Lecture 4: April 10, 2013

Size: px
Start display at page:

Download "Lecture 4: April 10, 2013"

Transcription

1 TTIC/CMSC 1150 Mathematical Toolkit Sprig 01 Madhur Tulsiai Lecture 4: April 10, 01 Scribe: Haris Agelidakis 1 Chebyshev s Iequality recap I the previous lecture, we used Chebyshev s iequality to get a boud o the probability that a radom variable X deviates from its ected value µ to some extet. More precisely, if we deote the variace of X with σ ad assume it s fiite ad o-zero, the Chebyshev s iequality is the followig: Var X] P X µ kσ] k σ 1 k. 1 This is the so-called Secod Momet Method, sice it uses the secod momet, i.e. the variace of X. As a applicatio of the above iequality, we preseted some thresholds i the Erdős-Réyi G,p model. We exted that example here to show somethig that at first looks like a paradox. So, we cosider a radom graph G G,p ad let Z 1 be the umber of copies of K 4 i G, ad Z be the umber of copies of the followig 5-ode graph G 0 i G: v 1 G 0 v v 4 v 5 v Observe that the subgraph iduced by the odes v 1, v, v, v 4 is exactly K 4. Calculatig the ectatios of Z 1 ad Z, we observe the followig: 1. p / E Z 1 ] p / E Z 1 ] 0. p 5/7 E Z ] p 5/7 E Z ] 0 We ow cosider the case 5/7 p /. I this case, E Z 1 ] 0 ad E Z ]. But, K 4 is a subgraph of G 0, so i every appearace of G 0 we obviously have a appearace of K 4. So, did we calculate somethig wrog? Observig thigs more carefully, we ca see that, give a fixed K 4, there ca be may copies of G 0 made by this copy of K 4, simply by coectig each vertex of K 4 with as may differet vertices as we wat. For each such vertex, we get a distict copy of G 0. 1

2 This idea ca be made precise so as to formally lai the above paradox, but we will skip the details. I today s lecture, we will cosider eve sharper cocetratio bouds, which come i the form of the Cheroff/Hoeffdig bouds. But before presetig the Cheroff bouds, we will also state the very useful Jese s iequality, as is used i the cotext of probability theory. Cosider the defiitio of the variace of a radom variable X. We have Var X] E X µ ]. We obviously have Var X] 0. Thus: E X µ ] E X ] E X] 0 E X ] E X]. The above iequality is just a special case of the well-kow Jese s iequality. Jese s Iequality At first, we eed to defie what a covex real-valued fuctio is. Defiitio.1 Covex fuctio Let f : R R. We say that f is covex if for ay λ 0, 1] we have that f λx λx λfx1 + 1 λfx. The above property simply meas that if we cosider ay two poits x 1, fx 1 ad x, fx, the lie segmet coectig these two poits o the plae lies above the graph of fuctio f. We ca ow state, without proof, Jese s iequality. Theorem. Jese s Iequality Let f : R R be a covex fuctio. The for ay radom variable X, we have that E fx] fe X]. We ca ow see that is just a special case of Jese s iequality, where we plug-i the covex fuctio fx x. Cheroff/Hoeffdig Bouds We are ow ready to get some sharper cocetratio bouds. We start by cosiderig idepedet boolea radom variables X 1,..., X, each havig value 1 with probability p i. Let Z i1 X i. We set µ E Z] i1 E X i] i1 p i, ad p µ i1 p i. So, we ow wat to get a boud o P Z 1 + δµ]. At first, we use the fact that e x is strictly icreasig, ad so P Z 1 + δµ] P e tz e t1+δµ], t > 0 Markov E e tz] e t1+δµ.

3 We ow have: E e tz] ] E e tx 1+...X E idep E e tx ] i i1 1 + pi e t 1 ]. i1 i1 e tx i ] pi e t + 1 p i ] i1 At this poit, we utilize the simple but very useful iequality: x R, 1 + x e x. Sice all the quatities i the previous calculatio are o-egative, we ca plug the above iequality i the previous calculatio ad we get: E e tz] i1 e t 1p i e t 1µ 4 From ad 4 we get P Z 1 + δµ] e t 1µ t1 + δµ. 5 We ow wat to miimize the right had-side of the above iequality, with respect to t. Settig its derivative to zero, we get Usig this value for t i 5, we get e t µ 1 + δµ 0 t l1 + δ. P Z 1 + δµ] e t 1µ t1 + δµ e δµ 1 + δ 1+δµ e δ µ 1 + δ 1+δ. Similarly, we ca get that e δ µ P Z 1 δµ] 1 δ 1 δ.

4 Note that P Z 1 δµ] P e tz e t1 δµ]. But we would like some simpler ressio for the boud. It ca be easily proved that e δ 1 + δ 1+δ µ e δ µ/, 0 < δ < 1, ad so we fially get: Similarly: From 6 ad 7 we get P Z 1 + δµ] e δ µ/, for 0 < δ < 1. 6 P Z 1 δµ] e δ µ/, for 0 < δ < 1. 7 P Z µ δµ] e δ µ/, for 0 < δ < 1. 8 This last iequality is the versio of the Cheroff/Hoeffdig bouds that we are goig to use the most i the followig. We ow move to some applicatios. 4 Coi Tosses We will ow compare the above boud with what we ca get from Chebyshev s iequality. Let s assume that X 1,..., X are idepedet coi tosses, with P X i 1] 1. We wat to get a boud o the value of Z i1 X i. Usig Chebyshev s iequality as stated i 1, we get that P Z µ δµ] Var Z] δ µ. Ad sice i this particular case we have that Var Z] /4 ad µ /, we get that P Z µ δµ] 1 δ. The above boud is oly iversely polyomial i, while the oe i 8 is oetially small i. This fact will prove very useful whe we wat to use a uio boud i a large collectio of evet, as we will see i the applicatio that follows. 5 Max-Cut i the Erdős-Réyi Model Cosider a graph G G,p. Let G V, E, with V ad E Z be the umber of edges i G. We wat to prove that the size of a Max-Cut of G is with high probability roughly equal to E /, which is equal to the ected size of a radom cut. At first, we ca get a cocetratio boud o the umber of edges i the graph, which will help us i the proof of the above statemet. We have that Z {u,v}:u,v V,u v X {u,v}, where X {u,v} is a radom variable idicatig if there exists a edge betwee u ad v. So we get E Z] 4 p.

5 Usig Cheroff bouds, we get that ] P Z E Z] ε p ε p So, if ε p 1, the w.h.p the umber of edges i G is some umber i the iterval 1 ε p, 1 + ε p. To simplify the calculatios that follow, we ca set, as we ca always adjust ε to match the exact values. We also set m p, which is roughly equal to E Z]. So, i order to prove our statemet about the size of a max-cut, it is sufficiet to show that the umber of edges crossig ay cut belogs i the iterval 1 δ m, 1 + δ m. I order to do so, we fix a cut S, S, with S k ad 1 k. Let Z S be the umber of edges crossig S, S. Observe that Z S ca be writte as a sum of idicator 0 1 variables, ad so we ca use the Cheroff Bouds that we have already proved. We have that µ S E Z S ] pk k, which meas that the ected size of the cut oly depeds o the size of S ad ot o the specific elemets of S, which makes sese if we thik of how we geerate our graph. A useful fact here is that k k 4, ad so µ S p 4. So, we have P Z S 1 + δm/] P Z S 1 + δµ S ] δ µ S δ pk k δ sice 6 pk k Takig a Uio Boud ow over all possible cuts, we have P Max-Cut 1 + δ m ] P Z S 1 + δ m ] S,S / k1 S,S: S k / k1 k1 k. P Z S 1 + δ m ] δ 6 pk / k δ 6 pk / k l δ 6 pk. k1 5

6 Suppose ow that δ p 6 l p 1 l. Usig this fact i the iequality above we get δ P Max-Cut 1 + δ m ] / 1 k l O. The above iequality shows that if the probability p is sufficietly large to be more precise, if it such that the resultig graph has Ω l edges i ectatio, the the size of a Max-Cut i this graph is w.h.p. very close to E. Observe that we caot get this guaratee by usig Chebyshev s iequality, as the umber of evets we are applyig the uio boud o is large, ad the boud we ca get from Chebyshev is oly O 1 for a sigle cut. k1 6 Radomized Routig i Networks We will ow cosider a differet applicatio. Let s assume we have a etwork of odes, placed o the vertices of a -dimesioal hypercube. I other words, we have a graph with ode set V {0, 1}, ad edge set E {x, y : d H x, y 1}, where d H x, y is the Hammig distace of two -bit strigs, i.e. the umber of bits i which x ad y differ. We are give a permutatio π : {0, 1} {0, 1}, which simply traslates to the fact that vertex x wats to sed a packet to vertex πx. So, we wat to fid a routig strategy, such that each packet arrives to its destiatio at the miimum possible time. We will use a sychroous model, i.e., the routig occurs i discrete time steps, ad i each time step, oe packet is allowed to travel alog each edge. We are iterested i oblivious strategies, i.e. for each x, the path which the packet goig from x to πx will use oly depeds o x ad πx ad o other vertices. Observe that a packet from x to y takes time at least d H x, y, ad sice d H , , we have a worst-case lower boud of O for ay strategy. For the above problem we have the followig results: Theorem 6.1 KKT90] For ay determiistic, oblivious routig strategy o the hypercube, there exists a permutatio that requires Ω time steps. This is a bad lower boud for the worst-case sceario. sigificat improvemet. Fortuately, radomizatio ca give a Theorem 6. VB81] There exists a radomized, oblivious routig strategy that termiates i O time steps w.h.p. The radomized strategy of the above theorem cosists of two phases: I phase 1, each packet is routed to a itermediate ode ri, where σi is chose uiformly at radom. I phase, each packet is routed from σi to πi. 6

7 I both phases, we use the bit-fixig paths strategy to route the packets. I the bit-fixig strategy, we move from a vertex x to a vertex y by checkig all bits of the two odes from left to right, ad at each bit i which x differs from y, we make the correspodig chage so as to reduce the Hammig distace betwee the two strigs. Observe that the paths that we obtai from this strategy are always shortest paths. Also, ote that σ is ot required to be a permutatio of {0, 1}, so this strategy is oblivious, i the sese that each ode does t care about which itermediate ode is chose by other odes. This strategy breaks the symmetry i the problem by simply choosig a radom itermediate destiatio for each packet. This makes it impossible for a adversary to select a bad permutatio. The aalysis of the above strategy will follow i the ext lecture. Refereces KKT90] C. Kaklamais, D. Krizac ad A. Tsatilas. Tight Bouds for Oblivious Routig i the Hypercube, i Proceedigs of the Symposium o Parallel Algorithms ad Architecture, VBL81] G. Valiat ad G. J. Breber. Uiversal schemes for parallel commuicatio, i Proceedigs of the 1th aual ACM Symposium o Theory of Computig,

Lecture 5: April 17, 2013

Lecture 5: April 17, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 5: April 7, 203 Scribe: Somaye Hashemifar Cheroff bouds recap We recall the Cheroff/Hoeffdig bouds we derived i the last lecture idepedet

More information

Lecture 14: March 1. approaches a standard normal distribution N(0, 1). Thus, as n, for any fixed β > 0 we have. e t2 2 dt

Lecture 14: March 1. approaches a standard normal distribution N(0, 1). Thus, as n, for any fixed β > 0 we have. e t2 2 dt CS271 Radomess & Computatio Sprig 2018 Istructor: Alistair Siclair Lecture 14: March 1 Disclaimer: These otes have ot bee subjected to the usual scrutiy accorded to formal publicatios. They may be distributed

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

Lecture 2: Concentration Bounds

Lecture 2: Concentration Bounds CSE 52: Desig ad Aalysis of Algorithms I Sprig 206 Lecture 2: Cocetratio Bouds Lecturer: Shaya Oveis Ghara March 30th Scribe: Syuzaa Sargsya Disclaimer: These otes have ot bee subjected to the usual scrutiy

More information

Lecture 7: October 18, 2017

Lecture 7: October 18, 2017 Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

More information

Math 216A Notes, Week 5

Math 216A Notes, Week 5 Math 6A Notes, Week 5 Scribe: Ayastassia Sebolt Disclaimer: These otes are ot early as polished (ad quite possibly ot early as correct) as a published paper. Please use them at your ow risk.. Thresholds

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n, CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 9 Variace Questio: At each time step, I flip a fair coi. If it comes up Heads, I walk oe step to the right; if it comes up Tails, I walk oe

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

Lecture 9: Expanders Part 2, Extractors

Lecture 9: Expanders Part 2, Extractors Lecture 9: Expaders Part, Extractors Topics i Complexity Theory ad Pseudoradomess Sprig 013 Rutgers Uiversity Swastik Kopparty Scribes: Jaso Perry, Joh Kim I this lecture, we will discuss further the pseudoradomess

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS CSE 55 RANDOMIZED AND APPROXIMATION ALGORITHMS 1. Questio 1. a) The larger the value of k is, the smaller the expected umber of days util we get all the coupos we eed. I fact if = k

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

On Random Line Segments in the Unit Square

On Random Line Segments in the Unit Square O Radom Lie Segmets i the Uit Square Thomas A. Courtade Departmet of Electrical Egieerig Uiversity of Califoria Los Ageles, Califoria 90095 Email: tacourta@ee.ucla.edu I. INTRODUCTION Let Q = [0, 1] [0,

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learig Theory: Lecture Notes Kamalika Chaudhuri October 4, 0 Cocetratio of Averages Cocetratio of measure is very useful i showig bouds o the errors of machie-learig algorithms. We will begi with a basic

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Basics of Probability Theory (for Theory of Computation courses)

Basics of Probability Theory (for Theory of Computation courses) Basics of Probability Theory (for Theory of Computatio courses) Oded Goldreich Departmet of Computer Sciece Weizma Istitute of Sciece Rehovot, Israel. oded.goldreich@weizma.ac.il November 24, 2008 Preface.

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

6.895 Essential Coding Theory October 20, Lecture 11. This lecture is focused in comparisons of the following properties/parameters of a code:

6.895 Essential Coding Theory October 20, Lecture 11. This lecture is focused in comparisons of the following properties/parameters of a code: 6.895 Essetial Codig Theory October 0, 004 Lecture 11 Lecturer: Madhu Suda Scribe: Aastasios Sidiropoulos 1 Overview This lecture is focused i comparisos of the followig properties/parameters of a code:

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 3 9//203 Large deviatios Theory. Cramér s Theorem Cotet.. Cramér s Theorem. 2. Rate fuctio ad properties. 3. Chage of measure techique.

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

Law of the sum of Bernoulli random variables

Law of the sum of Bernoulli random variables Law of the sum of Beroulli radom variables Nicolas Chevallier Uiversité de Haute Alsace, 4, rue des frères Lumière 68093 Mulhouse icolas.chevallier@uha.fr December 006 Abstract Let be the set of all possible

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes The Maximum-Lielihood Decodig Performace of Error-Correctig Codes Hery D. Pfister ECE Departmet Texas A&M Uiversity August 27th, 2007 (rev. 0) November 2st, 203 (rev. ) Performace of Codes. Notatio X,

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15 CS 70 Discrete Mathematics ad Probability Theory Sprig 2012 Alistair Siclair Note 15 Some Importat Distributios The first importat distributio we leared about i the last Lecture Note is the biomial distributio

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Lecture 15: Learning Theory: Concentration Inequalities

Lecture 15: Learning Theory: Concentration Inequalities STAT 425: Itroductio to Noparametric Statistics Witer 208 Lecture 5: Learig Theory: Cocetratio Iequalities Istructor: Ye-Chi Che 5. Itroductio Recall that i the lecture o classificatio, we have see that

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 018/019 DR. ANTHONY BROWN 8. Statistics 8.1. Measures of Cetre: Mea, Media ad Mode. If we have a series of umbers the

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulatio 1 Itroductio Readig Assigmet: Read Chapter 1 of text. We shall itroduce may of the key issues to be discussed i this course via a couple of model problems. Model Problem 1 (Jackso

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Final Solutions

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Final Solutions CS 70 Discrete Mathematics ad Probability Theory Fall 2016 Seshia ad Walrad Fial Solutios CS 70, Fall 2016, Fial Solutios 1 1 TRUE or FALSE?: 2x8=16 poits Clearly put your aswers i the aswer box o the

More information

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities CS8B/Stat4B Sprig 008) Statistical Learig Theory Lecture: Ada Boost, Risk Bouds, Cocetratio Iequalities Lecturer: Peter Bartlett Scribe: Subhrasu Maji AdaBoost ad Estimates of Coditioal Probabilities We

More information

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities Chapter 5 Iequalities 5.1 The Markov ad Chebyshev iequalities As you have probably see o today s frot page: every perso i the upper teth percetile ears at least 1 times more tha the average salary. I other

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Lecture 9: Hierarchy Theorems

Lecture 9: Hierarchy Theorems IAS/PCMI Summer Sessio 2000 Clay Mathematics Udergraduate Program Basic Course o Computatioal Complexity Lecture 9: Hierarchy Theorems David Mix Barrigto ad Alexis Maciel July 27, 2000 Most of this lecture

More information

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

IIT JAM Mathematical Statistics (MS) 2006 SECTION A IIT JAM Mathematical Statistics (MS) 6 SECTION A. If a > for ad lim a / L >, the which of the followig series is ot coverget? (a) (b) (c) (d) (d) = = a = a = a a + / a lim a a / + = lim a / a / + = lim

More information

1 Review and Overview

1 Review and Overview DRAFT a fial versio will be posted shortly CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #3 Scribe: Migda Qiao October 1, 2013 1 Review ad Overview I the first half of this course,

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

Lecture 4: Unique-SAT, Parity-SAT, and Approximate Counting

Lecture 4: Unique-SAT, Parity-SAT, and Approximate Counting Advaced Complexity Theory Sprig 206 Lecture 4: Uique-SAT, Parity-SAT, ad Approximate Coutig Prof. Daa Moshkovitz Scribe: Aoymous Studet Scribe Date: Fall 202 Overview I this lecture we begi talkig about

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desig ad Aalysis of Algorithms Probabilistic aalysis ad Radomized algorithms Referece: CLRS Chapter 5 Topics: Hirig problem Idicatio radom variables Radomized algorithms Huo Hogwei 1 The hirig problem

More information

Agnostic Learning and Concentration Inequalities

Agnostic Learning and Concentration Inequalities ECE901 Sprig 2004 Statistical Regularizatio ad Learig Theory Lecture: 7 Agostic Learig ad Cocetratio Iequalities Lecturer: Rob Nowak Scribe: Aravid Kailas 1 Itroductio 1.1 Motivatio I the last lecture

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

Lecture 4 February 16, 2016

Lecture 4 February 16, 2016 MIT 6.854/18.415: Advaced Algorithms Sprig 16 Prof. Akur Moitra Lecture 4 February 16, 16 Scribe: Be Eysebach, Devi Neal 1 Last Time Cosistet Hashig - hash fuctios that evolve well Radom Trees - routig

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Lecture 16: Monotone Formula Lower Bounds via Graph Entropy. 2 Monotone Formula Lower Bounds via Graph Entropy

Lecture 16: Monotone Formula Lower Bounds via Graph Entropy. 2 Monotone Formula Lower Bounds via Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS CMU: Sprig 2013 Lecture 16: Mootoe Formula Lower Bouds via Graph Etropy March 26, 2013 Lecturer: Mahdi Cheraghchi Scribe: Shashak Sigh 1 Recap Graph Etropy:

More information

Here, e(a, B) is defined as the number of edges between A and B in the n dimensional boolean hypercube.

Here, e(a, B) is defined as the number of edges between A and B in the n dimensional boolean hypercube. Lecture 2 Topics i Complexity Theory ad Pseudoradomess (Sprig 2013) Rutgers Uiversity Swastik Kopparty Scribes: Amey Bhagale, Mrial Kumar 1 Overview I this lecture, we will complete the proof of formula

More information

CS 330 Discussion - Probability

CS 330 Discussion - Probability CS 330 Discussio - Probability March 24 2017 1 Fudametals of Probability 11 Radom Variables ad Evets A radom variable X is oe whose value is o-determiistic For example, suppose we flip a coi ad set X =

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

The Boolean Ring of Intervals

The Boolean Ring of Intervals MATH 532 Lebesgue Measure Dr. Neal, WKU We ow shall apply the results obtaied about outer measure to the legth measure o the real lie. Throughout, our space X will be the set of real umbers R. Whe ecessary,

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Hashing and Amortization

Hashing and Amortization Lecture Hashig ad Amortizatio Supplemetal readig i CLRS: Chapter ; Chapter 7 itro; Sectio 7.. Arrays ad Hashig Arrays are very useful. The items i a array are statically addressed, so that isertig, deletig,

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should be doe

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan Arkasas Tech Uiversity MATH 94: Calculus II Dr Marcel B Fia 85 Power Series Let {a } =0 be a sequece of umbers The a power series about x = a is a series of the form a (x a) = a 0 + a (x a) + a (x a) +

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 2 : Learig Frameworks, Examples Settig up learig problems. X : istace space or iput space Examples: Computer Visio: Raw M N image vectorized X = 0, 255 M N, SIFT

More information

Lecture 12: September 27

Lecture 12: September 27 36-705: Itermediate Statistics Fall 207 Lecturer: Siva Balakrisha Lecture 2: September 27 Today we will discuss sufficiecy i more detail ad the begi to discuss some geeral strategies for costructig estimators.

More information

Lecture Notes for Analysis Class

Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS DEMETRES CHRISTOFIDES Abstract. Cosider a ivertible matrix over some field. The Gauss-Jorda elimiatio reduces this matrix to the idetity

More information

Solutions to selected exercise of Randomized Algorithms

Solutions to selected exercise of Randomized Algorithms Solutios to selected exercise of Radomized Algorithms Zhag Qi December 5, 006 Chapter. Problem.7. We first prove that e λx λ(e x ) Whe x = 0, LHS = RHS = 0. Ad whe x > 0, (e λx ) = λe λx λe x = [λ(e x

More information

MATH 472 / SPRING 2013 ASSIGNMENT 2: DUE FEBRUARY 4 FINALIZED

MATH 472 / SPRING 2013 ASSIGNMENT 2: DUE FEBRUARY 4 FINALIZED MATH 47 / SPRING 013 ASSIGNMENT : DUE FEBRUARY 4 FINALIZED Please iclude a cover sheet that provides a complete setece aswer to each the followig three questios: (a) I your opiio, what were the mai ideas

More information

5. INEQUALITIES, LIMIT THEOREMS AND GEOMETRIC PROBABILITY

5. INEQUALITIES, LIMIT THEOREMS AND GEOMETRIC PROBABILITY IA Probability Let Term 5 INEQUALITIES, LIMIT THEOREMS AND GEOMETRIC PROBABILITY 51 Iequalities Suppose that X 0 is a radom variable takig o-egative values ad that c > 0 is a costat The P X c E X, c is

More information

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices Radom Matrices with Blocks of Itermediate Scale Strogly Correlated Bad Matrices Jiayi Tog Advisor: Dr. Todd Kemp May 30, 07 Departmet of Mathematics Uiversity of Califoria, Sa Diego Cotets Itroductio Notatio

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

Lecture 2 February 8, 2016

Lecture 2 February 8, 2016 MIT 6.854/8.45: Advaced Algorithms Sprig 206 Prof. Akur Moitra Lecture 2 February 8, 206 Scribe: Calvi Huag, Lih V. Nguye I this lecture, we aalyze the problem of schedulig equal size tasks arrivig olie

More information

4.1 Data processing inequality

4.1 Data processing inequality ECE598: Iformatio-theoretic methods i high-dimesioal statistics Sprig 206 Lecture 4: Total variatio/iequalities betwee f-divergeces Lecturer: Yihog Wu Scribe: Matthew Tsao, Feb 8, 206 [Ed. Mar 22] Recall

More information

1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS

1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS 1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS We cosider a ite well-ordered system of observers, where each observer sees the real umbers as the set of all iite decimal fractios. The observers are

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

PRACTICE FINAL/STUDY GUIDE SOLUTIONS Last edited December 9, 03 at 4:33pm) Feel free to sed me ay feedback, icludig commets, typos, ad mathematical errors Problem Give the precise meaig of the followig statemets i) a f) L ii) a + f) L iii)

More information

Vector Quantization: a Limiting Case of EM

Vector Quantization: a Limiting Case of EM . Itroductio & defiitios Assume that you are give a data set X = { x j }, j { 2,,, }, of d -dimesioal vectors. The vector quatizatio (VQ) problem requires that we fid a set of prototype vectors Z = { z

More information