5 Birkhoff s Ergodic Theorem

Size: px
Start display at page:

Download "5 Birkhoff s Ergodic Theorem"

Transcription

1 5 Birkhoff s Ergodic Theorem Amog the most useful of the various geeralizatios of KolmogorovâĂŹs strog law of large umbers are the ergodic theorems of Birkhoff ad Kigma, which exted the validity of the strog law to statioary sequeces. These are of importace eve i the cotext of radom walks (that is, sums or products of idepedet, idetically distributed radom variables), because may iterestig quatities associated with radom walks ca be oly expressed as fuctioals of the radom walk paths that caot themselves be decomposed as sums of ide- pedet radom variable. 5. Measure-preservig trasformatios ad statioary sequeces Defiitio 5.. Let (,F,P) be a probability space ad let T :! be a measurable trasformatio. The trasformatio T is said to be measure-preservig if for every A 2 F, or equivaletly if for every radom variable X 2 L, P(T (A)) = P(A), (5.) E(X ± T ) = EX. (5.2) The triple (, P, T ) is the said to be a measure-preservig system. A ivertible measurepreservig trasformatio is a ivertible mappig T :! such that both T ad T are measure-preservig trasformatios. Exercise 5.2. Let A be a algebra such that F = æ(a ). Show that a measurable trasformatio T :! is measure-preservig if equatio (5.) holds for every A 2 A. Example 5.3. Let = {z 2 C z =} be the uit circle i the complex plae, ad for ay real umber µ defie R µ :! by R µ (z) = e iµ z. Thus, R µ rotates through a agle µ. Let be the ormalized arclegth measure o. The each R µ is measurepreservig. µ a b Example 5.4. Let T 2 = R 2 /Z 2 be the 2 dimesioal torus. For ay 2 2 matrix A = c d with iteger etries a,b,c,d ad determiat, let B A : T 2! T 2 be the mappig of the torus iduced by the liear mappig of R 2 with matrix µ A. The B A preserves the uiform 2 distributio o T 2. NOTE: i the special case A =, the mappig B A is sometimes called Arold s cat map, for reasos that I wo t try to explai. Example 5.5. The Shift: Let = R (the space of all ifiite sequeces of real umbers), ad let T :! be the right shift, that is, T (x 0, x, x 2,...)= (x, x 2, x 3,...). 53

2 It is easily checked that T is measurable with respect to the Borel æ algebra B, defied to be the smallest æ algebra that cotais all evets {x : x 2 B}, where B is a oedimesioal Borel set. (Here x = (x 0, x,...), ad x is the th coordiate.) If is a Borel probability measure o R, the the product measure o B is the uique probability measure such that my (B 0 B B m R R ) = (B i ) for all oe-dimesioal Borel set B 0,B,... (The existece ad uiqueess of such a measure follows from the Caratheodory extesio theorem.) It is easily checked (exercise) that the shift T preserves the product measure. The otio of a measure-preservig trasformatio is closely related to that of a statioary sequece of radom variables. A sequece of radom variables X 0, X, X 2,... is said to be statioary if for every iteger m 0 the joit distributio of the radom vector (X 0, X,...,X m ) is the same as that of (X, X 2,...,X m+ ) (ad therefore, by iductio the same as that of (X k, X k+,...,x k+m ), for every k =,2,...). Similarly, a doubly-ifiite sequece of radom variables (X ) 2Z is said to be statioary if for every m 0 ad k 2 Z the radom vector (X k, X k+,...,x k+m ) has the same joit distributio as does (X 0, X,...,X m ). Statioary sequeces arise aturally as models i times series aalysis. Useful examples are easily built usig auxiliary sequeces of idepedet, idetically distributed radom variables: for istace, if Y,Y 2,... are i.i.d. radom variables with fiite first momet E Y i <, the for ay sequece (a ) 0 satisfyig P a <the sequece is statioary. X := X a k Y +k k=0 Clearly, if T is a measure-preservig trasformatio of a probability space (,F,P), ad if Y is a radom variable defied o this probability space, the the sequece X = Y ± T (5.3) is statioary. This has a (partial) coverse: for every statioary sequece X 0, X,... there is a measure-preservig system (,P,T ) ad a radom variable Y defied o such that the sequece (Y ± T ) 0 has the same joit distributio as (X ) 0. The measurepreservig system ca be built o the space (R,B ), usig the shift mappig T : R! R defied above. This is doe as follows. Suppose that (Y 0,Y,Y 2,...) is a statioary sequece of radom variables defied o a arbitrary probability space (,F,µ). Let Y :! R be the mappig Y(!) = (Y 0 (!),Y (!),Y 2 (!),...). 54

3 This is measurable with respect to the Borel æ algebra B (exercise: why?), ad the iduced probability measure P = µ ± Y (that is, the joit distributio of the etire sequece Y uder µ) is ivariat by the shift mappig T (that is, T is P measure-preservig). By costructio, the joit distributio of the sequece Y = (Y 0,Y,...) uder µ is the same as that of the coordiate sequece X = (X 0, X,...) uder P. This is a useful observatio, because it allows us to deduce theorems for the origial sequece Y from correspodig theorems for the sequece X: i particular, lim! i= X Y i = E µ Y 0 a.s.-µ () lim! X X i = E P X 0 a.s.-p. (5.4) Observe that if T is measure-preservig the for every itegrable radom variable Y, i= EY = E(Y ± T ). (5.5) This ca be proved by followig a familiar lie of argumet: (a) if Y = B is a idicator variable, the equatio (5.5) reduces to the defiitio of a measure-preservig trasformatio; (b) if (5.5) is true for idicators, the it is true for fiite liear combiatios of idicators; ad hece (c) for oegative fuctios (5.5) the follows by the mootoe covergece theorem. It follows from (5.5) that compositio by a measure-preservig trasformatio T preserves all L p orms; i fact, for p = 2 eve more is true. Propositio 5.6. Let T :! be a measure-preservig trasformatio of a probability space (,F,P). The the mappig U : L 2 (P)! L 2 (P) defied by Uf = f ± T is a liear isometry. Proof. This is a trivial cosequece of equatio (5.5). 5.2 Birkhoff s Ergodic Theorem Defiitio 5.7. If T is a measure-preservig trasformatio of (,F,P), the a evet A 2 F is said to be ivariat if T A = A. The collectio I of all ivariat evets is the ivariat æ algebra. If the ivariat æ algebra I cotais oly evets of probability 0 or the the measure-preservig trasformatio T is said to be ergodic. Defiitio 5.8. A measure-preservig trasformatio T of a probability space (, F, P) is said to be mixig if for ay two bouded radom variables f, g :! R, lim Ef(g ± T ) = (Ef)(Eg).! Exercise 5.9. Show that if T is mixig the T is ergodic. 55

4 Exercise 5.0. Show that if A is a algebra such that F = æ(a ) the T is mixig if for all A,B 2 A, lim! E A( B ± T ) = P(A)P(B). Exercise 5.. Let T be the shift o (R,B, ) (See otes for defiitios. The probability measure is the product measure; uder the coordiate variables are i.i.d. with distributio.) Show that T is mixig, ad therefore ergodic. Theorem 5.2. (Birkhoff s Ergodic Theorem) If T is a ergodic, measure-preservig trasformatio of (,F,P) the for every radom variable X 2 L, lim! X ± T j = EX. (5.6) The proof will follow the same geeral strategy as the proof of a umber of other almost everywhere covergece theorems, icludig Kolmogorov s SLLN ad Lebesgue s Differetiatio Theorem. The first step is to idetify a dese subspace of L for which the covergece ca be easily established. Defiitio 5.3. Let T be a measure-preservig trasformatio of (, F, P). The a radom variable Y 2 L 2 (,F,P) is called a cocycle (more properly, a L 2 cocycle) if there exists W 2 L 2 such that Y = W W ± T. Propositio 5.4. If T is a ergodic, measure-preservig trasformatio of (, F, P) the the cocycles are dese i the subspace of L 2 cosistig of all X 2 L 2 such that EX = 0. That is, for ay such X ad ay " > 0 there is a cocycle Y = W W ± T such that kx Y k 2 < ". Proof. Let L 2 0 the closed liear subspace of L2 cosistig of all X 2 L 2 with mea EX = 0, ad let V be the liear subspace of L 2 0 cosistig of all cocycles. By elemetary results i Hilbert space theory (see, for example, W. RUDIN, Real ad Complex Aalysis, ch. 4), it suffices to prove that if X 2 L 2 0 is orthogoal to V the X = 0 a.s. Cosider first the special case where T is ivertible, with measure-preservig iverse T. Let V Ω L 2 be the set of all cocycles ad let V be its L 2 closure. We claim that if X is orthogoal to the set V the X = 0 a.s. To see this, observe that for ay cocycle W W ±T, EX(W W ± T ) = EXW EX(W ± T ) = EXW E(X ± T )W = EW(X X ± T ). Sice this holds for every W 2 L 2, it holds for all idicators, ad cosequetly the radom variable X X ±T = 0 almost surely. This shows that X is a ivariat radom variable. 56

5 Sice the measure-preservig trasformatio T is ergodic, it follows that X is (almost surely) costat; sice EX = 0 it follows that X = 0 a.s. The geeral case requires a additioal bit of Hilbert space theory, specifically, the fact that ay Hilbert space is self-dual. This implies that ay liear isometry U : L 2 0! L 2 0 has a uique adjoit mappig U : L 2 0! L2 0, i.e., a mappig such that for ay two elemets X,Y 2 L 2 0, hux,y i=hx,u Y i, (5.7) where hx,y i=exy is the ier product. The existece of U Y follows because X 7! hux, Y i is a bouded liear fuctioal, ad so self-duality (the Riesz-Fisher theorem) implies that there is a uique elemet U Y such that equatio (5.7) holds for all X 2 L 2 0. It is the easily checked that U is liear. Here we will specialize to the liear isometry U iduced by T, that is, UX = X ± T ; see Propositio 5.6 above. (Observe that whe T is ivertible, the adjoit of U is just U X = X ± T.) Suppose, the, that X 2 L 2 0 is orthogoal to the space V of all cocycles; we must show that X = 0 a.s. If X is orthogoal to V, the for every Y 2 L 2 we have 0 =hx,y Y ± T i =hx,y UYi =hx,y i hx,uyi =hx,y i hu X,Y i =hx U X,Y i, ad cosequetly X U X = 0, sice it is orthogoal to everythig (ad i particular, to Y = X U X, which implies hx U X, X U X ). Now cosider X UX: sice X = U X, ad so X = UX almost surely. To do so, we will show that kx UXk 2 =hx UX, X UXi =kx k 2 +kuxk 2 2hX,UXi = 2kX k 2 2hX,UXi = 2kX k 2 2hU X, X i = 2kX k 2 2hX, X i = 0, kx X ± T k 2 =kx UXk 2 = 0. This will the imply that X is almost surely equal to a T ivariat radom variable X, ad sice the oly ivariat radom variables are costat, it will follow that X = 0 a.s. 57

6 It is trivial to check that the ergodic theorem (5.6) holds for L 2 cocycles. I particular, if Y = W W ± T the Y ± T i = W ± T i W ± T i+, ad so Y ± T i = W W ± T! 0. Sice by Propositio 5.4 the space of cocycles is dese i L 2, at least whe T is a ivertible measure-preservig trasformatio, it is also dese i L, ad so there is a dese subspace of L for which (5.6) holds. Propositio 5.5. (Wieer s Maximal Ergodic Lemma) Let T be a measure-preservig trasformatio of (,F,P). The for ay radom variable Y 2 L ad ay Æ > 0, P ( sup Y ± T i Æ ) E Y Æ. (5.8) Proof. Without loss of geerality, Y 0 ad EY > 0. For each iteger m defie F m to be the evet ( )! : max Y ± T j (!) Æ. m Fix k, ad defie B = Bm k (!) ( bad ) to be the set of all itegers r km such that T r (!) 2 F, that is, such that oe of the first m ergodic averages startig at time r is at least Æ. Claim: The set Bm k is cotaied i the uio of a collectio of o-overlappig itervals J µ [km+ m] such that X Y ± T j (!) J Æ. (5.9) j 2J Proof. Proceed left to right i the iterval [km+m] util reachig the first iteger r 2 B k m. By defiitio of the set B k m, there is a iterval J of legth J m with left edpoit r such that iequality (5.9) holds for J = J. Now proceed iductively: assumig that J l is defied, let r l+ be the smallest iteger i B k m to the right of J l, ad let J l+ be the smallest iterval of legth J l+ m with left edpoit r l+ such that (5.9) holds. Cotiue i this maer util reachig the right edpoit km of the iterval [0, km]. Give the Claim, the rest of the argumet follows routiely. I detail, the oegativity of Y implies that Æ Bm k mk+k X Y ± T j. 58

7 Takig expectatios o both sides, we deduce that for ay m, P ( max m Y ± T j Æ ) EY Æ. Fially, let m!ad use the mootoe covergece theorem. Proof of Birkhoff s Theorem. By Propositio 5.4, every X 2 L 2 with mea EX = 0 ca be arbitrarily well-approximated i L 2 orm by cocycles, that is, for ay " > 0 there is a cocycle Y = W W ± T such that kx Y k 2 < " 2. By the momet iequality (i.e., Hölder), By Wieer s Maximal Iequality, kx Y k kx Y k 2 < " 2.! P supø (X ± T i Y ± T i ) Ø > ") ". But as we have already see, the ergodic theorem holds for ay cocycle, so the ergodic averages for Y coverge to 0 almost surely. Hece, P lim sup Ø X ± T i Ø Ø Ø ")! ". Sice " > 0 is arbitrary, this proves that relatio (5.6) holds for every X 2 L 2 with mea EX = 0. It follows trivially that (5.6) holds for every X 2 L 2. It remais to show that (5.6) holds ot oly for radom variables X 2 L 2 but also radom variables X 2 L. This ca be doe by trucatio, with aother use of Wieer s Maximal Iequality. (Exercise!) 59

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

A Proof of Birkhoff s Ergodic Theorem

A Proof of Birkhoff s Ergodic Theorem A Proof of Birkhoff s Ergodic Theorem Joseph Hora September 2, 205 Itroductio I Fall 203, I was learig the basics of ergodic theory, ad I came across this theorem. Oe of my supervisors, Athoy Quas, showed

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

Probability for mathematicians INDEPENDENCE TAU

Probability for mathematicians INDEPENDENCE TAU Probability for mathematicias INDEPENDENCE TAU 2013 28 Cotets 3 Ifiite idepedet sequeces 28 3a Idepedet evets........................ 28 3b Idepedet radom variables.................. 33 3 Ifiite idepedet

More information

Lecture 3 : Random variables and their distributions

Lecture 3 : Random variables and their distributions Lecture 3 : Radom variables ad their distributios 3.1 Radom variables Let (Ω, F) ad (S, S) be two measurable spaces. A map X : Ω S is measurable or a radom variable (deoted r.v.) if X 1 (A) {ω : X(ω) A}

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

1 Convergence in Probability and the Weak Law of Large Numbers

1 Convergence in Probability and the Weak Law of Large Numbers 36-752 Advaced Probability Overview Sprig 2018 8. Covergece Cocepts: i Probability, i L p ad Almost Surely Istructor: Alessadro Rialdo Associated readig: Sec 2.4, 2.5, ad 4.11 of Ash ad Doléas-Dade; Sec

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

BIRKHOFF ERGODIC THEOREM

BIRKHOFF ERGODIC THEOREM BIRKHOFF ERGODIC THEOREM Abstract. We will give a proof of the poitwise ergodic theorem, which was first proved by Birkhoff. May improvemets have bee made sice Birkhoff s orgial proof. The versio we give

More information

Solutions to home assignments (sketches)

Solutions to home assignments (sketches) Matematiska Istitutioe Peter Kumli 26th May 2004 TMA401 Fuctioal Aalysis MAN670 Applied Fuctioal Aalysis 4th quarter 2003/2004 All documet cocerig the course ca be foud o the course home page: http://www.math.chalmers.se/math/grudutb/cth/tma401/

More information

Chapter 0. Review of set theory. 0.1 Sets

Chapter 0. Review of set theory. 0.1 Sets Chapter 0 Review of set theory Set theory plays a cetral role i the theory of probability. Thus, we will ope this course with a quick review of those otios of set theory which will be used repeatedly.

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Real Numbers R ) - LUB(B) may or may not belong to B. (Ex; B= { y: y = 1 x, - Note that A B LUB( A) LUB( B)

Real Numbers R ) - LUB(B) may or may not belong to B. (Ex; B= { y: y = 1 x, - Note that A B LUB( A) LUB( B) Real Numbers The least upper boud - Let B be ay subset of R B is bouded above if there is a k R such that x k for all x B - A real umber, k R is a uique least upper boud of B, ie k = LUB(B), if () k is

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

Chapter 7 Isoperimetric problem

Chapter 7 Isoperimetric problem Chapter 7 Isoperimetric problem Recall that the isoperimetric problem (see the itroductio its coectio with ido s proble) is oe of the most classical problem of a shape optimizatio. It ca be formulated

More information

Notes 27 : Brownian motion: path properties

Notes 27 : Brownian motion: path properties Notes 27 : Browia motio: path properties Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces:[Dur10, Sectio 8.1], [MP10, Sectio 1.1, 1.2, 1.3]. Recall: DEF 27.1 (Covariace) Let X = (X

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Introduction to Optimization Techniques

Introduction to Optimization Techniques Itroductio to Optimizatio Techiques Basic Cocepts of Aalysis - Real Aalysis, Fuctioal Aalysis 1 Basic Cocepts of Aalysis Liear Vector Spaces Defiitio: A vector space X is a set of elemets called vectors

More information

Introduction to Probability. Ariel Yadin

Introduction to Probability. Ariel Yadin Itroductio to robability Ariel Yadi Lecture 2 *** Ja. 7 ***. Covergece of Radom Variables As i the case of sequeces of umbers, we would like to talk about covergece of radom variables. There are may ways

More information

Chapter IV Integration Theory

Chapter IV Integration Theory Chapter IV Itegratio Theory Lectures 32-33 1. Costructio of the itegral I this sectio we costruct the abstract itegral. As a matter of termiology, we defie a measure space as beig a triple (, A, µ), where

More information

Probability and Random Processes

Probability and Random Processes Probability ad Radom Processes Lecture 5 Probability ad radom variables The law of large umbers Mikael Skoglud, Probability ad radom processes 1/21 Why Measure Theoretic Probability? Stroger limit theorems

More information

The Boolean Ring of Intervals

The Boolean Ring of Intervals MATH 532 Lebesgue Measure Dr. Neal, WKU We ow shall apply the results obtaied about outer measure to the legth measure o the real lie. Throughout, our space X will be the set of real umbers R. Whe ecessary,

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Lecture 3 The Lebesgue Integral

Lecture 3 The Lebesgue Integral Lecture 3: The Lebesgue Itegral 1 of 14 Course: Theory of Probability I Term: Fall 2013 Istructor: Gorda Zitkovic Lecture 3 The Lebesgue Itegral The costructio of the itegral Uless expressly specified

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

Singular Continuous Measures by Michael Pejic 5/14/10

Singular Continuous Measures by Michael Pejic 5/14/10 Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

More information

Introduction to Probability. Ariel Yadin. Lecture 7

Introduction to Probability. Ariel Yadin. Lecture 7 Itroductio to Probability Ariel Yadi Lecture 7 1. Idepedece Revisited 1.1. Some remiders. Let (Ω, F, P) be a probability space. Give a collectio of subsets K F, recall that the σ-algebra geerated by K,

More information

Chapter 3 Inner Product Spaces. Hilbert Spaces

Chapter 3 Inner Product Spaces. Hilbert Spaces Chapter 3 Ier Product Spaces. Hilbert Spaces 3. Ier Product Spaces. Hilbert Spaces 3.- Defiitio. A ier product space is a vector space X with a ier product defied o X. A Hilbert space is a complete ier

More information

Lecture 8: Convergence of transformations and law of large numbers

Lecture 8: Convergence of transformations and law of large numbers Lecture 8: Covergece of trasformatios ad law of large umbers Trasformatio ad covergece Trasformatio is a importat tool i statistics. If X coverges to X i some sese, we ofte eed to check whether g(x ) coverges

More information

Lecture 4. We also define the set of possible values for the random walk as the set of all x R d such that P(S n = x) > 0 for some n.

Lecture 4. We also define the set of possible values for the random walk as the set of all x R d such that P(S n = x) > 0 for some n. Radom Walks ad Browia Motio Tel Aviv Uiversity Sprig 20 Lecture date: Mar 2, 20 Lecture 4 Istructor: Ro Peled Scribe: Lira Rotem This lecture deals primarily with recurrece for geeral radom walks. We preset

More information

4 The Sperner property.

4 The Sperner property. 4 The Sperer property. I this sectio we cosider a surprisig applicatio of certai adjacecy matrices to some problems i extremal set theory. A importat role will also be played by fiite groups. I geeral,

More information

lim za n n = z lim a n n.

lim za n n = z lim a n n. Lecture 6 Sequeces ad Series Defiitio 1 By a sequece i a set A, we mea a mappig f : N A. It is customary to deote a sequece f by {s } where, s := f(). A sequece {z } of (complex) umbers is said to be coverget

More information

PRELIM PROBLEM SOLUTIONS

PRELIM PROBLEM SOLUTIONS PRELIM PROBLEM SOLUTIONS THE GRAD STUDENTS + KEN Cotets. Complex Aalysis Practice Problems 2. 2. Real Aalysis Practice Problems 2. 4 3. Algebra Practice Problems 2. 8. Complex Aalysis Practice Problems

More information

The Pointwise Ergodic Theorem and its Applications

The Pointwise Ergodic Theorem and its Applications The Poitwise Ergodic Theorem ad its Applicatios Itroductio Peter Oberly 11/9/2018 Algebra has homomorphisms ad topology has cotiuous maps; i these otes we explore the structure preservig maps for measure

More information

Entropy Rates and Asymptotic Equipartition

Entropy Rates and Asymptotic Equipartition Chapter 29 Etropy Rates ad Asymptotic Equipartitio Sectio 29. itroduces the etropy rate the asymptotic etropy per time-step of a stochastic process ad shows that it is well-defied; ad similarly for iformatio,

More information

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction Chapter 2 Periodic poits of toral automorphisms 2.1 Geeral itroductio The automorphisms of the two-dimesioal torus are rich mathematical objects possessig iterestig geometric, algebraic, topological ad

More information

5 Birkhoff s Ergodic Theorem

5 Birkhoff s Ergodic Theorem 5 Birkhoff s Ergodic Theorem Birkhoff s Ergodic Theorem extends the validity of Kolmogorov s strong law to the class of stationary sequences of random variables. Stationary sequences occur naturally even

More information

On Random Line Segments in the Unit Square

On Random Line Segments in the Unit Square O Radom Lie Segmets i the Uit Square Thomas A. Courtade Departmet of Electrical Egieerig Uiversity of Califoria Los Ageles, Califoria 90095 Email: tacourta@ee.ucla.edu I. INTRODUCTION Let Q = [0, 1] [0,

More information

Notes 19 : Martingale CLT

Notes 19 : Martingale CLT Notes 9 : Martigale CLT Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: [Bil95, Chapter 35], [Roc, Chapter 3]. Sice we have ot ecoutered weak covergece i some time, we first recall

More information

Introduction to Ergodic Theory and its Applications to Number Theory. Karma Dajani

Introduction to Ergodic Theory and its Applications to Number Theory. Karma Dajani Itroductio to Ergodic Theory ad its Applicatios to Number Theory Karma Dajai October 8, 204 2 Cotets Itroductio ad prelimiaries 5. What is Ergodic Theory?..................... 5.2 Measure Preservig Trasformatios..............

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

Introductory Ergodic Theory and the Birkhoff Ergodic Theorem

Introductory Ergodic Theory and the Birkhoff Ergodic Theorem Itroductory Ergodic Theory ad the Birkhoff Ergodic Theorem James Pikerto Jauary 14, 2014 I this expositio we ll cover a itroductio to ergodic theory. Specifically, the Birkhoff Mea Theorem. Ergodic theory

More information

Introduction to Optimization Techniques. How to Solve Equations

Introduction to Optimization Techniques. How to Solve Equations Itroductio to Optimizatio Techiques How to Solve Equatios Iterative Methods of Optimizatio Iterative methods of optimizatio Solutio of the oliear equatios resultig form a optimizatio problem is usually

More information

TENSOR PRODUCTS AND PARTIAL TRACES

TENSOR PRODUCTS AND PARTIAL TRACES Lecture 2 TENSOR PRODUCTS AND PARTIAL TRACES Stéphae ATTAL Abstract This lecture cocers special aspects of Operator Theory which are of much use i Quatum Mechaics, i particular i the theory of Quatum Ope

More information

1 = δ2 (0, ), Y Y n nδ. , T n = Y Y n n. ( U n,k + X ) ( f U n,k + Y ) n 2n f U n,k + θ Y ) 2 E X1 2 X1

1 = δ2 (0, ), Y Y n nδ. , T n = Y Y n n. ( U n,k + X ) ( f U n,k + Y ) n 2n f U n,k + θ Y ) 2 E X1 2 X1 8. The cetral limit theorems 8.1. The cetral limit theorem for i.i.d. sequeces. ecall that C ( is N -separatig. Theorem 8.1. Let X 1, X,... be i.i.d. radom variables with EX 1 = ad EX 1 = σ (,. Suppose

More information

Lecture Notes for Analysis Class

Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

Law of the sum of Bernoulli random variables

Law of the sum of Bernoulli random variables Law of the sum of Beroulli radom variables Nicolas Chevallier Uiversité de Haute Alsace, 4, rue des frères Lumière 68093 Mulhouse icolas.chevallier@uha.fr December 006 Abstract Let be the set of all possible

More information

1 Lecture 2: Sequence, Series and power series (8/14/2012)

1 Lecture 2: Sequence, Series and power series (8/14/2012) Summer Jump-Start Program for Aalysis, 202 Sog-Yig Li Lecture 2: Sequece, Series ad power series (8/4/202). More o sequeces Example.. Let {x } ad {y } be two bouded sequeces. Show lim sup (x + y ) lim

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory ST525: Advaced Statistical Theory Departmet of Statistics & Applied Probability Tuesday, September 7, 2 ST525: Advaced Statistical Theory Lecture : The law of large umbers The Law of Large Numbers The

More information

M17 MAT25-21 HOMEWORK 5 SOLUTIONS

M17 MAT25-21 HOMEWORK 5 SOLUTIONS M17 MAT5-1 HOMEWORK 5 SOLUTIONS 1. To Had I Cauchy Codesatio Test. Exercise 1: Applicatio of the Cauchy Codesatio Test Use the Cauchy Codesatio Test to prove that 1 diverges. Solutio 1. Give the series

More information

Riesz-Fischer Sequences and Lower Frame Bounds

Riesz-Fischer Sequences and Lower Frame Bounds Zeitschrift für Aalysis ud ihre Aweduge Joural for Aalysis ad its Applicatios Volume 1 (00), No., 305 314 Riesz-Fischer Sequeces ad Lower Frame Bouds P. Casazza, O. Christese, S. Li ad A. Lider Abstract.

More information

The Central Limit Theorem

The Central Limit Theorem Chapter The Cetral Limit Theorem Deote by Z the stadard ormal radom variable with desity 2π e x2 /2. Lemma.. Ee itz = e t2 /2 Proof. We use the same calculatio as for the momet geeratig fuctio: exp(itx

More information

FUNDAMENTALS OF REAL ANALYSIS by

FUNDAMENTALS OF REAL ANALYSIS by FUNDAMENTALS OF REAL ANALYSIS by Doğa Çömez Backgroud: All of Math 450/1 material. Namely: basic set theory, relatios ad PMI, structure of N, Z, Q ad R, basic properties of (cotiuous ad differetiable)

More information

Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering Mathematical Methods for Physics ad Egieerig Lecture otes Sergei V. Shabaov Departmet of Mathematics, Uiversity of Florida, Gaiesville, FL 326 USA CHAPTER The theory of covergece. Numerical sequeces..

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Math 525: Lecture 5. January 18, 2018

Math 525: Lecture 5. January 18, 2018 Math 525: Lecture 5 Jauary 18, 2018 1 Series (review) Defiitio 1.1. A sequece (a ) R coverges to a poit L R (writte a L or lim a = L) if for each ǫ > 0, we ca fid N such that a L < ǫ for all N. If the

More information

Notes on Snell Envelops and Examples

Notes on Snell Envelops and Examples Notes o Sell Evelops ad Examples Example (Secretary Problem): Coside a pool of N cadidates whose qualificatios are represeted by ukow umbers {a > a 2 > > a N } from best to last. They are iterviewed sequetially

More information

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1 Solutio Sagchul Lee October 7, 017 1 Solutios of Homework 1 Problem 1.1 Let Ω,F,P) be a probability space. Show that if {A : N} F such that A := lim A exists, the PA) = lim PA ). Proof. Usig the cotiuity

More information

Homework 4. x n x X = f(x n x) +

Homework 4. x n x X = f(x n x) + Homework 4 1. Let X ad Y be ormed spaces, T B(X, Y ) ad {x } a sequece i X. If x x weakly, show that T x T x weakly. Solutio: We eed to show that g(t x) g(t x) g Y. It suffices to do this whe g Y = 1.

More information

Partial match queries: a limit process

Partial match queries: a limit process Partial match queries: a limit process Nicolas Brouti Ralph Neiiger Heig Sulzbach Partial match queries: a limit process 1 / 17 Searchig geometric data ad quadtrees 1 Partial match queries: a limit process

More information

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT Itroductio to Extreme Value Theory Laures de Haa, ISM Japa, 202 Itroductio to Extreme Value Theory Laures de Haa Erasmus Uiversity Rotterdam, NL Uiversity of Lisbo, PT Itroductio to Extreme Value Theory

More information

Ergodicity of Stochastic Processes and the Markov Chain Central Limit Theorem

Ergodicity of Stochastic Processes and the Markov Chain Central Limit Theorem Uiversity of Bristol School of Mathematics Ergodicity of Stochastic Processes ad the Markov Chai Cetral Limit Theorem A Project of 30 Credit Poits at Level 7 For the Degree of MSci Mathematics Author:

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

A gentle introduction to Measure Theory

A gentle introduction to Measure Theory A getle itroductio to Measure Theory Gaurav Chadalia Departmet of Computer ciece ad Egieerig UNY - Uiversity at Buffalo, Buffalo, NY gsc4@buffalo.edu March 12, 2007 Abstract This ote itroduces the basic

More information

Complex Analysis Spring 2001 Homework I Solution

Complex Analysis Spring 2001 Homework I Solution Complex Aalysis Sprig 2001 Homework I Solutio 1. Coway, Chapter 1, sectio 3, problem 3. Describe the set of poits satisfyig the equatio z a z + a = 2c, where c > 0 ad a R. To begi, we see from the triagle

More information

Introduction to Functional Analysis

Introduction to Functional Analysis MIT OpeCourseWare http://ocw.mit.edu 18.10 Itroductio to Fuctioal Aalysis Sprig 009 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. LECTURE OTES FOR 18.10,

More information

1. By using truth tables prove that, for all statements P and Q, the statement

1. By using truth tables prove that, for all statements P and Q, the statement Author: Satiago Salazar Problems I: Mathematical Statemets ad Proofs. By usig truth tables prove that, for all statemets P ad Q, the statemet P Q ad its cotrapositive ot Q (ot P) are equivalet. I example.2.3

More information

On equivalent strictly G-convex renormings of Banach spaces

On equivalent strictly G-convex renormings of Banach spaces Cet. Eur. J. Math. 8(5) 200 87-877 DOI: 0.2478/s533-00-0050-3 Cetral Europea Joural of Mathematics O equivalet strictly G-covex reormigs of Baach spaces Research Article Nataliia V. Boyko Departmet of

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Notes for Lecture 11

Notes for Lecture 11 U.C. Berkeley CS78: Computatioal Complexity Hadout N Professor Luca Trevisa 3/4/008 Notes for Lecture Eigevalues, Expasio, ad Radom Walks As usual by ow, let G = (V, E) be a udirected d-regular graph with

More information

6a Time change b Quadratic variation c Planar Brownian motion d Conformal local martingales e Hints to exercises...

6a Time change b Quadratic variation c Planar Brownian motion d Conformal local martingales e Hints to exercises... Tel Aviv Uiversity, 28 Browia motio 59 6 Time chage 6a Time chage..................... 59 6b Quadratic variatio................. 61 6c Plaar Browia motio.............. 64 6d Coformal local martigales............

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 6 9/23/203 Browia motio. Itroductio Cotet.. A heuristic costructio of a Browia motio from a radom walk. 2. Defiitio ad basic properties

More information

Solution to Chapter 2 Analytical Exercises

Solution to Chapter 2 Analytical Exercises Nov. 25, 23, Revised Dec. 27, 23 Hayashi Ecoometrics Solutio to Chapter 2 Aalytical Exercises. For ay ε >, So, plim z =. O the other had, which meas that lim E(z =. 2. As show i the hit, Prob( z > ε =

More information

Probability Theory. Muhammad Waliji. August 11, 2006

Probability Theory. Muhammad Waliji. August 11, 2006 Probability Theory Muhammad Waliji August 11, 2006 Abstract This paper itroduces some elemetary otios i Measure-Theoretic Probability Theory. Several probabalistic otios of the covergece of a sequece of

More information

The second is the wish that if f is a reasonably nice function in E and φ n

The second is the wish that if f is a reasonably nice function in E and φ n 8 Sectio : Approximatios i Reproducig Kerel Hilbert Spaces I this sectio, we address two cocepts. Oe is the wish that if {E, } is a ierproduct space of real valued fuctios o the iterval [,], the there

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK)

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) Everythig marked by is ot required by the course syllabus I this lecture, all vector spaces is over the real umber R. All vectors i R is viewed as a colum

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set.

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set. M.A./M.Sc. (Mathematics) Etrace Examiatio 016-17 Max Time: hours Max Marks: 150 Istructios: There are 50 questios. Every questio has four choices of which exactly oe is correct. For correct aswer, 3 marks

More information

Math 140A Elementary Analysis Homework Questions 3-1

Math 140A Elementary Analysis Homework Questions 3-1 Math 0A Elemetary Aalysis Homework Questios -.9 Limits Theorems for Sequeces Suppose that lim x =, lim y = 7 ad that all y are o-zero. Detarime the followig limits: (a) lim(x + y ) (b) lim y x y Let s

More information

b i u x i U a i j u x i u x j

b i u x i U a i j u x i u x j M ath 5 2 7 Fall 2 0 0 9 L ecture 1 9 N ov. 1 6, 2 0 0 9 ) S ecod- Order Elliptic Equatios: Weak S olutios 1. Defiitios. I this ad the followig two lectures we will study the boudary value problem Here

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS 18th Feb, 016 Defiitio (Lipschitz fuctio). A fuctio f : R R is said to be Lipschitz if there exists a positive real umber c such that for ay x, y i the domai

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

Abstract Vector Spaces. Abstract Vector Spaces

Abstract Vector Spaces. Abstract Vector Spaces Astract Vector Spaces The process of astractio is critical i egieerig! Physical Device Data Storage Vector Space MRI machie Optical receiver 0 0 1 0 1 0 0 1 Icreasig astractio 6.1 Astract Vector Spaces

More information

ABOUT CHAOS AND SENSITIVITY IN TOPOLOGICAL DYNAMICS

ABOUT CHAOS AND SENSITIVITY IN TOPOLOGICAL DYNAMICS ABOUT CHAOS AND SENSITIVITY IN TOPOLOGICAL DYNAMICS EDUARD KONTOROVICH Abstract. I this work we uify ad geeralize some results about chaos ad sesitivity. Date: March 1, 005. 1 1. Symbolic Dyamics Defiitio

More information