Lecture 6: Source coding, Typicality, and Noisy channels and capacity

Size: px
Start display at page:

Download "Lecture 6: Source coding, Typicality, and Noisy channels and capacity"

Transcription

1 15-859: Iformatio Theory ad Applicatios i TCS CMU: Sprig 2013 Lecture 6: Source codig, Typicality, ad Noisy chaels ad capacity Jauary 31, 2013 Lecturer: Mahdi Cheraghchi Scribe: Togbo Huag 1 Recap Uiversal Source Codig: Lempel-Ziv Algorithm ad its optimality. Please see otes of last lecture. 2 Source Codig by Typicality 2.1 AEP ad Typical Set We have leared AEP i lecture 4, ad here is the defiitio oce agai: Theorem 1 (AEP If x 1, x 2,..., x are i.i.d p(x, the log p(x 1,x 2,...,x H(x i probability. Now, we ca defie a typical set give the defiitio of AEP: Defiitio 2 (Typical Set The typical set A ( (x 1, x 2,..., x χ ( with the property with respect to p(x is the set of sequeces 2 H(X+ p(x 1, x 2,..., x 2 H(X (1 Theorem 3 (Properties of Typical Set As a cosequece of AEP, we ca show that the set A ( comes with followig properties: 1. If is large eough, the P r(x 1 A ( A ( 2 H(X+, where A deotes the umber of elemets i the typical set. 2.2 Data Compressio with AEP We ca divide all sequeces i χ ito two sets: those i the typical set ad those i its complemet. This is illustrated i 2.2: Figure 6.1. Ecode each x 1 A ( by its idex i A ( (with a leadig zero. Also, ecode x 1 / A ( trivially (with a leadig oe. Such ecodig with esure uiqueess sice the decoder kows the distributio ad ca tell the elemets i typical set with the leadig bit. 1

2 Figure 1: Typical sets ad source codig Now we ca calculate the expected legth. E(l(x 1 = Σ x 1 χ P (x 1 l(x 1 = Σ x 1 A (P (x 1 l(x 1 + Σ x cp 1 A ( (x 1 l(x 1 Σ x 1 A (P (x 1 l((h(x Σ x cp 1 A ( (x 1 l(log χ + 2 (H + + log χ + 2 (H(x + (2 where = + log χ + 2 ca be made arbitrarily small by appropriate choice of ad. This ca be i terms tured ito a uiversal codig scheme for all source χ with bouded H(x h. (Roughly speakig, this is Csiszar-Körer Uiversal Source Codig. Here, we cosider oly source x s.t. x p(x = it X, which is used to limit the umber of uique distributio for uio boud. Also, we eed a bouded iitial source, so the typical set also works for small etropy sets. 3 Joit Typicality Defiitio 4 (Joitly Typical Set The set A ( of joitly typical sequeces (x, y with respect to the distributio p(x, y is the set of -sequeces with empirical etropies close to the true etropies: where p(x, y = i=1 p(x i, y i. A ( = {(x, y X Y : log p(x 1, y 1 log p(x 1 log p(y 1 H(x, y, H(x, H(y } (3 2

3 Theorem 5 (Joit AEP From the defiitio of joitly typical set, we have followig properties: 1. P r(x 1, y 1 A( 1 as 2. For large, (1 2 (H(x,y A ( 2 (H(x,y+ 3. If ( x 1, y 1 p(x 1 p(y 1 idepedet ad has the same margial distributio, but ot joit distributio, the (1 2 (I(x;y+3 P r( x 1, y 1 A( 2 (H(x,y+. Proof: 1. Accordig to the weak law of large umbers: > 0, 0, s.t. > 0, P r( log p(x 1 H(x 3, P r( log p(y 1 H(y 3, P r( log p(x 1,y 1 H(x, y 3. Property is easily proved with uio boud. 2. The upper boud follow from the oe variable AEP. To prove the lower boud, we take large eough so that: 3. For property 3, 1 P r(a ( = Σ (x p(x 1,y1 A( 1, y1 P r( x 1, y 1 A( = Σ (x p(x 1,y1 A( 1, y1 Ad the proof is similar for lower boud. A ( 2 (H(x,y (4 = 2 (H(x,y+ 2 (H(x 2 (H(y (by property 2 = 2 (I(x,y 3 (5 4 Chael Codig 4.1 Defiitio We ow prove what is perhaps the basic theorem of iformatio theory, the achievablility of chael capacity, first stated ad essetially proved by Shao i his origial 1948 paper. The result is rather couterituitive; if the chael itroduces errors, how ca oe correct them all? Ay correctio process is also subject to error, ad ifiitum. Shao used a umber of ew ideas to prove that iformatio ca be set reliably over a chael at all rates up to the chael capacity. Let s take a look at how chael work first, please see 4.1: Figure 6.2. A discrete chael ca be viewed as trasformig iput x to output y through probability p(y x. Meawhile, chael ca also be viewed as a probability trasformatio matrix as i 4.1: Figure

4 Figure 2: Illustratio of chael codig Figure 3: A probability trasformatio matrix 4.2 Examples Noiseless Chael Iput Output Probability Trasformatio Matrix: ( Noiseless Chael, Upredictable Output Iput Output Probability Trasformatio Matrix: ( 1/2 1/ /2 1/ Biary Symmetric Chael (BSC(p Iput Output Probability p 0 1 p 1 0 p p Trasformatio Matrix: ( 1 p p p 1 p Biary Erasure Chael (BEC(p 4

5 Iput Output Probability p 0 e p 1 e p p Trasformatio Matrix: ( 1 p p p p 4.3 Chael Capacity 4.4 Defiitio Defiitio 6 We defie chael capacity of a discreet memoryless chael as: C = max I(x; y (6 p(x Which is takig the best mutual iformatio amog all distributio i the trasformatio matrix. 4.5 Examples Noiseless Chael I(x; y = H(x = 1 for uiform x (lower boud Noiseless Chael, Upredictable Output I(x; y = H(x H(x y = 1, sice y determies x BSC(p I(x; y = H(y H(y x = H(y Σp(xH(y X = x = H(y h(p 1 h(p (7 For uiform x, uiform y, C = 1 h(p BEC(p C = max p(x H(y h(p H(y = H(y, erasure = H( erasure + H(y erasure = h(p + (1 ph(p 1 where p 1 = P r(x 1, which meas o ifo gai if erasure happes C = max p 1 (1 ph(p 1 = (1 p(p 1 = 1/2 (8 5

Lecture 14: Graph Entropy

Lecture 14: Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS Sprig 2013 Lecture 14: Graph Etropy March 19, 2013 Lecturer: Mahdi Cheraghchi Scribe: Euiwoog Lee 1 Recap Bergma s boud o the permaet Shearer s Lemma Number

More information

Entropy and Ergodic Theory Lecture 5: Joint typicality and conditional AEP

Entropy and Ergodic Theory Lecture 5: Joint typicality and conditional AEP Etropy ad Ergodic Theory Lecture 5: Joit typicality ad coditioal AEP 1 Notatio: from RVs back to distributios Let (Ω, F, P) be a probability space, ad let X ad Y be A- ad B-valued discrete RVs, respectively.

More information

Lecture 15: Strong, Conditional, & Joint Typicality

Lecture 15: Strong, Conditional, & Joint Typicality EE376A/STATS376A Iformatio Theory Lecture 15-02/27/2018 Lecture 15: Strog, Coditioal, & Joit Typicality Lecturer: Tsachy Weissma Scribe: Nimit Sohoi, William McCloskey, Halwest Mohammad I this lecture,

More information

Information Theory and Statistics Lecture 4: Lempel-Ziv code

Information Theory and Statistics Lecture 4: Lempel-Ziv code Iformatio Theory ad Statistics Lecture 4: Lempel-Ziv code Łukasz Dębowski ldebowsk@ipipa.waw.pl Ph. D. Programme 203/204 Etropy rate is the limitig compressio rate Theorem For a statioary process (X i)

More information

Entropies & Information Theory

Entropies & Information Theory Etropies & Iformatio Theory LECTURE I Nilajaa Datta Uiversity of Cambridge,U.K. For more details: see lecture otes (Lecture 1- Lecture 5) o http://www.qi.damtp.cam.ac.uk/ode/223 Quatum Iformatio Theory

More information

Shannon s noiseless coding theorem

Shannon s noiseless coding theorem 18.310 lecture otes May 4, 2015 Shao s oiseless codig theorem Lecturer: Michel Goemas I these otes we discuss Shao s oiseless codig theorem, which is oe of the foudig results of the field of iformatio

More information

Lecture 11: Channel Coding Theorem: Converse Part

Lecture 11: Channel Coding Theorem: Converse Part EE376A/STATS376A Iformatio Theory Lecture - 02/3/208 Lecture : Chael Codig Theorem: Coverse Part Lecturer: Tsachy Weissma Scribe: Erdem Bıyık I this lecture, we will cotiue our discussio o chael codig

More information

Lecture 7: Channel coding theorem for discrete-time continuous memoryless channel

Lecture 7: Channel coding theorem for discrete-time continuous memoryless channel Lecture 7: Chael codig theorem for discrete-time cotiuous memoryless chael Lectured by Dr. Saif K. Mohammed Scribed by Mirsad Čirkić Iformatio Theory for Wireless Commuicatio ITWC Sprig 202 Let us first

More information

Lecture 16: Monotone Formula Lower Bounds via Graph Entropy. 2 Monotone Formula Lower Bounds via Graph Entropy

Lecture 16: Monotone Formula Lower Bounds via Graph Entropy. 2 Monotone Formula Lower Bounds via Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS CMU: Sprig 2013 Lecture 16: Mootoe Formula Lower Bouds via Graph Etropy March 26, 2013 Lecturer: Mahdi Cheraghchi Scribe: Shashak Sigh 1 Recap Graph Etropy:

More information

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 17 Lecturer: David Wagner April 3, Notes 17 for CS 170

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 17 Lecturer: David Wagner April 3, Notes 17 for CS 170 UC Berkeley CS 170: Efficiet Algorithms ad Itractable Problems Hadout 17 Lecturer: David Wager April 3, 2003 Notes 17 for CS 170 1 The Lempel-Ziv algorithm There is a sese i which the Huffma codig was

More information

Refinement of Two Fundamental Tools in Information Theory

Refinement of Two Fundamental Tools in Information Theory Refiemet of Two Fudametal Tools i Iformatio Theory Raymod W. Yeug Istitute of Network Codig The Chiese Uiversity of Hog Kog Joit work with Siu Wai Ho ad Sergio Verdu Discotiuity of Shao s Iformatio Measures

More information

Lecture 10: Universal coding and prediction

Lecture 10: Universal coding and prediction 0-704: Iformatio Processig ad Learig Sprig 0 Lecture 0: Uiversal codig ad predictio Lecturer: Aarti Sigh Scribes: Georg M. Goerg Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved

More information

Multiterminal Source Coding with an Entropy-Based Distortion Measure

Multiterminal Source Coding with an Entropy-Based Distortion Measure 20 IEEE Iteratioal Symposium o Iformatio Theory Proceedigs Multitermial Source Codig with a Etropy-Based Distortio Measure Thomas A. Courtade ad Richard D. Wesel Departmet of Electrical Egieerig Uiversity

More information

EE 4TM4: Digital Communications II Information Measures

EE 4TM4: Digital Communications II Information Measures EE 4TM4: Digital Commuicatios II Iformatio Measures Defiitio : The etropy H(X) of a discrete radom variable X is defied by We also write H(p) for the above quatity. Lemma : H(X) 0. H(X) = x X Proof: 0

More information

Universal source coding for complementary delivery

Universal source coding for complementary delivery SITA2006 i Hakodate 2005.2. p. Uiversal source codig for complemetary delivery Akisato Kimura, 2, Tomohiko Uyematsu 2, Shigeaki Kuzuoka 2 Media Iformatio Laboratory, NTT Commuicatio Sciece Laboratories,

More information

L = n i, i=1. dp p n 1

L = n i, i=1. dp p n 1 Exchageable sequeces ad probabilities for probabilities 1996; modified 98 5 21 to add material o mutual iformatio; modified 98 7 21 to add Heath-Sudderth proof of de Fietti represetatio; modified 99 11

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

Asymptotic Coupling and Its Applications in Information Theory

Asymptotic Coupling and Its Applications in Information Theory Asymptotic Couplig ad Its Applicatios i Iformatio Theory Vicet Y. F. Ta Joit Work with Lei Yu Departmet of Electrical ad Computer Egieerig, Departmet of Mathematics, Natioal Uiversity of Sigapore IMS-APRM

More information

Notes on Information Theory by Jeff Steif

Notes on Information Theory by Jeff Steif Notes o Iformatio Theory by Jeff Steif 1 Etropy, the Shao-McMilla-Breima Theorem ad Data Compressio These otes will cotai some aspects of iformatio theory. We will cosider some REAL problems that REAL

More information

Lecture 7: October 18, 2017

Lecture 7: October 18, 2017 Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

More information

Universal Codes for Finite Sequences of Integers Drawn from a Monotone Distribution

Universal Codes for Finite Sequences of Integers Drawn from a Monotone Distribution Uiversal Codes for Fiite Sequeces of Itegers Draw from a Mootoe Distributio Dea P. Foster, Robert A. Stie & Abraham J. Wyer Departmet of Statistics The Wharto School of the Uiversity of Pesylvaia Philadelphia,

More information

The method of types. PhD short course Information Theory and Statistics Siena, September, Mauro Barni University of Siena

The method of types. PhD short course Information Theory and Statistics Siena, September, Mauro Barni University of Siena PhD short course Iformatio Theory ad Statistics Siea, 15-19 September, 2014 The method of types Mauro Bari Uiversity of Siea Outlie of the course Part 1: Iformatio theory i a utshell Part 2: The method

More information

Entropy Rates and Asymptotic Equipartition

Entropy Rates and Asymptotic Equipartition Chapter 29 Etropy Rates ad Asymptotic Equipartitio Sectio 29. itroduces the etropy rate the asymptotic etropy per time-step of a stochastic process ad shows that it is well-defied; ad similarly for iformatio,

More information

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes The Maximum-Lielihood Decodig Performace of Error-Correctig Codes Hery D. Pfister ECE Departmet Texas A&M Uiversity August 27th, 2007 (rev. 0) November 2st, 203 (rev. ) Performace of Codes. Notatio X,

More information

Cooperative Communication Fundamentals & Coding Techniques

Cooperative Communication Fundamentals & Coding Techniques 3 th ICACT Tutorial Cooperative commuicatio fudametals & codig techiques Cooperative Commuicatio Fudametals & Codig Techiques 0..4 Electroics ad Telecommuicatio Research Istitute Kiug Jug 3 th ICACT Tutorial

More information

Lecture 2: Concentration Bounds

Lecture 2: Concentration Bounds CSE 52: Desig ad Aalysis of Algorithms I Sprig 206 Lecture 2: Cocetratio Bouds Lecturer: Shaya Oveis Ghara March 30th Scribe: Syuzaa Sargsya Disclaimer: These otes have ot bee subjected to the usual scrutiy

More information

Introduction to Probability. Ariel Yadin. Lecture 7

Introduction to Probability. Ariel Yadin. Lecture 7 Itroductio to Probability Ariel Yadi Lecture 7 1. Idepedece Revisited 1.1. Some remiders. Let (Ω, F, P) be a probability space. Give a collectio of subsets K F, recall that the σ-algebra geerated by K,

More information

Multiterminal source coding with complementary delivery

Multiterminal source coding with complementary delivery Iteratioal Symposium o Iformatio Theory ad its Applicatios, ISITA2006 Seoul, Korea, October 29 November 1, 2006 Multitermial source codig with complemetary delivery Akisato Kimura ad Tomohiko Uyematsu

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Information Theory Tutorial Communication over Channels with memory. Chi Zhang Department of Electrical Engineering University of Notre Dame

Information Theory Tutorial Communication over Channels with memory. Chi Zhang Department of Electrical Engineering University of Notre Dame Iformatio Theory Tutorial Commuicatio over Chaels with memory Chi Zhag Departmet of Electrical Egieerig Uiversity of Notre Dame Abstract A geeral capacity formula C = sup I(; Y ), which is correct for

More information

Hashing and Amortization

Hashing and Amortization Lecture Hashig ad Amortizatio Supplemetal readig i CLRS: Chapter ; Chapter 7 itro; Sectio 7.. Arrays ad Hashig Arrays are very useful. The items i a array are statically addressed, so that isertig, deletig,

More information

Lecture 9: Expanders Part 2, Extractors

Lecture 9: Expanders Part 2, Extractors Lecture 9: Expaders Part, Extractors Topics i Complexity Theory ad Pseudoradomess Sprig 013 Rutgers Uiversity Swastik Kopparty Scribes: Jaso Perry, Joh Kim I this lecture, we will discuss further the pseudoradomess

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer ad Commuicatio Scieces Hadout Iformatio Theory ad Sigal Processig Compressio ad Quatizatio November 0, 207 Data compressio Notatio Give a set

More information

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE Geeral e Image Coder Structure Motio Video (s 1,s 2,t) or (s 1,s 2 ) Natural Image Samplig A form of data compressio; usually lossless, but ca be lossy Redudacy Removal Lossless compressio: predictive

More information

Lecture 18: Sampling distributions

Lecture 18: Sampling distributions Lecture 18: Samplig distributios I may applicatios, the populatio is oe or several ormal distributios (or approximately). We ow study properties of some importat statistics based o a radom sample from

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

Lecture 5: April 17, 2013

Lecture 5: April 17, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 5: April 7, 203 Scribe: Somaye Hashemifar Cheroff bouds recap We recall the Cheroff/Hoeffdig bouds we derived i the last lecture idepedet

More information

Lecture 2 February 8, 2016

Lecture 2 February 8, 2016 MIT 6.854/8.45: Advaced Algorithms Sprig 206 Prof. Akur Moitra Lecture 2 February 8, 206 Scribe: Calvi Huag, Lih V. Nguye I this lecture, we aalyze the problem of schedulig equal size tasks arrivig olie

More information

Information Theory and Coding

Information Theory and Coding Sol. Iformatio Theory ad Codig. The capacity of a bad-limited additive white Gaussia (AWGN) chael is give by C = Wlog 2 ( + σ 2 W ) bits per secod(bps), where W is the chael badwidth, is the average power

More information

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables CSCI-B609: A Theorist s Toolkit, Fall 06 Aug 3 Lecture 0: the Cetral Limit Theorem Lecturer: Yua Zhou Scribe: Yua Xie & Yua Zhou Cetral Limit Theorem for iid radom variables Let us say that we wat to aalyze

More information

6. Sufficient, Complete, and Ancillary Statistics

6. Sufficient, Complete, and Ancillary Statistics Sufficiet, Complete ad Acillary Statistics http://www.math.uah.edu/stat/poit/sufficiet.xhtml 1 of 7 7/16/2009 6:13 AM Virtual Laboratories > 7. Poit Estimatio > 1 2 3 4 5 6 6. Sufficiet, Complete, ad Acillary

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

Math 25 Solutions to practice problems

Math 25 Solutions to practice problems Math 5: Advaced Calculus UC Davis, Sprig 0 Math 5 Solutios to practice problems Questio For = 0,,, 3,... ad 0 k defie umbers C k C k =! k!( k)! (for k = 0 ad k = we defie C 0 = C = ). by = ( )... ( k +

More information

Spring Information Theory Midterm (take home) Due: Tue, Mar 29, 2016 (in class) Prof. Y. Polyanskiy. P XY (i, j) = α 2 i 2j

Spring Information Theory Midterm (take home) Due: Tue, Mar 29, 2016 (in class) Prof. Y. Polyanskiy. P XY (i, j) = α 2 i 2j Sprig 206 6.44 - Iformatio Theory Midterm (take home) Due: Tue, Mar 29, 206 (i class) Prof. Y. Polyaskiy Rules. Collaboratio strictly prohibited. 2. Write rigorously, prove all claims. 3. You ca use otes

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Lecture 11: Pseudorandom functions

Lecture 11: Pseudorandom functions COM S 6830 Cryptography Oct 1, 2009 Istructor: Rafael Pass 1 Recap Lecture 11: Pseudoradom fuctios Scribe: Stefao Ermo Defiitio 1 (Ge, Ec, Dec) is a sigle message secure ecryptio scheme if for all uppt

More information

Agnostic Learning and Concentration Inequalities

Agnostic Learning and Concentration Inequalities ECE901 Sprig 2004 Statistical Regularizatio ad Learig Theory Lecture: 7 Agostic Learig ad Cocetratio Iequalities Lecturer: Rob Nowak Scribe: Aravid Kailas 1 Itroductio 1.1 Motivatio I the last lecture

More information

A New Achievability Scheme for the Relay Channel

A New Achievability Scheme for the Relay Channel A New Achievability Scheme for the Relay Chael Wei Kag Seur Ulukus Departmet of Electrical ad Computer Egieerig Uiversity of Marylad, College Park, MD 20742 wkag@umd.edu ulukus@umd.edu October 4, 2007

More information

4.1 Data processing inequality

4.1 Data processing inequality ECE598: Iformatio-theoretic methods i high-dimesioal statistics Sprig 206 Lecture 4: Total variatio/iequalities betwee f-divergeces Lecturer: Yihog Wu Scribe: Matthew Tsao, Feb 8, 206 [Ed. Mar 22] Recall

More information

Lecture 1: Basic problems of coding theory

Lecture 1: Basic problems of coding theory Lecture 1: Basic problems of codig theory Error-Correctig Codes (Sprig 016) Rutgers Uiversity Swastik Kopparty Scribes: Abhishek Bhrushudi & Aditya Potukuchi Admiistrivia was discussed at the begiig of

More information

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound Lecture 7 Ageda for the lecture Gaussia chael with average power costraits Capacity of additive Gaussia oise chael ad the sphere packig boud 7. Additive Gaussia oise chael Up to this poit, we have bee

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

Notes 19 : Martingale CLT

Notes 19 : Martingale CLT Notes 9 : Martigale CLT Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: [Bil95, Chapter 35], [Roc, Chapter 3]. Sice we have ot ecoutered weak covergece i some time, we first recall

More information

Inequalities for Entropies of Sets of Subsets of Random Variables

Inequalities for Entropies of Sets of Subsets of Random Variables Iequalities for Etropies of Sets of Subsets of Radom Variables Chao Tia AT&T Labs-Research Florham Par, NJ 0792, USA. tia@research.att.com Abstract Ha s iequality o the etropy rates of subsets of radom

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

Fixed-Threshold Polar Codes

Fixed-Threshold Polar Codes Fixed-Threshold Polar Codes Jig Guo Uiversity of Cambridge jg582@cam.ac.uk Albert Guillé i Fàbregas ICREA & Uiversitat Pompeu Fabra Uiversity of Cambridge guille@ieee.org Jossy Sayir Uiversity of Cambridge

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Homework 2. Show that if h is a bounded sesquilinear form on the Hilbert spaces X and Y, then h has the representation

Homework 2. Show that if h is a bounded sesquilinear form on the Hilbert spaces X and Y, then h has the representation omework 2 1 Let X ad Y be ilbert spaces over C The a sesquiliear form h o X Y is a mappig h : X Y C such that for all x 1, x 2, x X, y 1, y 2, y Y ad all scalars α, β C we have (a) h(x 1 + x 2, y) h(x

More information

Information-based Feature Selection

Information-based Feature Selection Iformatio-based Feature Selectio Farza Faria, Abbas Kazeroui, Afshi Babveyh Email: {faria,abbask,afshib}@staford.edu 1 Itroductio Feature selectio is a topic of great iterest i applicatios dealig with

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

1 Hash tables. 1.1 Implementation

1 Hash tables. 1.1 Implementation Lecture 8 Hash Tables, Uiversal Hash Fuctios, Balls ad Bis Scribes: Luke Johsto, Moses Charikar, G. Valiat Date: Oct 18, 2017 Adapted From Virgiia Williams lecture otes 1 Hash tables A hash table is a

More information

1 Review and Overview

1 Review and Overview DRAFT a fial versio will be posted shortly CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #3 Scribe: Migda Qiao October 1, 2013 1 Review ad Overview I the first half of this course,

More information

1. Universal v.s. non-universal: know the source distribution or not.

1. Universal v.s. non-universal: know the source distribution or not. 28. Radom umber geerators Let s play the followig game: Give a stream of Ber( p) bits, with ukow p, we wat to tur them ito pure radom bits, i.e., idepedet fair coi flips Ber( / 2 ). Our goal is to fid

More information

Computability and computational complexity

Computability and computational complexity Computability ad computatioal complexity Lecture 4: Uiversal Turig machies. Udecidability Io Petre Computer Sciece, Åbo Akademi Uiversity Fall 2015 http://users.abo.fi/ipetre/computability/ 21. toukokuu

More information

Lecture 4: Unique-SAT, Parity-SAT, and Approximate Counting

Lecture 4: Unique-SAT, Parity-SAT, and Approximate Counting Advaced Complexity Theory Sprig 206 Lecture 4: Uique-SAT, Parity-SAT, ad Approximate Coutig Prof. Daa Moshkovitz Scribe: Aoymous Studet Scribe Date: Fall 202 Overview I this lecture we begi talkig about

More information

ε-capacity and Strong Converse for Channels with General State

ε-capacity and Strong Converse for Channels with General State ε-capacity ad Strog Coverse for Chaels with Geeral State Marco Tomamichel Cetre for Quatum Techologies, Natioal Uiversity of Sigapore Email: cqtmarco@us.edu.sg Vicet Y. F. Ta Istitute for Ifocomm Research,

More information

Differential Entropy

Differential Entropy School o Iormatio Sciece Dieretial Etropy 009 - Course - Iormatio Theory - Tetsuo Asao ad Tad matsumoto Email: {t-asao matumoto}@jaist.ac.jp Japa Advaced Istitute o Sciece ad Techology Asahidai - Nomi

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

bounds and in which F (n k) n q s.t. HG T = 0.

bounds and in which F (n k) n q s.t. HG T = 0. 6. Liear codes. Chael capacity Recall that last time we showed the followig achievability bouds: Shao s: P e P [i(x; Y ) log M + τ] + exp{ τ} M DT: P e E [ exp { (i( X; Y ) log ) + }] Feistei s: P e,max

More information

10-704: Information Processing and Learning Spring Lecture 10: Feb 12

10-704: Information Processing and Learning Spring Lecture 10: Feb 12 10-704: Iformatio Processig ad Learig Sprig 2015 Lecture 10: Feb 12 Lecturer: Akshay Krishamurthy Scribe: Dea Asta, Kirthevasa Kadasamy Disclaimer: These otes have ot bee subjected to the usual scrutiy

More information

Arithmetic Distribution Matching

Arithmetic Distribution Matching Arithmetic Distributio Matchig Sebastia Baur ad Georg Böcherer Istitute for Commuicatios Egieerig Techische Uiversität Müche, Germay Email: baursebastia@mytum.de,georg.boecherer@tum.de arxiv:48.393v [cs.it]

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

Introduction to Probability. Ariel Yadin. Lecture 2

Introduction to Probability. Ariel Yadin. Lecture 2 Itroductio to Probability Ariel Yadi Lecture 2 1. Discrete Probability Spaces Discrete probability spaces are those for which the sample space is coutable. We have already see that i this case we ca take

More information

Lecture 23: Minimal sufficiency

Lecture 23: Minimal sufficiency Lecture 23: Miimal sufficiecy Maximal reductio without loss of iformatio There are may sufficiet statistics for a give problem. I fact, X (the whole data set) is sufficiet. If T is a sufficiet statistic

More information

Module 5 EMBEDDED WAVELET CODING. Version 2 ECE IIT, Kharagpur

Module 5 EMBEDDED WAVELET CODING. Version 2 ECE IIT, Kharagpur Module 5 EMBEDDED WAVELET CODING Versio ECE IIT, Kharagpur Lesso 4 SPIHT algorithm Versio ECE IIT, Kharagpur Istructioal Objectives At the ed of this lesso, the studets should be able to:. State the limitatios

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 3 9//203 Large deviatios Theory. Cramér s Theorem Cotet.. Cramér s Theorem. 2. Rate fuctio ad properties. 3. Chage of measure techique.

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

Solutions to HW Assignment 1

Solutions to HW Assignment 1 Solutios to HW: 1 Course: Theory of Probability II Page: 1 of 6 Uiversity of Texas at Austi Solutios to HW Assigmet 1 Problem 1.1. Let Ω, F, {F } 0, P) be a filtered probability space ad T a stoppig time.

More information

Channel coding, linear block codes, Hamming and cyclic codes Lecture - 8

Channel coding, linear block codes, Hamming and cyclic codes Lecture - 8 Digital Commuicatio Chael codig, liear block codes, Hammig ad cyclic codes Lecture - 8 Ir. Muhamad Asial, MSc., PhD Ceter for Iformatio ad Commuicatio Egieerig Research (CICER) Electrical Egieerig Departmet

More information

The source coding game with a cheating switcher

The source coding game with a cheating switcher The source codig game with a cheatig switcher Hari Palaiyaur hpalaiya@eecsberkeleyedu Cheg Chag cchag@eecsberkeleyedu Departmet of Electrical Egieerig ad Computer Scieces Uiversity of Califoria at Berkeley

More information

5 Birkhoff s Ergodic Theorem

5 Birkhoff s Ergodic Theorem 5 Birkhoff s Ergodic Theorem Amog the most useful of the various geeralizatios of KolmogorovâĂŹs strog law of large umbers are the ergodic theorems of Birkhoff ad Kigma, which exted the validity of the

More information

Lecture 9: Pseudo-random generators against space bounded computation,

Lecture 9: Pseudo-random generators against space bounded computation, Lecture 9: Pseudo-radom geerators agaist space bouded computatio, Primality Testig Topics i Pseudoradomess ad Complexity (Sprig 2018) Rutgers Uiversity Swastik Kopparty Scribes: Harsha Tirumala, Jiyu Zhag

More information

1 Review and Overview

1 Review and Overview CS9T/STATS3: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #6 Scribe: Jay Whag ad Patrick Cho October 0, 08 Review ad Overview Recall i the last lecture that for ay family of scalar fuctios F, we

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

ECE 6980 An Algorithmic and Information-Theoretic Toolbox for Massive Data

ECE 6980 An Algorithmic and Information-Theoretic Toolbox for Massive Data ECE 6980 A Algorithmic ad Iformatio-Theoretic Toolbo for Massive Data Istructor: Jayadev Acharya Lecture # Scribe: Huayu Zhag 8th August, 017 1 Recap X =, ε is a accuracy parameter, ad δ is a error parameter.

More information

Lecture 20: Multivariate convergence and the Central Limit Theorem

Lecture 20: Multivariate convergence and the Central Limit Theorem Lecture 20: Multivariate covergece ad the Cetral Limit Theorem Covergece i distributio for radom vectors Let Z,Z 1,Z 2,... be radom vectors o R k. If the cdf of Z is cotiuous, the we ca defie covergece

More information

Notes for Lecture 11

Notes for Lecture 11 U.C. Berkeley CS78: Computatioal Complexity Hadout N Professor Luca Trevisa 3/4/008 Notes for Lecture Eigevalues, Expasio, ad Radom Walks As usual by ow, let G = (V, E) be a udirected d-regular graph with

More information

On Information Divergence Measures and a Unified Typicality

On Information Divergence Measures and a Unified Typicality O Iformatio Divergece Measures ad a Uified Typicality Siu-Wai Ho ad Raymod W. Yeug Abstract Strog typicality, which is more powerful for theorem provig tha weak typicality, ca be applied to fiite alphabets

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information