The Maximum-Likelihood Decoding Performance of Error-Correcting Codes

Size: px
Start display at page:

Download "The Maximum-Likelihood Decoding Performance of Error-Correcting Codes"

Transcription

1 The Maximum-Lielihood Decodig Performace of Error-Correctig Codes Hery D. Pfister ECE Departmet Texas A&M Uiversity August 27th, 2007 (rev. 0) November 2st, 203 (rev. ) Performace of Codes. Notatio X, Y, S Sets are deoted by calligraphic letters X, Y, Z Radom variables are deoted by capital letters X i, x i X j i, xj i X, x Sigle elemets of vectors are deoted by a subscript idex The iterval subvectors (i.e., X i, X i+,..., X j ) of a vector Complete vectors are deoted by uderlies.2 Optimal Decodig Rules Let X be a arbitrary alphabet ad C X be a legth- code. Assume a radom codeword X C is chose with probability p (X ) ad trasmitted through a DMC with trasitio probability W (y x). For sequeces, the coditioal probability of the observed sequece Y Y is give by P r (Y y X x ) W (y x ) W (y i x i ). Choosig the codeword x C which maximizes P r(x x Y y ) is ow as maximum a posteriori (MAP) decodig ad this miimizes the probability of bloc error. Usig Bayes s rule, we fid that P r (X x Y y ) Sice the deomiator is a costat for all x, we fid that i p (x ) W (y x ) x C p ( x ) W (y x ). D MAP (y ) arg max x C p (x ) W (y x ). The maximum lielihood (ML) decodig rule is defied as D ML (y ) arg max x C W (y x ). Notice that D MAP (y ) D MAP (y ) if p (x ) is a costat for all x C. Therefore, ML decodig is optimal for equiprobable trasmissio.

2 .3 Maximum Lielihood Decodig The ML decodig rule implicitly divides the received vectors ito decodig regios ow as Vorooi regios. The Vorooi regio (i.e., decisio regio) for the codeword x C is the subset of Y defied by V (x ) {y Y W (y x ) > W (y x ) x C, x x }. I this case, the average probability of bloc error is give by P B W (y x ). x C y V (x ) It is worth otig that this formula breas dow if ties may occur. This ca be rectified by directig the ML decoder to choose a codeword radomly i this case. I this case, the above expressio for P B oly gives a upper boud..4 Chael Symmetry ad Liear Codes I may cases, the chael satisfies a symmetry coditio that allows us to simplify thigs. For simplicity, we will assume that X forms a Abelia group uder + ad that the chael symmetry is defied by W (y x + z) W (π z (y) x) for a set of Y-permutatios π x idexed by x X. Each permutatio is a oe-to-oe mappig π x : Y Y that satisfies π x+z (y) π x (π z (y)) π z (π x (y)) ad therefore the set of permutatios forms a group which is isomorphic to X. This type of chael is ow as output symmetric. We exted this symmetry to legth- sequeces by defiig W (y x + z ) W ( π z (y ) x ) W (π zi (y i ) x i ) with π z (y ) (π z (y ), π z2 (y 2 ),..., π z (y )). It is worth otig that this symmetry coditio is sufficiet to imply that a uiform iput distributio achieves the capacity of this DMC. Example. Cosider the BSC where X {0, }, Y {0, }, ad { p if x y W (y x) p if x y. The, π 0 (y) y ad π (y) y defies the atural symmetry of the chael. Example. Cosider the biary-iput AWGN chael where X {0, }, Y R, ad Y N ( ( ) x, σ 2). Although this is ot a DMC, similar results hold whe sums are replaced by itegrals. I this case, π 0 (y) y ad π (y) y defies the atural symmetry of the chael. If the code is also a group code (i.e., sum of ay two codewords is a codeword), the the Vorooi regio of ay codeword ca be writte as a trasformatio of V (0) with V (0 + x ) {y Y W (y 0 + x ) > W (y x ) x C, x 0 + x } { y Y W ( π x (y ) 0 ) > W ( π x (y ) x x ) x C, x 0 + x } { y Y W ( π x (y ) 0 ) > W ( π x (y ) 0 ) z C, z 0 }. πx (V (0)). The last step follows from the fact that y V (x ) implies that π x (y ) V (0). We ca also use this to simplify the probability of bloc error to P B W (y x ) x C x C y V (x ) y π x (V (0)) y V (0) W (y 0). i W ( π x (y ) 0 ) 2

3 This shows that the probability of ML decodig error for a group code over a output-symmetric chael is idepedet of the trasmitted codeword..5 The Pairwise Error Probability (PEP).5. Discrete Memoryless Chaels Sice computig the exact probability of error requires extesive owledge of the code, it is ofte useful to have bouds that are easier to compute. The basis of may of these bouds is the pairwise error probability (PEP) betwee ay two codewords. The PEP, deoted P (x x ), is the probability that the ML decoder chooses x whe x was trasmitted. This probability ca be writte as P (x x ) W (y x ) I (W (y x ) W (y x )), y Y where I(E) is the idicator fuctio for the evet E (i.e., it equals if the argumet is true ad 0 otherwise). The idicator fuctio is upper bouded by ( W (y I (W (y x ) W (y x )) x ) s ) W (y x ), for ay s [0, ], because the LHS is zero if the RHS is less tha oe ad the LHS is oe whe the RHS is greater tha oe. I geeral, the best boud is foud by miimizig over s. For biary-iput symmetric-output chaels, the miimum occurs at s /2 ad the implied boud is P (x x ) ( W (y W (y x ) x ) /2 ) W (y y Y x ) W (yi x i ) W (y i x i ) i y i Y d H (x, x ) i W (y 0) W (y ), because the sum is oe if x i x i. This boud is ow as the Bhattacharyya boud ad is typically writte as y Y P (x x ) γ d H(x, x ), where γ y Y W (y 0)W (y ) is the Bhattacharyya costat of the chael. For the BSC chael, this gives γ BSC 2 p( p). For the biary-iput AWGN (BIAWGN) chael with eergy per symbol E s ad oise spectral desity N 0, we have ad γ BIAW GN W (y x) (πn 0 ) /2 e (y E s( ) x ) 2 /N 0 (πn 0 ) /2 [ e (y E s) 2 /N 0 e (y+ E s) 2 /N 0 ] /2 dy (πn 0 ) /2 e (y2 +E s)/n 0 dy e Es/N0. It is also ow that γ is the best possible costat for bouds of the form γ d H..5.2 The AWGN Chael If the chael cosists of a modulator M (x ) R ad zero-mea AWGN with variace σ 2 perdimesio, the the PEP ca be computed exactly. I this case, the memoryless chael (it is o loger discrete) is defied by the coditioal p.d.f. W (y x ) ( 2πσ 2) /2 e 2σ 2 y M(x ) 2. 3

4 Sice the p.d.f. depeds oly o the distace betwee the received ad trasmitted vectors, we fid that the ML decoder pics the codeword whose trasmitted vector is closest to the received vector. To aalyze this, we ca project the received vector y oto the differece vector w M ( x ) M (x ) to get the decisio variable i Z w iy i. i w2 i Oe ca verify that Z is a zero-mea Gaussia radom variable with variace σ 2. Furthermore, the decoder will mae a error if a oly if Z w /2 (i.e., the received vector is closer to x tha x ). This allows us to rewrite the PEP as P (x x ) 2πσ 2 dy dy 2 dy dy 2 f Z (z) I dy W (y x ) I (W (y x ) W (y x )) dy W (y x ) I ( y M (x ) y M ( x ) ) ) dz ( z 2 M ( x ) M (x ) M( x ) M(x ) /2 e z 2 /(2σ 2) dz. A chage of variables shows that this itegral is equal to ( ) P (x x ) Q 2σ M ( x ) M (x ), where Q(α) /2 2π dz is the tail probability of zero-mea uit-variace Gaussia. α e z2 Recall that the biary-iput AWGN chael with M(x) E s ( ) x has eergy per trasmitted symbol E s ad oise spectral desity N 0 2σ 2. Therefore, the Euclidea distace is M ( x ) M (x ) 2 4E s d H (x, x ). Substitutig these ito our expressio gives ) P (x x ) Q ( 2 d H (x, x ) E s/n 0. Applyig the stadard boud, Q(α) e α2 /2, to the Q-fuctio gives a alterate proof of the Bhattacharyya boud for AWGN..6 The Uio Boud Sice every decodig error is caused a by pairwise error, we fid that P B x C x C, x x P (x x ). This is oly a upper boud because the received vector may be closer to two other codewords tha it is to the trasmitted codeword, ad this causes overcoutig of the error probability. If we assume that the code is liear ad that the PEP is a fuctio f(h) of the Hammig distace h, the we get P B f (d H (x, x )) x C x C, x x f (d H (0, x )) x C x C, x 0 f (d H (0, x )) x C, x 0 A h f(h), h 4

5 where A h ( is the umber of codewords of weight h. For biary codes, the fuctio f is either chose 2h ) to be Q Es /N 0 (for the AWGN chael) or γ h (for a arbitrary DMC with γ equal to the Bhattacharyya costat). I this case, the weight eumerator (WE) is ofte give i the polyomial form, A(H) h 0 A hh h, ad we ca use the Bhattacharyya boud (i.e., f(h) γ h ) to write P B A(γ). Example. The [7,4,3] Hammig code has the WE A(H) + 7H 3 + 7H 4 + H 7. This implies that ML decodig of this code o the BIAWGN chael has a bloc error probability which satisfies.7 Bit Error Probability P B 7e 3Es/N0 + 7e 4Es/N0 + e 7Es/N0. I may cases, we are iterested ot oly i the probability of bloc error P B but also i the probability of bit error P b (or symbol error P s for o-biary codes). To compute P b we eed to compute the average umber of message bit (or symbol) errors that occur as the result of a bloc error. Let E : U X be a ecoder which maps ay legth iput sequece to a legth output sequece. Cosider ay two iput-output pairs, x E ( u) ad x E ( ũ), ad otice that the pairwise error x x implies the message error u ũ (ũ ad produces d H, u) symbol errors i the decoded message. Usig the uio boud, we ca boud P s with P s u U U ũ U, ũ u P (E(u ) E(ũ )) d (ũ H, u). While this quatity ca be computed or bouded for ay code, it ca be simplified for codes with liear ecoders. Now, we will assume that U has a field structure ad that E is liear so that, for α, β U, E ( αu + βũ ( ) (ũ ) ) α E u + β E. I this case, the liearity implies that x x E ( ũ u ) ad that the pairwise error x x produces w H (ũ u ) symbol errors i the decoded message. If we also assume that the PEP is a fuctio f(h) of the Hammig distace h, the we ca write P s u U U ũ U, ũ 0 f w h f ( ( w H E(u ) E(ũ ) )) w (ũ H u) ( ( wh E(ũ ) )) w (ũ ) H ũ U, ũ u A w,h f(h) w, where the iput-ouput weight-eumerator (IOWE), A w,h, is the umber of codewords with iput weight w ad output weight h. The IOWE of a liear code is ofte give i polyomial form as A(W, H) w h A w,hw w H h. For biary codes, we ca therefore use the Bhattacharyya boud (i.e., f(h) γ h ) to write P b [ ] d A(W, γ). dw W Example. Oe ecoder for the [7,4,3] Hammig code has the IOWE A(W, H) + (3W + 3W 2 + W 3 )H 3 + (W + 3W 2 + 3W 3 )H 4 + W 4 H 7. This implies that ML decodig of this code o the BIAWGN chael has a bloc error probability which satisfies P b 2 4 e 3Es/N e 4Es/N e 7Es/N0. 5

ECE 564/645 - Digital Communication Systems (Spring 2014) Final Exam Friday, May 2nd, 8:00-10:00am, Marston 220

ECE 564/645 - Digital Communication Systems (Spring 2014) Final Exam Friday, May 2nd, 8:00-10:00am, Marston 220 ECE 564/645 - Digital Commuicatio Systems (Sprig 014) Fial Exam Friday, May d, 8:00-10:00am, Marsto 0 Overview The exam cosists of four (or five) problems for 100 (or 10) poits. The poits for each part

More information

Lecture 7: Channel coding theorem for discrete-time continuous memoryless channel

Lecture 7: Channel coding theorem for discrete-time continuous memoryless channel Lecture 7: Chael codig theorem for discrete-time cotiuous memoryless chael Lectured by Dr. Saif K. Mohammed Scribed by Mirsad Čirkić Iformatio Theory for Wireless Commuicatio ITWC Sprig 202 Let us first

More information

Information Theory and Coding

Information Theory and Coding Sol. Iformatio Theory ad Codig. The capacity of a bad-limited additive white Gaussia (AWGN) chael is give by C = Wlog 2 ( + σ 2 W ) bits per secod(bps), where W is the chael badwidth, is the average power

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

Channel coding, linear block codes, Hamming and cyclic codes Lecture - 8

Channel coding, linear block codes, Hamming and cyclic codes Lecture - 8 Digital Commuicatio Chael codig, liear block codes, Hammig ad cyclic codes Lecture - 8 Ir. Muhamad Asial, MSc., PhD Ceter for Iformatio ad Commuicatio Egieerig Research (CICER) Electrical Egieerig Departmet

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound Lecture 7 Ageda for the lecture Gaussia chael with average power costraits Capacity of additive Gaussia oise chael ad the sphere packig boud 7. Additive Gaussia oise chael Up to this poit, we have bee

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Lecture 7: October 18, 2017

Lecture 7: October 18, 2017 Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Homework Set #3 - Solutions

Homework Set #3 - Solutions EE 15 - Applicatios of Covex Optimizatio i Sigal Processig ad Commuicatios Dr. Adre Tkaceko JPL Third Term 11-1 Homework Set #3 - Solutios 1. a) Note that x is closer to x tha to x l i the Euclidea orm

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Basics of Probability Theory (for Theory of Computation courses)

Basics of Probability Theory (for Theory of Computation courses) Basics of Probability Theory (for Theory of Computatio courses) Oded Goldreich Departmet of Computer Sciece Weizma Istitute of Sciece Rehovot, Israel. oded.goldreich@weizma.ac.il November 24, 2008 Preface.

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

Information Theory Tutorial Communication over Channels with memory. Chi Zhang Department of Electrical Engineering University of Notre Dame

Information Theory Tutorial Communication over Channels with memory. Chi Zhang Department of Electrical Engineering University of Notre Dame Iformatio Theory Tutorial Commuicatio over Chaels with memory Chi Zhag Departmet of Electrical Egieerig Uiversity of Notre Dame Abstract A geeral capacity formula C = sup I(; Y ), which is correct for

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Lecture 4: April 10, 2013

Lecture 4: April 10, 2013 TTIC/CMSC 1150 Mathematical Toolkit Sprig 01 Madhur Tulsiai Lecture 4: April 10, 01 Scribe: Haris Agelidakis 1 Chebyshev s Iequality recap I the previous lecture, we used Chebyshev s iequality to get a

More information

On Random Line Segments in the Unit Square

On Random Line Segments in the Unit Square O Radom Lie Segmets i the Uit Square Thomas A. Courtade Departmet of Electrical Egieerig Uiversity of Califoria Los Ageles, Califoria 90095 Email: tacourta@ee.ucla.edu I. INTRODUCTION Let Q = [0, 1] [0,

More information

Shannon s noiseless coding theorem

Shannon s noiseless coding theorem 18.310 lecture otes May 4, 2015 Shao s oiseless codig theorem Lecturer: Michel Goemas I these otes we discuss Shao s oiseless codig theorem, which is oe of the foudig results of the field of iformatio

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

6.895 Essential Coding Theory October 20, Lecture 11. This lecture is focused in comparisons of the following properties/parameters of a code:

6.895 Essential Coding Theory October 20, Lecture 11. This lecture is focused in comparisons of the following properties/parameters of a code: 6.895 Essetial Codig Theory October 0, 004 Lecture 11 Lecturer: Madhu Suda Scribe: Aastasios Sidiropoulos 1 Overview This lecture is focused i comparisos of the followig properties/parameters of a code:

More information

Entropies & Information Theory

Entropies & Information Theory Etropies & Iformatio Theory LECTURE I Nilajaa Datta Uiversity of Cambridge,U.K. For more details: see lecture otes (Lecture 1- Lecture 5) o http://www.qi.damtp.cam.ac.uk/ode/223 Quatum Iformatio Theory

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2. SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

More information

Final Review for MATH 3510

Final Review for MATH 3510 Fial Review for MATH 50 Calculatio 5 Give a fairly simple probability mass fuctio or probability desity fuctio of a radom variable, you should be able to compute the expected value ad variace of the variable

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

Markov Decision Processes

Markov Decision Processes Markov Decisio Processes Defiitios; Statioary policies; Value improvemet algorithm, Policy improvemet algorithm, ad liear programmig for discouted cost ad average cost criteria. Markov Decisio Processes

More information

The multiplicative structure of finite field and a construction of LRC

The multiplicative structure of finite field and a construction of LRC IERG6120 Codig for Distributed Storage Systems Lecture 8-06/10/2016 The multiplicative structure of fiite field ad a costructio of LRC Lecturer: Keeth Shum Scribe: Zhouyi Hu Notatios: We use the otatio

More information

Reliability and Queueing

Reliability and Queueing Copyright 999 Uiversity of Califoria Reliability ad Queueig by David G. Messerschmitt Supplemetary sectio for Uderstadig Networked Applicatios: A First Course, Morga Kaufma, 999. Copyright otice: Permissio

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

The Method of Least Squares. To understand least squares fitting of data.

The Method of Least Squares. To understand least squares fitting of data. The Method of Least Squares KEY WORDS Curve fittig, least square GOAL To uderstad least squares fittig of data To uderstad the least squares solutio of icosistet systems of liear equatios 1 Motivatio Curve

More information

Lecture 10: Universal coding and prediction

Lecture 10: Universal coding and prediction 0-704: Iformatio Processig ad Learig Sprig 0 Lecture 0: Uiversal codig ad predictio Lecturer: Aarti Sigh Scribes: Georg M. Goerg Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

2 Banach spaces and Hilbert spaces

2 Banach spaces and Hilbert spaces 2 Baach spaces ad Hilbert spaces Tryig to do aalysis i the ratioal umbers is difficult for example cosider the set {x Q : x 2 2}. This set is o-empty ad bouded above but does ot have a least upper boud

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Notes 5 : More on the a.s. convergence of sums

Notes 5 : More on the a.s. convergence of sums Notes 5 : More o the a.s. covergece of sums Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: Dur0, Sectios.5; Wil9, Sectio 4.7, Shi96, Sectio IV.4, Dur0, Sectio.. Radom series. Three-series

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36 Probability Distributios A Example With Dice If X is a radom variable o sample space S, the the probablity that X takes o the value c is Similarly, Pr(X = c) = Pr({s S X(s) = c} Pr(X c) = Pr({s S X(s)

More information

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes.

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes. Term Test October 3, 003 Name Math 56 Studet Number Directio: This test is worth 50 poits. You are required to complete this test withi 50 miutes. I order to receive full credit, aswer each problem completely

More information

Lecture Notes 15 Hypothesis Testing (Chapter 10)

Lecture Notes 15 Hypothesis Testing (Chapter 10) 1 Itroductio Lecture Notes 15 Hypothesis Testig Chapter 10) Let X 1,..., X p θ x). Suppose we we wat to kow if θ = θ 0 or ot, where θ 0 is a specific value of θ. For example, if we are flippig a coi, we

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desig ad Aalysis of Algorithms Probabilistic aalysis ad Radomized algorithms Referece: CLRS Chapter 5 Topics: Hirig problem Idicatio radom variables Radomized algorithms Huo Hogwei 1 The hirig problem

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

ECE 901 Lecture 13: Maximum Likelihood Estimation

ECE 901 Lecture 13: Maximum Likelihood Estimation ECE 90 Lecture 3: Maximum Likelihood Estimatio R. Nowak 5/7/009 The focus of this lecture is to cosider aother approach to learig based o maximum likelihood estimatio. Ulike earlier approaches cosidered

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2013 Aat Sahai Lecture 18 Iferece Oe of the major uses of probability is to provide a systematic framework to perform iferece uder ucertaity. A

More information

ECE 308 Discrete-Time Signals and Systems

ECE 308 Discrete-Time Signals and Systems ECE 38-5 ECE 38 Discrete-Time Sigals ad Systems Z. Aliyazicioglu Electrical ad Computer Egieerig Departmet Cal Poly Pomoa ECE 38-5 1 Additio, Multiplicatio, ad Scalig of Sequeces Amplitude Scalig: (A Costat

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Lecture 16. Multiple Random Variables and Applications to Inference

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Lecture 16. Multiple Random Variables and Applications to Inference CS 70 Discrete Mathematics ad Probability Theory Fall 2009 Satish Rao,David Tse Lecture 16 Multiple Radom Variables ad Applicatios to Iferece I may probability problems, we have to deal with multiple r.v.

More information

Lecture 11: Channel Coding Theorem: Converse Part

Lecture 11: Channel Coding Theorem: Converse Part EE376A/STATS376A Iformatio Theory Lecture - 02/3/208 Lecture : Chael Codig Theorem: Coverse Part Lecturer: Tsachy Weissma Scribe: Erdem Bıyık I this lecture, we will cotiue our discussio o chael codig

More information

1 Review and Overview

1 Review and Overview CS9T/STATS3: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #6 Scribe: Jay Whag ad Patrick Cho October 0, 08 Review ad Overview Recall i the last lecture that for ay family of scalar fuctios F, we

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Efficient GMM LECTURE 12 GMM II

Efficient GMM LECTURE 12 GMM II DECEMBER 1 010 LECTURE 1 II Efficiet The estimator depeds o the choice of the weight matrix A. The efficiet estimator is the oe that has the smallest asymptotic variace amog all estimators defied by differet

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Law of the sum of Bernoulli random variables

Law of the sum of Bernoulli random variables Law of the sum of Beroulli radom variables Nicolas Chevallier Uiversité de Haute Alsace, 4, rue des frères Lumière 68093 Mulhouse icolas.chevallier@uha.fr December 006 Abstract Let be the set of all possible

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS CSE 55 RANDOMIZED AND APPROXIMATION ALGORITHMS 1. Questio 1. a) The larger the value of k is, the smaller the expected umber of days util we get all the coupos we eed. I fact if = k

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

Lecture 6: Source coding, Typicality, and Noisy channels and capacity

Lecture 6: Source coding, Typicality, and Noisy channels and capacity 15-859: Iformatio Theory ad Applicatios i TCS CMU: Sprig 2013 Lecture 6: Source codig, Typicality, ad Noisy chaels ad capacity Jauary 31, 2013 Lecturer: Mahdi Cheraghchi Scribe: Togbo Huag 1 Recap Uiversal

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

ECEN 655: Advanced Channel Coding Spring Lecture 7 02/04/14. Belief propagation is exact on tree-structured factor graphs.

ECEN 655: Advanced Channel Coding Spring Lecture 7 02/04/14. Belief propagation is exact on tree-structured factor graphs. ECEN 655: Advaced Chael Codig Sprig 014 Prof. Hery Pfister Lecture 7 0/04/14 Scribe: Megke Lia 1 4-Cycles i Gallager s Esemble What we already kow: Belief propagatio is exact o tree-structured factor graphs.

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

Singular Continuous Measures by Michael Pejic 5/14/10

Singular Continuous Measures by Michael Pejic 5/14/10 Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

2.1. The Algebraic and Order Properties of R Definition. A binary operation on a set F is a function B : F F! F.

2.1. The Algebraic and Order Properties of R Definition. A binary operation on a set F is a function B : F F! F. CHAPTER 2 The Real Numbers 2.. The Algebraic ad Order Properties of R Defiitio. A biary operatio o a set F is a fuctio B : F F! F. For the biary operatios of + ad, we replace B(a, b) by a + b ad a b, respectively.

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Kurskod: TAMS11 Provkod: TENB 21 March 2015, 14:00-18:00. English Version (no Swedish Version)

Kurskod: TAMS11 Provkod: TENB 21 March 2015, 14:00-18:00. English Version (no Swedish Version) Kurskod: TAMS Provkod: TENB 2 March 205, 4:00-8:00 Examier: Xiagfeg Yag (Tel: 070 2234765). Please aswer i ENGLISH if you ca. a. You are allowed to use: a calculator; formel -och tabellsamlig i matematisk

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Fixed-Threshold Polar Codes

Fixed-Threshold Polar Codes Fixed-Threshold Polar Codes Jig Guo Uiversity of Cambridge jg582@cam.ac.uk Albert Guillé i Fàbregas ICREA & Uiversitat Pompeu Fabra Uiversity of Cambridge guille@ieee.org Jossy Sayir Uiversity of Cambridge

More information

PRELIM PROBLEM SOLUTIONS

PRELIM PROBLEM SOLUTIONS PRELIM PROBLEM SOLUTIONS THE GRAD STUDENTS + KEN Cotets. Complex Aalysis Practice Problems 2. 2. Real Aalysis Practice Problems 2. 4 3. Algebra Practice Problems 2. 8. Complex Aalysis Practice Problems

More information

1 Review and Overview

1 Review and Overview DRAFT a fial versio will be posted shortly CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #3 Scribe: Migda Qiao October 1, 2013 1 Review ad Overview I the first half of this course,

More information

TMA4245 Statistics. Corrected 30 May and 4 June Norwegian University of Science and Technology Department of Mathematical Sciences.

TMA4245 Statistics. Corrected 30 May and 4 June Norwegian University of Science and Technology Department of Mathematical Sciences. Norwegia Uiversity of Sciece ad Techology Departmet of Mathematical Scieces Corrected 3 May ad 4 Jue Solutios TMA445 Statistics Saturday 6 May 9: 3: Problem Sow desity a The probability is.9.5 6x x dx

More information

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 17 Lecturer: David Wagner April 3, Notes 17 for CS 170

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 17 Lecturer: David Wagner April 3, Notes 17 for CS 170 UC Berkeley CS 170: Efficiet Algorithms ad Itractable Problems Hadout 17 Lecturer: David Wager April 3, 2003 Notes 17 for CS 170 1 The Lempel-Ziv algorithm There is a sese i which the Huffma codig was

More information

Regression and generalization

Regression and generalization Regressio ad geeralizatio CE-717: Machie Learig Sharif Uiversity of Techology M. Soleymai Fall 2016 Curve fittig: probabilistic perspective Describig ucertaity over value of target variable as a probability

More information

Information Theory and Statistics Lecture 4: Lempel-Ziv code

Information Theory and Statistics Lecture 4: Lempel-Ziv code Iformatio Theory ad Statistics Lecture 4: Lempel-Ziv code Łukasz Dębowski ldebowsk@ipipa.waw.pl Ph. D. Programme 203/204 Etropy rate is the limitig compressio rate Theorem For a statioary process (X i)

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Lecture 6: Coupon Collector s problem

Lecture 6: Coupon Collector s problem Radomized Algorithms Lecture 6: Coupo Collector s problem Sotiris Nikoletseas Professor CEID - ETY Course 2017-2018 Sotiris Nikoletseas, Professor Radomized Algorithms - Lecture 6 1 / 16 Variace: key features

More information