microwave Network Analysis Prof. Dr. Mohammad Tariqul Islam titareq@gmail.my tariqul@ukm.edu.my Microwave Network Analysis 1 Text Book D.M. Pozar, Microwave engineering, 3 rd edition, 2005 by John-Wiley & Sons. Fawwaz T. ILABY,

More information

Efficient Optimization of In-Package Decoupling Capacitors for I/O Power Integrity

Efficient Optimization of In-Package Decoupling Capacitors for I/O Power Integrity 1 Efficient Optimization of In-Package Decoupling Capacitors for I/O Power Integrity Jun Chen and Lei He Electrical Engineering Department, University of California, Los Angeles Abstract With high integration

More information

Effects from the Thin Metallic Substrate Sandwiched in Planar Multilayer Microstrip Lines

Effects from the Thin Metallic Substrate Sandwiched in Planar Multilayer Microstrip Lines Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 115 Effects from the Thin Metallic Substrate Sandwiched in Planar Multilayer Microstrip Lines L. Zhang and J. M. Song Iowa

More information

Characterizing Geometry- Dependent Crossover Frequency for Stripline Dielectric and Metal Losses

Characterizing Geometry- Dependent Crossover Frequency for Stripline Dielectric and Metal Losses DesignCon 2016 Characterizing Geometry- Dependent Crossover Frequency for Stripline Dielectric and Metal Losses Svetlana C. Sejas-García Chudy Nwachukwu Isola 1 Abstract Digital signaling requires interconnects

More information

EFFICIENT STRATEGIES TO OPTIMIZE A POWER DISTRIBUTION NETWORK

EFFICIENT STRATEGIES TO OPTIMIZE A POWER DISTRIBUTION NETWORK EFFICIENT STRATEGIES TO OPTIMIZE A POWER DISTRIBUTION NETWORK Raul FIZEŞAN, Dan PITICĂ Applied Electronics Department of UTCN 26-28 Baritiu Street, Cluj-Napoca, raul.fizesan@ael.utcluj.ro Abstract: One

More information

Elimination of Conductor Foil Roughness Effects in Characterization of Dielectric Properties of Printed Circuit Boards 14 TH1

Elimination of Conductor Foil Roughness Effects in Characterization of Dielectric Properties of Printed Circuit Boards 14 TH1 Elimination of Conductor Foil Roughness Effects in Characterization of Dielectric Properties of Printed Circuit Boards 14 TH1 Marina Koledintseva, Aleksei Rakov, Alexei Koledintsev, James Drewniak (Missouri

More information

Modeling of Signal and Power Integrity in System on Package Applications

Modeling of Signal and Power Integrity in System on Package Applications Modeling of Signal and Power Integrity in System on Package Applications Madhavan Swaminathan and A. Ege Engin Packaging Research Center, School of Electrical and Computer Engineering, Georgia Institute

More information

DesignCon A Causal Huray Model for Surface Roughness. J. Eric Bracken, ANSYS Inc.

DesignCon A Causal Huray Model for Surface Roughness. J. Eric Bracken, ANSYS Inc. DesignCon 2012 A Causal Huray Model for Surface Roughness J. Eric Bracken, ANSYS Inc. Abstract The recently proposed Huray model is very accurate for modeling surface roughness. It can be used to modify

More information

This section reviews the basic theory of accuracy enhancement for one-port networks.

This section reviews the basic theory of accuracy enhancement for one-port networks. Vector measurements require both magnitude and phase data. Some typical examples are the complex reflection coefficient, the magnitude and phase of the transfer function, and the group delay. The seminar

More information

SerDes_Channel_Impulse_Modeling_with_Rambus

SerDes_Channel_Impulse_Modeling_with_Rambus SerDes_Channel_Impulse_Modeling_with_Rambus Author: John Baprawski; John Baprawski Inc. (JB) Email: John.baprawski@gmail.com Web sites: https://www.johnbaprawski.com; https://www.serdesdesign.com Date:

More information

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Don Estreich Salazar 21C Adjunct Professor Engineering Science October 212 https://www.iol.unh.edu/services/testing/sas/tools.php 1 Outline of

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

Spectral Domain Analysis of Open Planar Transmission Lines

Spectral Domain Analysis of Open Planar Transmission Lines Mikrotalasna revija Novembar 4. Spectral Domain Analysis of Open Planar Transmission Lines Ján Zehentner, Jan Mrkvica, Jan Macháč Abstract The paper presents a new code calculating the basic characteristics

More information

POWER DISTRIBUTION SYSTEM Calculating PDS Impedance Douglas Brooks Ultracad Design, Inc

POWER DISTRIBUTION SYSTEM Calculating PDS Impedance Douglas Brooks Ultracad Design, Inc POWER DISTRIBUTION SYSTEM Calculating PDS Impedance Douglas Brooks Ultracad Design, Inc On a PCB (Printed Circuit Board) the Power Distribution System (PDS) is the system that distributes power from the

More information

Material parameters identification with GMS-parameters in Simbeor 2011

Material parameters identification with GMS-parameters in Simbeor 2011 Simbeor Application Note #2011_04, April 2011 Material parameters identification with GMS-parameters in Simbeor 2011 www.simberian.com Simbeor : Accurate, Fast, Easy, Affordable Electromagnetic Signal

More information

Partial discharge (PD) is well established as a diagnostic

Partial discharge (PD) is well established as a diagnostic F E A T U R E A R T I C L E Application of Maxwell Solvers to PD Propagation Part I: Concepts and Codes Key Words: Partial discharge propagation, electromagnetic field analysis, Maxwell solvers, boundary

More information

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Progress In Electromagnetics Research M, Vol. 34, 171 179, 2014 Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Parsa Pirouznia * and Bahram Azizollah Ganji Abstract

More information

A Broadband Flexible Metamaterial Absorber Based on Double Resonance

A Broadband Flexible Metamaterial Absorber Based on Double Resonance Progress In Electromagnetics Research Letters, Vol. 46, 73 78, 2014 A Broadband Flexible Metamaterial Absorber Based on Double Resonance ong-min Lee* Abstract We present a broadband microwave metamaterial

More information

PDN Tool: Ananalytical Model to Calculate the Input Impedance of Chip and Silicon Interposer Power Distribution

PDN Tool: Ananalytical Model to Calculate the Input Impedance of Chip and Silicon Interposer Power Distribution Journal of Contemporary Electronic Research Education and Research Application Research Article PDN Tool: Ananalytical Model to Calculate the Input Impedance of Chip and Silicon Interposer Power Distribution

More information

Center for Electromagnetic Compatibility, Missouri University of Science & Technology (MS&T) 4000 Enterprise Dr., HyPoint, Rolla, MO, 65401, USA 1

Center for Electromagnetic Compatibility, Missouri University of Science & Technology (MS&T) 4000 Enterprise Dr., HyPoint, Rolla, MO, 65401, USA 1 PCB Conductor Surface Roughness as a Layer with Effective Material Parameters Marina Y. Koledintseva #1, Alexander G. Razmadze #, Aleksandr Y. Gafarov #3, Soumya De #4, James L. Drewniak #5, and Scott

More information

Mutual Couplings between EMI Filter Components

Mutual Couplings between EMI Filter Components Mutual Couplings between EMI Filter Components G. Asmanis, D.Stepins, A. Asmanis Latvian Electronic Equipment Testing Centre Riga, Latvia asmanisgundars@inbox.lv, deniss.stepins@rtu.lv L. Ribickis, Institute

More information

In-Situ De-embedding (ISD)

In-Situ De-embedding (ISD) In-Situ De-embedding (ISD) Ching-Chao Huang huang@ataitec.com January 31, 2018 Outline What is causality What is In-Situ De-embedding (ISD) Comparison of ISD results with simulation and other tools How

More information

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Progress In Electromagnetics Research Letters, Vol. 75, 47 52, 2018 Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Haibin Chen 1, Zhongjiao He 2,andWeiWang

More information

ECE 497 JS Lecture -07 Planar Transmission Lines

ECE 497 JS Lecture -07 Planar Transmission Lines ECE 497 JS Lecture -07 Planar Transmission Lines Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Microstrip ε Z o w/h < 3.3 2 119.9 h h =

More information

Relative Permittivity Variation Surrounding PCB Via Hole Structures

Relative Permittivity Variation Surrounding PCB Via Hole Structures Relative Permittivity Variation Surrounding PCB Via Hole Structures SPI2008 Avignon France May 12-15, 2008 Lambert Simonovich lambert@nortel.com 1 SPI2008 Relative Permittivity Variation Surrounding PCB

More information

Substrate Selection Can Simplify Thermal Management

Substrate Selection Can Simplify Thermal Management highfrequencyelectronics.com NOVEMBER2017 Substrate Selection Can Simplify Thermal Management IN THIS ISSUE: Concepts of RF Power Amplification App Note: Holdover Oscillators In the News Market Reports

More information

How to Analyze the EMC of a Complete Server System?

How to Analyze the EMC of a Complete Server System? How to Analyze the EMC of a Complete Server System? Christian Schuster and Xiaomin Duan Institut für Hamburg, Germany Workshop on Hybrid Computational Electromagnetic Methods for EMC/EMI (WS10) EMC Europe,

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 ECEN689: pecial Topics in High-peed Links Circuits and ystems pring 01 Lecture 3: Time-Domain Reflectometry & -Parameter Channel Models am Palermo Analog & Mixed-ignal Center Texas A&M University Announcements

More information

PDN Planning and Capacitor Selection, Part 1

PDN Planning and Capacitor Selection, Part 1 by Barry Olney column BEYOND DESIGN PDN Planning and Capacitor Selection, Part 1 In my first column on power distribution network (PDN) planning, Beyond Design: Power Distribution Network Planning, I described

More information

PRACTICE NO. PD-AP-1309 PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS CAUSED BY SPACE CHARGING

PRACTICE NO. PD-AP-1309 PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS CAUSED BY SPACE CHARGING PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS Practice: Modeling is utilized for the analysis of conducted and radiated electromagnetic interference (EMI) caused

More information

A UNEQUAL COUPLED-LINE WILKINSON POWER DI- VIDER FOR ARBITRARY TERMINATED IMPEDANCES

A UNEQUAL COUPLED-LINE WILKINSON POWER DI- VIDER FOR ARBITRARY TERMINATED IMPEDANCES Progress In Electromagnetics Research, Vol. 117, 181 194, 211 A UNEQUAL COUPLED-LINE WILKINSON POWER DI- VIDER FOR ARBITRARY TERMINATED IMPEDANCES Y. Wu * and Y. Liu School of Electronic Engineering, Beijing

More information

Transient Response of Transmission Lines and TDR/TDT

Transient Response of Transmission Lines and TDR/TDT Transient Response of Transmission Lines and TDR/TDT Tzong-Lin Wu, Ph.D. EMC Lab. Department of Electrical Engineering National Sun Yat-sen University Outlines Why do we learn the transient response of

More information

PDN Planning and Capacitor Selection, Part 2

PDN Planning and Capacitor Selection, Part 2 by Barry Olney column BEYOND DESIGN PDN Planning and Capacitor Selection, Part 2 In last month s column, PDN Planning and Capacitor Selection Part 1, we looked closely at how to choose the right capacitor

More information

DesignCon Effect of conductor profile on the insertion loss, phase constant, and dispersion in thin high frequency transmission lines

DesignCon Effect of conductor profile on the insertion loss, phase constant, and dispersion in thin high frequency transmission lines DesignCon 2010 Effect of conductor profile on the insertion loss, phase constant, and dispersion in thin high frequency transmission lines Allen F. Horn III, Rogers Corporation Al.horn@rogerscorp.com,

More information

How to Avoid Butchering S-parameters

How to Avoid Butchering S-parameters How to Avoid Butchering S-parameters Course Number: TP-T3 Yuriy Shlepnev, Simberian Inc. shlepnev@simberian.com +1-(702)-876-2882 1 Introduction Outline Quality of S-parameter models Rational macro-models

More information

Reflections on S-parameter Quality DesignCon IBIS Summit, Santa Clara, February 3, 2011

Reflections on S-parameter Quality DesignCon IBIS Summit, Santa Clara, February 3, 2011 Reflections on S-parameter Quality DesignCon IBIS Summit, Santa Clara, February 3, 2011 Yuriy Shlepnev shlepnev@simberian.com Copyright 2011 by Simberian Inc. Reuse by written permission only. All rights

More information

Chapter 11: WinTDR Algorithms

Chapter 11: WinTDR Algorithms Chapter 11: WinTDR Algorithms This chapter discusses the algorithms WinTDR uses to analyze waveforms including: Bulk Dielectric Constant; Soil Water Content; Electrical Conductivity; Calibrations for probe

More information

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Serena De Paolis *, Francesca Lionetto and Alfonso Maffezzoli

More information

Roughness Characterization for Interconnect Analysis

Roughness Characterization for Interconnect Analysis Roughness Characterization for Interconnect Analysis Yuriy Shlepnev #, Chudy Nwachukwu * # Simberian Inc. * Isola Abstract A novel method for practical prediction of interconnect conductor surface roughness

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

TM-Radiation From an Obliquely Flanged Parallel-Plate Waveguide

TM-Radiation From an Obliquely Flanged Parallel-Plate Waveguide 1534 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 50, NO. 11, NOVEMBER 2002 TM-Radiation From an Obliquely Flanged Parallel-Plate Waveguide Jae Yong Kwon, Member, IEEE, Jae Wook Lee, Associate Member,

More information

Electromagnetic-Thermal Analysis Study Based on HFSS-ANSYS Link

Electromagnetic-Thermal Analysis Study Based on HFSS-ANSYS Link Syracuse University SURFACE Electrical Engineering and Computer Science Technical Reports College of Engineering and Computer Science 5-9-2011 Electromagnetic-Thermal Analysis Study Based on HFSS-ANSYS

More information

Broadband transmission line models for analysis of serial data channel interconnects

Broadband transmission line models for analysis of serial data channel interconnects PCB Design Conference East, Durham NC, October 23, 2007 Broadband transmission line models for analysis of serial data channel interconnects Y. O. Shlepnev, Simberian, Inc. shlepnev@simberian.com Simberian:

More information

The Perils of Right-angle Turns at DC

The Perils of Right-angle Turns at DC QuietPower columns The Perils of Right-angle Turns at DC Istvan Novak, Oracle, August 2017 Microwave engineers know that sharp corners and right-angle bends have their drawback at high frequencies. There

More information

print close Related Picking PCB Materials for Microwave Amps Matching Circuit Materials to a Design Mission Perusing Materials For High-Frequency PCBs

print close Related Picking PCB Materials for Microwave Amps Matching Circuit Materials to a Design Mission Perusing Materials For High-Frequency PCBs print close Microwaves and RF Jack Browne Mon, 2015-08-03 12:51 Sorting through different RF/microwave circuit materials educed comparisons of performance improvements and cost hikes, although some materials

More information

The Pennsylvania State University. The Graduate School. Science, Engineering, and Technology

The Pennsylvania State University. The Graduate School. Science, Engineering, and Technology The Pennsylvania State University The Graduate School Science, Engineering, and Technology IN SITU STRIPLINE LAMINATE PROPERTY EXTRACTION ACCOUNTING FOR EFFECTIVE SURFACE ROUGHNESS LOSSES A Thesis in Electrical

More information

An improved planar cavity model for dielectric characterization

An improved planar cavity model for dielectric characterization Scholars' Mine Masters Theses Student Research & Creative Works Fall 2015 An improved planar cavity model for dielectric characterization Benjamin Jay Conley Follow this and additional works at: http://scholarsmine.mst.edu/masters_theses

More information

VALUES of dielectric constant Dk, or real part of relative

VALUES of dielectric constant Dk, or real part of relative IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 54, NO. 2, APRIL 2012 421 Differential Extrapolation Method for Separating Dielectric and Rough Conductor Losses in Printed Circuit Boards Amendra

More information

ECE 451 Advanced Microwave Measurements. TL Characterization

ECE 451 Advanced Microwave Measurements. TL Characterization ECE 451 Advanced Microwave Measurements TL Characterization Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt-Aine 1 Maxwell s Equations

More information

Short Papers. Efficient In-Package Decoupling Capacitor Optimization for I/O Power Integrity

Short Papers. Efficient In-Package Decoupling Capacitor Optimization for I/O Power Integrity 734 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007 Short Papers Efficient In-Package Decoupling Capacitor Optimization for I/O Power Integrity

More information

Microstrip Propagation Times Slower Than We Think

Microstrip Propagation Times Slower Than We Think Most of us have been using incorrect values for the propagation speed of our microstrip traces! The correction factor for ε r we have been using all this time is based on an incorrect premise. This article

More information

The Co-Conical Field Generation System A 40 GHz Antenna Test Cell

The Co-Conical Field Generation System A 40 GHz Antenna Test Cell A 40 GHz Antenna Test Cell David R. Novotny and Robert T. Johnk RF Technology Division 325 Broadway Boulder, Colorado 80303-3328 http://www.boulder.nist.gov/div813/rffields/emc_emi/co_con.html An Effort

More information

AN B. Basic PCB traces transmission line effects causing signal integrity degradation simulation using Altium DXP version 6.

AN B. Basic PCB traces transmission line effects causing signal integrity degradation simulation using Altium DXP version 6. AN200805-01B Basic PCB traces transmission line effects causing signal integrity degradation simulation using Altium DXP version 6.9 By Denis Lachapelle eng. and Anne Marie Coutu. May 2008 The objective

More information

Svetlana Carsof Sejas García

Svetlana Carsof Sejas García Characterization and modeling of passive components and interconnects using microwave techniques By Svetlana Carsof Sejas García A thesis Submitted to the Program in Electronics Science, Electronic Department,

More information

USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION

USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION October 4-6, 2007 - Chiinu, Rep.Moldova USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION Ionu- P. NICA, Valeriu Gh. DAVID, /tefan URSACHE Gh. Asachi Technical University Iai, Faculty

More information

Resonance Reduction In PCBs Utilising Embedded Capacitance

Resonance Reduction In PCBs Utilising Embedded Capacitance Resonance Reduction In PCBs Utilising Embedded Capacitance The number of applications using embedded capacitor technology on printed wiring boards (PWBs) is on the rise. Two such applications are high-speed

More information

ECE 598 JS Lecture 06 Multiconductors

ECE 598 JS Lecture 06 Multiconductors ECE 598 JS Lecture 06 Multiconductors Spring 2012 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 TELGRAPHER S EQUATION FOR N COUPLED TRANSMISSION LINES

More information

PCB-Substrate Characterization at Multigigahertz Frequencies Through SIW Measurements

PCB-Substrate Characterization at Multigigahertz Frequencies Through SIW Measurements DesignCon 216 PCB-Substrate Characterization at Multigigahertz Frequencies Through SIW Measurements Gabriela Méndez-Jerónimo, INAOE Svetlana C. Sejas-García~ Chudy Nwachukwu Isola Reydezel Torres-Torres,

More information

Technical Notes. Introduction. PCB (printed circuit board) Design. Issue 1 January 2010

Technical Notes. Introduction. PCB (printed circuit board) Design. Issue 1 January 2010 Technical Notes Introduction Thermal Management for LEDs Poor thermal management can lead to early LED product failure. This Technical Note discusses thermal management techniques and good system design.

More information

Physical Modeling and Simulation Rev. 2

Physical Modeling and Simulation Rev. 2 11. Coupled Fields Analysis 11.1. Introduction In the previous chapters we have separately analysed the electromagnetic, thermal and mechanical fields. We have discussed their sources, associated material

More information