Digital Video Systems ECE 634

Size: px
Start display at page:

Download "Digital Video Systems ECE 634"

Transcription

1 Digital Video Systems ECE 634 egieerig.purdue.edu/~reibma/ece634/idex.html Professor Amy Reibma MSEE 356

2 MulGple descripgo codig Layered codig vs. MDC Layered codig: Base layer is high priority; caot recostruct video without base layer. Ehacemet layer is bous MulGple descripgo codig: either of the two descripgos are OK; both are berer Most) mulgple descripgo codig are ot exactly compagble with stadards ParGGoig the video ad reassemblig ca somegmes) be doe outside the cotext of the stadards

3 CosideraGos for MD codig Compressio efficiecy Decoder complexity Resiliece to losses Flexible rate adaptago Number of descripgos Ca you add redudacy flexibly? CompaGbility with stadards Ease of priorigzago PredicGo structure ad method of parggoig cotrols most of these! 3

4 MulGple DescripGo Codig MDC: Geerate mulgple correlated descripgos Ay descripgo provides low but acceptable quality AddiGoal received descripgos provide icremetal improvemets However: correlago à reduced codig efficiecy AssumpGos: MulGple chaels betwee source ad desgago Idepedet error ad failure evets Probability that all chaels fail simultaeously is low All are reasoable assumpgos for the Iteret ad wireless etworks, provided data are properly packegzed ad iterleaved Desig goal: maximize the robustess to chael errors at a permissible level of redudacy Wag Orchard Reibma 4

5 Geeric Two DescripGo Coder Source Sigal Balaced MDC: R=R2, D=D2 MDC Ecoder S R) S2 R2) Chael Chael 2 Decoder Decoder Decoder 2 MDC Decoder Decoded Sigal from S D) Decoded Sigal from S,S2 D) Decoded Sigal from S2 D2) Wag Orchard Reibma 5

6 Four approaches to MDC DuplicaGo! Iterleaved temporal samplig MulGple DescripGo Scalar QuaGzer Basic idea: Use iterleavig quagzers of a scalar value Pairwise CorrelaGg Trasforms Basic idea: Use NxN liear trasform to geerate two groups of coefficiets with a desired amout of correlago, so that oe group ca be esgmated from the other with a give accuracy. Coceptually simple method: Use a decorrelagg trasform followed by a pairwise correlagg trasform

7 Video Redudacy Codig i H.263+ Code eve frames ad odd frames as separate threads Good video quality at packet loss rates up to 2% High redudacy ~3%) due to reduced predicgo gai because of loger distace betwee frames Hard to vary the redudacy based o chael loss characterisgcs eve frames odd frames Yao Wag, 24 7

8 Three- thread three- pictures- per- thread VRC frame is syc frame; appears i all threads frame is i thread, predicted from frame 2 is i thread 2, predicted from frame 3 is i thread 3, predicted from frame 4 is i thread, predicted from frame 5 is i thread 2, predicted from 2 frame 6 is i thread 3, predicted from 3 frame 7 is syc frame; appears i all threads

9 MulGple descripgo Scalar QuaGzaGo Basic idea: Use iterleavig scalar quagzers a cetral quagzer whe both descripgos received a side quagzer whe oly oe descripgo received cetral quagzer side quagzer side quagzer 2 Very elegat, but their desig is complicated

10 MDSQ Idex assigmet QuaGze oce with desired quagzer The assig each bi a idex i each chael cetral quagzer side quagzer side quagzer idex assigmet

11 Some MDSQ Idex assigmets Less efficiet More robust More efficiet Less robust sigle- chael recostrucgo error ca be quite large)

12 Pairwise correlagg trasforms Basic idea: Geerate two sets of trasform coefficiets, oe for each descripgo, such that each set is ucorrelated withi the set, but correlated pairwise across sets Take output of a decorrelagg trasform KLT), ad recorrelate pairs of coefficiets; assig each coefficiet of a pair to a differet descripgo At decoder: if a coefficiet is missig, esgmate it usig its pair

13 Codig of a Sigle Pair A B Estimator for A,B from C ~ A C ~ Q Chael Q - Forward Iverse Q PCT Chael 2 PCT Q - ~ ~ B D 2 Variable MDC Ecoder Q - Q -!C!D Estimator for A,B from D!A!B!A!B!A!B 2 Variable MDC Decoder ICIP98 3 Wag Orchard Reibma

14 MDC Usig Pairwise CorrelaGg Trasform F F 2 F 3 F 4 F 5 KLT DCT) T T 2 T 3 T 4 Pairig A B A 2 B 2 Forward PCT Forward PCT C D C 2 D 2 Stream T 5 T6 F 6 F 7 F 8 T 7 T 8 Stream 2 2 σ D,max, 5 Wag Orchard Reibma ICIP98 4

15 Let Performace evaluago of MD coders DefiiGos: DistorGo with both descripgos: Average distorgo with oe descripgo: Sigle descripgo coder RD) fucgo: MulGple descripgo coder rate- distorgo: Redudacy Rate- Distor3o : To decrease D oe must itroduce correlago betwee the two descripgos ad thereby reduce the codig efficiecy * * * * ρ = R R, whe D R ) = D R) = D Redudacy Rate - Distortio Fuctio: D D * * * * D R ), D R ) * * ρ D ; D ) or D ρ; D ) D R), D R) ICIP98 5 Wag Orchard Reibma

16 Redudacy Rate DistorGo D Rate-Distortio RD) Fuctio D Redudacy Rate Distortio RRD) Fuctio D * D R ) MDC) D * ρ; D ) ρ D * R) SDC) R * R R ρ Desig criteria for MD coders Miimize D for a give ρ, for fixed R* or D * miimizig the average distortio give chael loss rates, for give total rate) Ca easily vary the ρ vs. D trade-off to match etwork coditios Wag Orchard Reibma 6

17

18

19

20

21 MD video quesgos How should the followig elemets of a hybrid video coder be adapted for a mulgple descripgo video coder? Side iformago MB type) duplicate) MoGo vector iformago duplicate) PredicGo error compared to two- chael recostrucgo) pairwise correlagg trasforms) Mismatch betwee two- ad oe- chael recostrucgos) extra predicgo- error sigals) Wag Orchard Reibma ICIP99 2

22 Core MDTC- based video coder X F DCT Q PCT Chael Chael 2 P IDCT IQ IPCT FM Apply Pairwise CorrelaGg Trasform PCT) to DCT coefficiets iside mai loop of hybrid video coder Mismatch if both chaels are ot received Mismatch for this frame is limited to the orthogoal subspace, but mogo compesago may spread it Wag Orchard Reibma ICIP99 22

23 MulGple DescripGo MoGo CompesaGo Wag ad Li, 2) A descripgo cotais eve or odd) frames oly, but each frame is predicted cetral predictor) from both eve ad odd past frames Code the cetral predicgo error sufficiet if both descripgos are received To avoid mismatch, a side predictor for eve frames predicts oly from the past eve frame, ad the mismatch sigal differece betwee cetral ad side predicgo) is also coded The quagzago of the predictors ad the mismatch error cotrols the redudacy of the coder, ad ca be desiged based o the chael loss characterisgcs Yao Wag, 24 23

24 Yao Wag, Special Case: Two-Tap Predictor, No - leaky predictor :,MV,MV2, ~ ~ Sed : ~ ) ˆ ) ˆ : Mismatch error 2) ~ ) ˆ Side predictor : ~ ) ˆ ) : predictio error Cetral 2) ~ ) ~ ) ˆ predictor : Cetral = = + = = = + = a a a e ) ) e e ) ) q e ) a ) e ) e a a ) ) ~ ~ ) ˆ ) 2)) received have oly oe descriptio is If ) ) ~ ) ˆ ) 2)) ), both descriptios received have both If q e ) ) e q ) e + = + + = + = + = a, MV a 2,MV2 a 3,MV2

25 RRD Performace of VRC ad MDMC Yao Wag, 24 Error Cotrol 25

26 Performace i Packet Lossy Networks Yao Wag, 24 26

27 Sample Recostructed Frames % Radom Packet Loss, MDMC o top, VRC o borom) Yao Wag, 24 Error Cotrol 27

28 Summary: Challeges i Desigig MD Video Coder To achieve high codig efficiecy, the ecoder should retai the temporal predicgo loop PredicGo strategies are key to cotrol trade- off betwee added redudacy ad reduced compressio efficiecy Predict from two- descripgo recostrucgo, or oe? PredicGo based o two- descripgo recostrucgo Higher predicgo efficiecy Mismatch problem at the decoder PredicGo based o sigle- descripgo recostrucgo Lower predicgo efficiecy No mismatch problem Oe desig strategy Predict based o two- descripgo recostrucgo, but explicitly code the mismatch error Yao Wag, 24 28

29 Refereces Y. Wag ad Q. Zhu, Error cotrol i video commuicatios A review, Proc. IEEE, 998 Y. Wag, A. R. Reibma, ad S. Li, Multiple descriptio codig for video delivery, ivited paper, Proc. IEEE, Ja

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE Geeral e Image Coder Structure Motio Video (s 1,s 2,t) or (s 1,s 2 ) Natural Image Samplig A form of data compressio; usually lossless, but ca be lossy Redudacy Removal Lossless compressio: predictive

More information

Fundamentals. Relative data redundancy of the set. C.E., NCU, Taiwan Angela Chih-Wei Tang,

Fundamentals. Relative data redundancy of the set. C.E., NCU, Taiwan Angela Chih-Wei Tang, Image Compressio Agela Chih-Wei Tag ( 唐之瑋 ) Departmet of Commuicatio Egieerig Natioal Cetral Uiversity JhogLi, Taiwa 2012 Sprig Fudametals Compressio ratio C R / 2, 1 : origial, 2 1 : compressed Relative

More information

ASYMPTOTIC CLOSED-LOOP DESIGN OF ERROR RESILIENT PREDICTIVE COMPRESSION SYSTEMS. Sina Zamani, Tejaswi Nanjundaswamy, Kenneth Rose

ASYMPTOTIC CLOSED-LOOP DESIGN OF ERROR RESILIENT PREDICTIVE COMPRESSION SYSTEMS. Sina Zamani, Tejaswi Nanjundaswamy, Kenneth Rose ASYMPTOTIC OSED-LOOP DESIGN OF ERROR RESILIENT PREDICTIVE COMPRESSION SYSTEMS Sia Zamai, Tejaswi Najudaswamy, Keeth Rose Departmet of Electrical ad Computer Egieerig, Uiversity of Califoria Sata Barbara,

More information

Channel coding, linear block codes, Hamming and cyclic codes Lecture - 8

Channel coding, linear block codes, Hamming and cyclic codes Lecture - 8 Digital Commuicatio Chael codig, liear block codes, Hammig ad cyclic codes Lecture - 8 Ir. Muhamad Asial, MSc., PhD Ceter for Iformatio ad Commuicatio Egieerig Research (CICER) Electrical Egieerig Departmet

More information

ECE 564/645 - Digital Communication Systems (Spring 2014) Final Exam Friday, May 2nd, 8:00-10:00am, Marston 220

ECE 564/645 - Digital Communication Systems (Spring 2014) Final Exam Friday, May 2nd, 8:00-10:00am, Marston 220 ECE 564/645 - Digital Commuicatio Systems (Sprig 014) Fial Exam Friday, May d, 8:00-10:00am, Marsto 0 Overview The exam cosists of four (or five) problems for 100 (or 10) poits. The poits for each part

More information

Information Theory and Coding

Information Theory and Coding Sol. Iformatio Theory ad Codig. The capacity of a bad-limited additive white Gaussia (AWGN) chael is give by C = Wlog 2 ( + σ 2 W ) bits per secod(bps), where W is the chael badwidth, is the average power

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Entropies & Information Theory

Entropies & Information Theory Etropies & Iformatio Theory LECTURE I Nilajaa Datta Uiversity of Cambridge,U.K. For more details: see lecture otes (Lecture 1- Lecture 5) o http://www.qi.damtp.cam.ac.uk/ode/223 Quatum Iformatio Theory

More information

Introduction to Signals and Systems, Part V: Lecture Summary

Introduction to Signals and Systems, Part V: Lecture Summary EEL33: Discrete-Time Sigals ad Systems Itroductio to Sigals ad Systems, Part V: Lecture Summary Itroductio to Sigals ad Systems, Part V: Lecture Summary So far we have oly looked at examples of o-recursive

More information

Fig. 2. Block Diagram of a DCS

Fig. 2. Block Diagram of a DCS Iformatio source Optioal Essetial From other sources Spread code ge. Format A/D Source ecode Ecrypt Auth. Chael ecode Pulse modu. Multiplex Badpass modu. Spread spectrum modu. X M m i Digital iput Digital

More information

Cooperative Communication Fundamentals & Coding Techniques

Cooperative Communication Fundamentals & Coding Techniques 3 th ICACT Tutorial Cooperative commuicatio fudametals & codig techiques Cooperative Commuicatio Fudametals & Codig Techiques 0..4 Electroics ad Telecommuicatio Research Istitute Kiug Jug 3 th ICACT Tutorial

More information

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes The Maximum-Lielihood Decodig Performace of Error-Correctig Codes Hery D. Pfister ECE Departmet Texas A&M Uiversity August 27th, 2007 (rev. 0) November 2st, 203 (rev. ) Performace of Codes. Notatio X,

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Encoding-Assisted Temporal Direct Mode Decision for B Pictures in H.264/AVC

Encoding-Assisted Temporal Direct Mode Decision for B Pictures in H.264/AVC Ecodig-Assisted Temporal Direct Mode Decisio for B Pictures i H.64/AVC Ya-Neg Fag ad Yiyi Li Hui-Jae Hsieh Departmet of Commuicatio Egieerig Departmet of Iformatio Maagemet Natioal Cetral Uiversity, Taiwa

More information

Report on Private Information Retrieval over Unsynchronized Databases

Report on Private Information Retrieval over Unsynchronized Databases Report o Private Iformatio Retrieval over Usychroized Databases Lembit Valgma Supervised by Vitaly Skachek May 25, 217 1 Problem Statemet There are may challeges cocerig olie privacy. Private iformatio

More information

OFDM Precoder for Minimizing BER Upper Bound of MLD under Imperfect CSI

OFDM Precoder for Minimizing BER Upper Bound of MLD under Imperfect CSI MIMO-OFDM OFDM Precoder for Miimizig BER Upper Boud of MLD uder Imperfect CSI MCRG Joit Semiar Jue the th 008 Previously preseted at ICC 008 Beijig o May the st 008 Boosar Pitakdumrogkija Kazuhiko Fukawa

More information

Module 5 EMBEDDED WAVELET CODING. Version 2 ECE IIT, Kharagpur

Module 5 EMBEDDED WAVELET CODING. Version 2 ECE IIT, Kharagpur Module 5 EMBEDDED WAVELET CODING Versio ECE IIT, Kharagpur Lesso 4 SPIHT algorithm Versio ECE IIT, Kharagpur Istructioal Objectives At the ed of this lesso, the studets should be able to:. State the limitatios

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Because it tests for differences between multiple pairs of means in one test, it is called an omnibus test.

Because it tests for differences between multiple pairs of means in one test, it is called an omnibus test. Math 308 Sprig 018 Classes 19 ad 0: Aalysis of Variace (ANOVA) Page 1 of 6 Itroductio ANOVA is a statistical procedure for determiig whether three or more sample meas were draw from populatios with equal

More information

Sensitivity Analysis of Daubechies 4 Wavelet Coefficients for Reduction of Reconstructed Image Error

Sensitivity Analysis of Daubechies 4 Wavelet Coefficients for Reduction of Reconstructed Image Error Proceedigs of the 6th WSEAS Iteratioal Coferece o SIGNAL PROCESSING, Dallas, Texas, USA, March -4, 7 67 Sesitivity Aalysis of Daubechies 4 Wavelet Coefficiets for Reductio of Recostructed Image Error DEVINDER

More information

Pipelined and Parallel Recursive and Adaptive Filters

Pipelined and Parallel Recursive and Adaptive Filters VLSI Digital Sigal Processig Systems Pipelied ad Parallel Recursive ad Adaptive Filters La-Da Va 范倫達, Ph. D. Departmet of Computer Sciece Natioal Chiao ug Uiversity aiwa, R.O.C. Fall, 05 ldva@cs.ctu.edu.tw

More information

Module 11: Applications : Linear prediction, Speech Analysis and Speech Enhancement Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School

Module 11: Applications : Linear prediction, Speech Analysis and Speech Enhancement Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School Module : Applicatios : Liear predictio, Speech Aalysis ad Speech Ehacemet Prof. Eliathamby Ambiairajah Dr. Tharmarajah Thiruvara School of Electrical Egieerig & Telecommuicatios The Uiversity of New South

More information

Error Resilience Analysis of Multi-Hypothesis Motion Compensated Prediction for Video Coding

Error Resilience Analysis of Multi-Hypothesis Motion Compensated Prediction for Video Coding 1. Research Team Error Resiliece Aalysis of Multi-Hypothesis Motio Compesated Predictio for Video Codig Project Leader: Other Faculty: Post Doc(s): Graduate Studets: Idustrial Parter(s): C.-C. Jay Kuo,

More information

ELEC1200: A System View of Communications: from Signals to Packets Lecture 3

ELEC1200: A System View of Communications: from Signals to Packets Lecture 3 ELEC2: A System View of Commuicatios: from Sigals to Packets Lecture 3 Commuicatio chaels Discrete time Chael Modelig the chael Liear Time Ivariat Systems Step Respose Respose to sigle bit Respose to geeral

More information

Formulas and Tables for Gerstman

Formulas and Tables for Gerstman Formulas ad Tables for Gerstma Measuremet ad Study Desig Biostatistics is more tha a compilatio of computatioal techiques! Measuremet scales: quatitative, ordial, categorical Iformatio quality is primary

More information

Asymptotic Coupling and Its Applications in Information Theory

Asymptotic Coupling and Its Applications in Information Theory Asymptotic Couplig ad Its Applicatios i Iformatio Theory Vicet Y. F. Ta Joit Work with Lei Yu Departmet of Electrical ad Computer Egieerig, Departmet of Mathematics, Natioal Uiversity of Sigapore IMS-APRM

More information

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So,

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So, 0 2. OLS Part II The OLS residuals are orthogoal to the regressors. If the model icludes a itercept, the orthogoality of the residuals ad regressors gives rise to three results, which have limited practical

More information

Daniel Lee Muhammad Naeem Chingyu Hsu

Daniel Lee Muhammad Naeem Chingyu Hsu omplexity Aalysis of Optimal Statioary all Admissio Policy ad Fixed Set Partitioig Policy for OVSF-DMA ellular Systems Daiel Lee Muhammad Naeem higyu Hsu Backgroud Presetatio Outlie System Model all Admissio

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSEMS Versio ECE II, Kharagpur Lesso 8 rasform Codig & K-L rasforms Versio ECE II, Kharagpur Istructioal Oectives At the ed of this lesso, the studets should e ale to:.

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

Diversity Combining Techniques

Diversity Combining Techniques Diversity Combiig Techiques Whe the required sigal is a combiatio of several waves (i.e, multipath), the total sigal amplitude may experiece deep fades (i.e, Rayleigh fadig), over time or space. The major

More information

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and Filter bas Separately, the lowpass ad highpass filters are ot ivertible T removes the highest frequecy / ad removes the lowest frequecy Together these filters separate the sigal ito low-frequecy ad high-frequecy

More information

Pixel Recurrent Neural Networks

Pixel Recurrent Neural Networks Pixel Recurret Neural Networks Aa ro va de Oord, Nal Kalchbreer, Koray Kavukcuoglu Google DeepMid August 2016 Preseter - Neha M Example problem (completig a image) Give the first half of the image, create

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

ln(i G ) 26.1 Review 26.2 Statistics of multiple breakdowns M Rows HBD SBD N Atoms Time

ln(i G ) 26.1 Review 26.2 Statistics of multiple breakdowns M Rows HBD SBD N Atoms Time EE650R: Reliability Physics of Naoelectroic Devices Lecture 26: TDDB: Statistics of Multiple Breadows Date: Nov 17, 2006 ClassNotes: Jaydeep P. Kulari Review: Pradeep R. Nair 26.1 Review I the last class

More information

2(25) Mean / average / expected value of a stochastic variable X: Variance of a stochastic variable X: 1(25)

2(25) Mean / average / expected value of a stochastic variable X: Variance of a stochastic variable X: 1(25) Lecture 5: Codig of Aalog Sources Samplig ad Quatizatio Images ad souds are ot origially digital! The are cotiuous sigals i space/time as well as amplitude Typical model of a aalog source: A statioary

More information

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01 ENGI 44 Cofidece Itervals (Two Samples) Page -0 Two Sample Cofidece Iterval for a Differece i Populatio Meas [Navidi sectios 5.4-5.7; Devore chapter 9] From the cetral limit theorem, we kow that, for sufficietly

More information

Multiterminal source coding with complementary delivery

Multiterminal source coding with complementary delivery Iteratioal Symposium o Iformatio Theory ad its Applicatios, ISITA2006 Seoul, Korea, October 29 November 1, 2006 Multitermial source codig with complemetary delivery Akisato Kimura ad Tomohiko Uyematsu

More information

Chapter 3: Other Issues in Multiple regression (Part 1)

Chapter 3: Other Issues in Multiple regression (Part 1) Chapter 3: Other Issues i Multiple regressio (Part 1) 1 Model (variable) selectio The difficulty with model selectio: for p predictors, there are 2 p differet cadidate models. Whe we have may predictors

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

Packet Video 99. A Corruption Model for Motion Compensated Video Subject to Bit Errors. Gustavo de los Reyes Amy R. Reibman Shih-Fu Chang

Packet Video 99. A Corruption Model for Motion Compensated Video Subject to Bit Errors. Gustavo de los Reyes Amy R. Reibman Shih-Fu Chang A Corruptio Model for Motio Compesated Video Subject to Bit Errors Gustavo de los Reyes Amy R. Reibma Shih-Fu Chag AT&T Labs AT&T Labs-Research Columbia Uiversity gdelosreyes@att.com amy@research.att.com

More information

Reliability and Queueing

Reliability and Queueing Copyright 999 Uiversity of Califoria Reliability ad Queueig by David G. Messerschmitt Supplemetary sectio for Uderstadig Networked Applicatios: A First Course, Morga Kaufma, 999. Copyright otice: Permissio

More information

On Orlicz N-frames. 1 Introduction. Renu Chugh 1,, Shashank Goel 2

On Orlicz N-frames. 1 Introduction. Renu Chugh 1,, Shashank Goel 2 Joural of Advaced Research i Pure Mathematics Olie ISSN: 1943-2380 Vol. 3, Issue. 1, 2010, pp. 104-110 doi: 10.5373/jarpm.473.061810 O Orlicz N-frames Reu Chugh 1,, Shashak Goel 2 1 Departmet of Mathematics,

More information

FFTs in Graphics and Vision. The Fast Fourier Transform

FFTs in Graphics and Vision. The Fast Fourier Transform FFTs i Graphics ad Visio The Fast Fourier Trasform 1 Outlie The FFT Algorithm Applicatios i 1D Multi-Dimesioal FFTs More Applicatios Real FFTs 2 Computatioal Complexity To compute the movig dot-product

More information

Soft Reconstruction of Speech in the Presence of Noise and Packet Loss

Soft Reconstruction of Speech in the Presence of Noise and Packet Loss 1 Soft Recostructio of Speech i the Presece of Noise ad Packet Loss Farshad Lahouti, Amir K. Khadai Abstract Exploitig the residual redudacy i a source coder output stream durig the decodig process has

More information

OPTIMAL PIECEWISE UNIFORM VECTOR QUANTIZATION OF THE MEMORYLESS LAPLACIAN SOURCE

OPTIMAL PIECEWISE UNIFORM VECTOR QUANTIZATION OF THE MEMORYLESS LAPLACIAN SOURCE Joural of ELECTRICAL EGIEERIG, VOL. 56, O. 7-8, 2005, 200 204 OPTIMAL PIECEWISE UIFORM VECTOR QUATIZATIO OF THE MEMORYLESS LAPLACIA SOURCE Zora H. Perić Veljo Lj. Staović Alesadra Z. Jovaović Srdja M.

More information

EL 675 UHF Propagation for Modern Wireless Systems. Henry L. Bertoni Polytechnic University

EL 675 UHF Propagation for Modern Wireless Systems. Henry L. Bertoni Polytechnic University EL 675 UHF Propagatio for Moder Wireless Systems Hery L. Bertoi Polytechic Uiversity otext for Discussig Wireless hael haracteristics Frequecies above ~ 300 MHz (λ < m) adio liks i ma-made eviromets At

More information

Lecture 4: April 10, 2013

Lecture 4: April 10, 2013 TTIC/CMSC 1150 Mathematical Toolkit Sprig 01 Madhur Tulsiai Lecture 4: April 10, 01 Scribe: Haris Agelidakis 1 Chebyshev s Iequality recap I the previous lecture, we used Chebyshev s iequality to get a

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Skip lists: A randomized dictionary

Skip lists: A randomized dictionary Discrete Math for Bioiformatics WS 11/12:, by A. Bocmayr/K. Reiert, 31. Otober 2011, 09:53 3001 Sip lists: A radomized dictioary The expositio is based o the followig sources, which are all recommeded

More information

Information Hiding Problems: Hiding Capacity and Key Design

Information Hiding Problems: Hiding Capacity and Key Design Iformatio Hidig Problems: Hidig Capacity ad Key Desig Joseph. O Sulliva Electroic Systems ad Sigals Research Laboratory Departmet of Electrical Egieerig Washigto Uiversity i St. Louis Iformatio Hidig Problems

More information

6.003 Homework #12 Solutions

6.003 Homework #12 Solutions 6.003 Homework # Solutios Problems. Which are rue? For each of the D sigals x [] through x 4 [] below), determie whether the coditios listed i the followig table are satisfied, ad aswer for true or F for

More information

Multiresolution coding and wavelets. Interpolation error coding, I

Multiresolution coding and wavelets. Interpolation error coding, I Multiresolutio codig ad wavelets Predictive (closed-loop) pyramids Ope-loop ( Laplacia ) pyramids Discrete Wavelet Trasform (DWT) Quadrature mirror filters ad cojugate quadrature filters Liftig ad reversible

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

Voltage controlled oscillator (VCO)

Voltage controlled oscillator (VCO) Voltage cotrolled oscillator (VO) Oscillatio frequecy jl Z L(V) jl[ L(V)] [L L (V)] L L (V) T VO gai / Logf Log 4 L (V) f f 4 L(V) Logf / L(V) f 4 L (V) f (V) 3 Lf 3 VO gai / (V) j V / V Bi (V) / V Bi

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

EE260: Digital Design, Spring n MUX Gate n Rudimentary functions n Binary Decoders. n Binary Encoders n Priority Encoders

EE260: Digital Design, Spring n MUX Gate n Rudimentary functions n Binary Decoders. n Binary Encoders n Priority Encoders EE260: Digital Desig, Sprig 2018 EE 260: Itroductio to Digital Desig MUXs, Ecoders, Decoders Yao Zheg Departmet of Electrical Egieerig Uiversity of Hawaiʻi at Māoa Overview of Ecoder ad Decoder MUX Gate

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Chapter 10 Advanced Topics in Random Processes

Chapter 10 Advanced Topics in Random Processes ery Stark ad Joh W. Woods, Probability, Statistics, ad Radom Variables for Egieers, 4th ed., Pearso Educatio Ic.,. ISBN 978--3-33-6 Chapter Advaced opics i Radom Processes Sectios. Mea-Square (m.s.) Calculus

More information

Compound conditional source coding, Slepian-Wolf list decoding, and applications to media coding

Compound conditional source coding, Slepian-Wolf list decoding, and applications to media coding Compoud coditioal source codig, Slepia-Wolf list decodig, ad applicatios to media codig Stark C. Draper Mitsubishi Electric Research Laboratories Cambridge, MA 02139 USA draper@merl.com PSfrag replacemets

More information

Complexity Analysis of Highly Improved Hybrid Turbo Codes

Complexity Analysis of Highly Improved Hybrid Turbo Codes I J C T A, 8(5, 015, pp. 433-439 Iteratioal Sciece Press Complexity Aalysis of Highly Improved Hybrid Turbo Codes M. Jose Ra* ad Sharmii Eoch** Abstract: Moder digital commuicatio systems eed efficiet

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise)

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise) Lecture 22: Review for Exam 2 Basic Model Assumptios (without Gaussia Noise) We model oe cotiuous respose variable Y, as a liear fuctio of p umerical predictors, plus oise: Y = β 0 + β X +... β p X p +

More information

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring Machie Learig Regressio I Hamid R. Rabiee [Slides are based o Bishop Book] Sprig 015 http://ce.sharif.edu/courses/93-94//ce717-1 Liear Regressio Liear regressio: ivolves a respose variable ad a sigle predictor

More information

3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N.

3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N. 3/3/04 CDS M Phil Old Least Squares (OLS) Vijayamohaa Pillai N CDS M Phil Vijayamoha CDS M Phil Vijayamoha Types of Relatioships Oly oe idepedet variable, Relatioship betwee ad is Liear relatioships Curviliear

More information

6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machine learning, lecture 7 (Jaakkola) 1 6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

More information

MEASURES OF DISPERSION (VARIABILITY)

MEASURES OF DISPERSION (VARIABILITY) POLI 300 Hadout #7 N. R. Miller MEASURES OF DISPERSION (VARIABILITY) While measures of cetral tedecy idicate what value of a variable is (i oe sese or other, e.g., mode, media, mea), average or cetral

More information

ADVANCED DIGITAL SIGNAL PROCESSING

ADVANCED DIGITAL SIGNAL PROCESSING ADVANCED DIGITAL SIGNAL PROCESSING PROF. S. C. CHAN (email : sccha@eee.hku.hk, Rm. CYC-702) DISCRETE-TIME SIGNALS AND SYSTEMS MULTI-DIMENSIONAL SIGNALS AND SYSTEMS RANDOM PROCESSES AND APPLICATIONS ADAPTIVE

More information

6.003 Homework #12 Solutions

6.003 Homework #12 Solutions 6.003 Homework # Solutios Problems. Which are rue? For each of the D sigals x [] through x 4 [] (below), determie whether the coditios listed i the followig table are satisfied, ad aswer for true or F

More information

6.111 Lecture 6 Today: 1.Blocking vs. non-blocking assignments 2.Single clock synchronous circuits 3.Finite State Machines

6.111 Lecture 6 Today: 1.Blocking vs. non-blocking assignments 2.Single clock synchronous circuits 3.Finite State Machines 6. Lecture 6 Today:.Blockig vs. o-blockig assigmets 2.Sigle clock sychroous circuits 3.Fiite State Machies 6. Fall 25 Lecture 6, Slide I. Blockig vs. Noblockig Assigmets Coceptual eed for two kids of assigmet

More information

1 Review and Overview

1 Review and Overview DRAFT a fial versio will be posted shortly CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #3 Scribe: Migda Qiao October 1, 2013 1 Review ad Overview I the first half of this course,

More information

Time-Domain Representations of LTI Systems

Time-Domain Representations of LTI Systems 2.1 Itroductio Objectives: 1. Impulse resposes of LTI systems 2. Liear costat-coefficiets differetial or differece equatios of LTI systems 3. Bloc diagram represetatios of LTI systems 4. State-variable

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

A Partial Decode-Forward Scheme For A Network with N relays

A Partial Decode-Forward Scheme For A Network with N relays A Partial Decode-Forward Scheme For A etwork with relays Yao Tag ECE Departmet, McGill Uiversity Motreal, QC, Caada Email: yaotag2@mailmcgillca Mai Vu ECE Departmet, Tufts Uiversity Medford, MA, USA Email:

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course Sigal-EE Postal Correspodece Course 1 SAMPLE STUDY MATERIAL Electrical Egieerig EE / EEE Postal Correspodece Course GATE, IES & PSUs Sigal System Sigal-EE Postal Correspodece Course CONTENTS 1. SIGNAL

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should be doe

More information

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES Peter M. Maurer Why Hashig is θ(). As i biary search, hashig assumes that keys are stored i a array which is idexed by a iteger. However, hashig attempts to bypass

More information

(7 One- and Two-Sample Estimation Problem )

(7 One- and Two-Sample Estimation Problem ) 34 Stat Lecture Notes (7 Oe- ad Two-Sample Estimatio Problem ) ( Book*: Chapter 8,pg65) Probability& Statistics for Egieers & Scietists By Walpole, Myers, Myers, Ye Estimatio 1 ) ( ˆ S P i i Poit estimate:

More information

A Hybrid Random-Structured Coding Scheme for the Gaussian Two-Terminal Source Coding Problem Under a Covariance Matrix Distortion Constraint

A Hybrid Random-Structured Coding Scheme for the Gaussian Two-Terminal Source Coding Problem Under a Covariance Matrix Distortion Constraint A Hybrid Radom-Structured Codig Scheme for the Gaussia Two-Termial Source Codig Problem Uder a Covariace Matrix Distortio Costrait Yag Yag ad Zixiag Xiog Dept of Electrical ad Computer Egieerig Texas A&M

More information

Lecture 10: Universal coding and prediction

Lecture 10: Universal coding and prediction 0-704: Iformatio Processig ad Learig Sprig 0 Lecture 0: Uiversal codig ad predictio Lecturer: Aarti Sigh Scribes: Georg M. Goerg Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved

More information

ECON 3150/4150, Spring term Lecture 3

ECON 3150/4150, Spring term Lecture 3 Itroductio Fidig the best fit by regressio Residuals ad R-sq Regressio ad causality Summary ad ext step ECON 3150/4150, Sprig term 2014. Lecture 3 Ragar Nymoe Uiversity of Oslo 21 Jauary 2014 1 / 30 Itroductio

More information

Frequency Response of FIR Filters

Frequency Response of FIR Filters EEL335: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we itroduce the idea of the frequecy respose of LTI systems, ad focus specifically o the frequecy respose of FIR filters.. Steady-state

More information

MATH/STAT 352: Lecture 15

MATH/STAT 352: Lecture 15 MATH/STAT 352: Lecture 15 Sectios 5.2 ad 5.3. Large sample CI for a proportio ad small sample CI for a mea. 1 5.2: Cofidece Iterval for a Proportio Estimatig proportio of successes i a biomial experimet

More information

Optimum LMSE Discrete Transform

Optimum LMSE Discrete Transform Image Trasformatio Two-dimesioal image trasforms are extremely importat areas of study i image processig. The image output i the trasformed space may be aalyzed, iterpreted, ad further processed for implemetig

More information

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons Statistical Aalysis o Ucertaity for Autocorrelated Measuremets ad its Applicatios to Key Comparisos Nie Fa Zhag Natioal Istitute of Stadards ad Techology Gaithersburg, MD 0899, USA Outlies. Itroductio.

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Frequency Domain Filtering

Frequency Domain Filtering Frequecy Domai Filterig Raga Rodrigo October 19, 2010 Outlie Cotets 1 Itroductio 1 2 Fourier Represetatio of Fiite-Duratio Sequeces: The Discrete Fourier Trasform 1 3 The 2-D Discrete Fourier Trasform

More information

Asymptotic distribution of the first-stage F-statistic under weak IVs

Asymptotic distribution of the first-stage F-statistic under weak IVs November 6 Eco 59A WEAK INSTRUMENTS III Testig for Weak Istrumets From the results discussed i Weak Istrumets II we kow that at least i the case of a sigle edogeous regressor there are weak-idetificatio-robust

More information

Asymptotic Results for the Linear Regression Model

Asymptotic Results for the Linear Regression Model Asymptotic Results for the Liear Regressio Model C. Fli November 29, 2000 1. Asymptotic Results uder Classical Assumptios The followig results apply to the liear regressio model y = Xβ + ε, where X is

More information

Signal Processing in Mechatronics

Signal Processing in Mechatronics Sigal Processig i Mechatroics Zhu K.P. AIS, UM. Lecture, Brief itroductio to Sigals ad Systems, Review of Liear Algebra ad Sigal Processig Related Mathematics . Brief Itroductio to Sigals What is sigal

More information

Linear Regression Models

Linear Regression Models Liear Regressio Models Dr. Joh Mellor-Crummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect

More information

Logit regression Logit regression

Logit regression Logit regression Logit regressio Logit regressio models the probability of Y= as the cumulative stadard logistic distributio fuctio, evaluated at z = β 0 + β X: Pr(Y = X) = F(β 0 + β X) F is the cumulative logistic distributio

More information

SYSTEMATIC SAMPLING FOR NON-LINEAR TREND IN MILK YIELD DATA

SYSTEMATIC SAMPLING FOR NON-LINEAR TREND IN MILK YIELD DATA Joural of Reliability ad Statistical Studies; ISS (Prit): 0974-804, (Olie):9-5666 Vol. 7, Issue (04): 57-68 SYSTEMATIC SAMPLIG FOR O-LIEAR TRED I MILK YIELD DATA Tauj Kumar Padey ad Viod Kumar Departmet

More information

BIOINF 585: Machine Learning for Systems Biology & Clinical Informatics

BIOINF 585: Machine Learning for Systems Biology & Clinical Informatics BIOINF 585: Machie Learig for Systems Biology & Cliical Iformatics Lecture 14: Dimesio Reductio Jie Wag Departmet of Computatioal Medicie & Bioiformatics Uiversity of Michiga 1 Outlie What is feature reductio?

More information

Lecture 11: Pseudorandom functions

Lecture 11: Pseudorandom functions COM S 6830 Cryptography Oct 1, 2009 Istructor: Rafael Pass 1 Recap Lecture 11: Pseudoradom fuctios Scribe: Stefao Ermo Defiitio 1 (Ge, Ec, Dec) is a sigle message secure ecryptio scheme if for all uppt

More information

Lecture 11: Channel Coding Theorem: Converse Part

Lecture 11: Channel Coding Theorem: Converse Part EE376A/STATS376A Iformatio Theory Lecture - 02/3/208 Lecture : Chael Codig Theorem: Coverse Part Lecturer: Tsachy Weissma Scribe: Erdem Bıyık I this lecture, we will cotiue our discussio o chael codig

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

(all terms are scalars).the minimization is clearer in sum notation:

(all terms are scalars).the minimization is clearer in sum notation: 7 Multiple liear regressio: with predictors) Depedet data set: y i i = 1, oe predictad, predictors x i,k i = 1,, k = 1, ' The forecast equatio is ŷ i = b + Use matrix otatio: k =1 b k x ik Y = y 1 y 1

More information