EXTENDING THE BOUNDARIES OF STRUCTURAL MODELING EPIGENETIC EFFECTS ON NUCLEOSOME POSITIONING

Size: px
Start display at page:

Download "EXTENDING THE BOUNDARIES OF STRUCTURAL MODELING EPIGENETIC EFFECTS ON NUCLEOSOME POSITIONING"

Transcription

1 EXTENDING THE BOUNDARIES OF STRUCTURAL MODELING EPIGENETIC EFFECTS ON NUCLEOSOME POSITIONING Peter Minary Computational Structural Biology Group Stanford University Stanford, CA 94305

2 ~ 0.3 nm TO MODEL ATOMIC EFFECTS THAT ARE MAGNIFIED IN THE CONTEXT OF LARGE ASSEMBLIES ~ 1.3 nm OBJECTIVE!? SOLUTION BY JUMPING FROM ATOMIC TO MESO SCALE AND KEEPING THE RESOLUTION ~ 10 nm ~ 50 nm

3 THE PROBLEM

4 OBSTACLES TO MESO SCALE ALL ATOM MODELING Energy Surface Problem: Rough Guiding Potential on Each Scale V(u) V(x) V ref (x) x u[x] = x 0 + exp{ β V ref [y] } dy x 0 Chandler et al. Minary et al. SIAM J. Sci. Comp (2008). REPSWA Dimensionality Problem: Large Number of Degrees Of Freedom N DOFs = 6000 N atm = 2000 N res = 100 N a/r = 10 Bottom Line 6000 vs 6 SOLUTION: MOSAICS (Methodologies for Optimization and SAmling In Computational Studies) 4

5 OBSTACLES TO MESO SCALE ALL ATOM MODELING Energy Surface Problem: Rough Guiding Potential on Each Scale Chandler et al. Dimensionality Problem: Large Number of Degrees Of Freedom N DOFs = 6000 N atm = 2000 N res = 100 N a/r = 10 Bottom Line 6000 vs 6? SOLUTION: MOSAICS (Methodologies for Optimization and SAmling In Computational Studies) 5

6 THE OUTLINE Natural Move Monte Carlo, Basic Concepts & the Algorithm In Silico Epigenetics, Nucleosome Positioning / Methylation Algorithmic Benchmarks or Hierarchical Natural Move MC 6 6

7 NATURAL MOVE MONTE CARLO Minary, P., Levitt, M. Conformational Optimization with Natural Degrees of Freedom: A Novel Stochastic Chain Closure Algorithm. Journal of Computational Biology 17(8), (2010).

8 NATURAL DEGREES OF FREEDOM FOR NUCLEIC ACIDS D x D y D z Shift Slide Rise τ Tilt ρ Roll ω Twist S x S y S z Shear Stretch Stagger κ Buckle π Propeller σ Opening D x y D y y D z y y y y τ ρ ω z z z z z z x x x x x x O3 S x y y y S y S z D x D y D z τ ρ ω z z z C4 RC 1 N S x S y S z κ π σ x x x C5 O1 O5 P y y y dof: 10 (4+12x½) κ π σ z z z O3 Moves break the chain! x x x 8

9 NATURAL DEGREES OF FREEDOM FOR PROTEINS S x S y S z Shear Stretch Stagger S x y z x κ π σ Buckle Propeller Opening Moves break the chain! 9

10 RECURSIVE STOCHASTIC CLOSURE 1 cycle of RSC = DFC[ SPC[ SPC[ SPC[ ] ] ] ] Molten zone 1 st cycle One SPC step Restores 4-5, breaks 3-4 DFC Multiple SPC steps Propagates the chain brake Narrows closure gap AC = O(N cd ) 2 << O(f NP (N cd )) 1 N cd = 2 N m + 5 m cycles Molten zone (1) Dodd et al. Mol. Phys (1993). (2) Minary, P., Levitt, M. J. Comp. Biol. 17(8) (2010). 10

11 < P acc > NATURAL MOVE MONTE CARLO USING RSC DFC RSC (m = 1) RSC (m = 5) log 10 [σ trans (Å)] Force Field: amber99-bs0, System: E2 binding DNA site, 5 -ACCGAATTCGGT-3 11

12 APPLICATIONS 12

13 NUCLEOSOME POSITIONING Minary, P., Levitt, M. Ab Initio Nucleosome Positioning and Epigenetics. Nature XXX, xxxxx-xxxxx (2012). In Review. 13

14 NUCLEOSOME POSITIONING E(i) O(i) THE COMPUTATIONAL PIPELINE Threading S n Q i = n Template Sequence Structure S(i) NUCLEOSOME FORMATION ENERGY S j E = E ( ) E ( ) T k Q T j O i / O k ~ exp( β ΔE jk ) S k 14

15 ( E n E l )( i ) CC x ( i ) YEAST CHROMOSOME 14 In Vitro NUCLEOSOME POSITIONING NUCLEOSOME FORMATION ENERGY CC 2000 CC P( CC x ) E n : E nucleosome E l : E linear E n E l InVitro CC = Sequence Position (i) E n E l 15

16 YEAST CHROMOSOME 14 NUCLEOSOME POSITIONING CONTROL CALCULATIONS P(i) in vitro ab initio AMBER99-bs0 ab initio AMBER99 ab initio CHARMM27 P(i) in vitro 300 K No Solvent 300 K 1200 K 1500 K 2500 K P(i) in vitro DNA template 1kx5 DNA template ideal P Minary Sequence Position (i) 16

17 NUCLEOSOME POSITIONING EPIGENETIC EFFECTS Small Atomic Changes (5Me-C, 5hMe-C, HXXxx, ) Atomic Large Meso-Scale Assemblies (Nucleosome, Hetero/EuChromatin) Meso Haifa

18 YEAST CHROMOSOME 14 In Vitro NUCLEOSOME POSITIONING DNA METHYLATION, G C 5Me CC = Percentage GC ΔΔE me NOT ADDITIVE ΔE nme ADDITIVE ΔE lme ADDITIVE CC = CC = CC = ΔΔE me ΔE nme ΔE lme Percentage GC Percentage GC Percentage GC 18

19 YEAST CHROMOSOME 14 Energy NUCLEOSOME POSITIONING DNA METHYLATION, G C 5Me E n E l E nme E lme ΔΔE me Sequence Position (i) ΔΔE me MODERATES THE SEQUENCE DEPENDENCE OF NUCLEOSOME BINDING CC = CC = CC = ΔΔE me ΔE nme ΔE lme E n E l E n E l E n E l 19

20 NUCLEOSOME POSITIONING MAIN MESSAGE Binding energy correlates to in vitro nucleosome occupancy. 5MeCyt modulates bending energy, nucleosome occupancy. Methylation is not additive with respect to G+C concentration. There is no need for specific DNA nucleosome interactions. AMBER-99bs0 & implicit electrostatics works sufficiently well

21 ALGORITHMIC BENCHMARKS OR HIERARCHICAL NATURAL MOVE MC Sim, A. S. L., Levitt, M., Minary, P. Modeling and Design by Hierarchical Natural Moves. PNAS 109: (2012). 21

22 HIERARCHICAL NATURAL MOVE MC RNA 4-WAY JUNCTION 22

23 SYMMETRICAL FRACTAL RNA εrror(i) HIERARCHICAL NATURAL MOVE MC BENCHMARK TO THEORY i x 10 4 L 1 L 7 i<j i, j εrror(i) 23

24 RNA NANOTECHNOLOGY HIERARCHICAL NATURAL MOVE MC BENCHMARK TO EXPERIMENT WT MT? WET LAB IN SILICO PREDICTION WT <θ> ~90 MT <θ> ~60 24

25 FUTURE DIRECTIONS Further Applications of (Hierarchical) Natural Move Monte Carlo Epigenetics & Nucleosome Positioning 5-Me-C, 5-MeOH-C 5-CO-C, 5-COOH-C HXXxx,. 2D Image Driven Cryo-EM Refinement 3WJ FAS RIB Modeling RNA Nanomedicine & rrna Methodologies for Optimization and SAmpling In Computational Studies MOSAICS, MOSAICS-EM: FURTHER RELEASES: MOSAICS-NMR, MOSAICS-X, MOSAICS-FRET 25

26 ACKNOWLEDGEMENTS Michael Levitt (Stanford) Mark Tuckerman (NYU) Glenn Martyna (IBM) Past & Present Jernei Ule (Cambridge) Peter Lukavsky (ETH) Michael Kiebler (UVienna) RNA Roger Kornberg (Stanford) Yahli Kornberg (Stanford) Jody Puglisi (Stanford) Chromatin Wah Chiu (Baylor) Timothy Richmond (ETH) Junjie Zhang (Biophysics) Gaurav Chopra (Math/ME) Adelene Sim (Physics) MOSAICS Applications Steve Ludtke (Baylor) Cryo-EM Workshop 26

27 MOSAICS-EM Workshop 3WJ 3WJ 3WJ 27

28 MONTE CARLO RECURSIVE STOCHASTIC CLOSURE Monte Carlo Minimization (1) is Monte Carlo (MC) guided by E( X ) min E( X ) X E E Monte Carlo Recursive Stochastic Closure (2) is guided by E (X i X d ) min E(X X i X d ) d (1) Wales, D. J., Scheraga, H. A. Science (1999). (2) Minary, P., Levitt, M. J. Comp. Biol. 17(8) (2010). 28

29 NATURAL MOVE vs LOOP TORSIONAL MC NM-6 (1) (1) N cd = 19 NMMC (2) SCOP id: d1div_2, 55 residue domain (1) Minary, P., Levitt, M. J. Comp. Biol. 17(8) (2010). (2) Minary, P., Levitt, M. J. Mol. Biol (2008). 29

30 HIERARCHICAL NATURAL MOVE MC TESTING METHOD-SOFTWARE NM-MOSAICS FA-MCSym FA-Rosetta HNM-MOSAICS L 1 L 1 - L 4 Distance Distributions Canonical Trajectory L 1 - L 4 30

31 HIERARCHICAL NATURAL MOVE MC THE METHOD 31

32 TRANSFORMATION OF VARIABLES Minary P., Tuckerman, M. E., Martyna, G. J. Dynamical Spatial Warping: A Novel Method for the Conformational Sampling of Biophysical Structure. SIAM J. Sci. Comp (2008).

33 TRANSFORMATION OF VARIABLES Q X dxexp V (x) U Q duexp V% eff (x(u)) V (x) 1 ln J(u[x]) % Veff (x[u]) x u[x] dy exp V ref ( y) x 0 J(u[x]) dx du exp V (x[u]) ref % V eff (x[u]) V(x) V ref (x[u]) REPSWA 33

34 Φ 200 (X[U]) Φ 200 (U[X]) X MCMC BENCHMARKS U 10 6 fold speedup x analytical MCMC β = kt E = 10 kt x analytical MCMC steps (10 3 ) P(x) X[U] -1 1 x U[X] steps (10 3 ) P(x) 10 6 fold speedup steps (10 3 ) steps (10 3 ) Φ(X[U]) Φ(U[X]) steps (10 3 ) C 400 H 802 steps (10 3 ) 34 34

Enhanced sampling via molecular dynamics II: Unbiased approaches

Enhanced sampling via molecular dynamics II: Unbiased approaches Enhanced sampling via molecular dynamics II: Unbiased approaches Mark E. Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Sciences New York University, 100 Washington Square East, NY

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/309/5742/1868/dc1 Supporting Online Material for Toward High-Resolution de Novo Structure Prediction for Small Proteins Philip Bradley, Kira M. S. Misura, David Baker*

More information

Free energy calculations and the potential of mean force

Free energy calculations and the potential of mean force Free energy calculations and the potential of mean force IMA Workshop on Classical and Quantum Approaches in Molecular Modeling Mark Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Science

More information

Protein Structure Prediction

Protein Structure Prediction Protein Structure Prediction Michael Feig MMTSB/CTBP 2006 Summer Workshop From Sequence to Structure SEALGDTIVKNA Ab initio Structure Prediction Protocol Amino Acid Sequence Conformational Sampling to

More information

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar.

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. 25, 2002 Molecular Dynamics: Introduction At physiological conditions, the

More information

Protein Modeling Methods. Knowledge. Protein Modeling Methods. Fold Recognition. Knowledge-based methods. Introduction to Bioinformatics

Protein Modeling Methods. Knowledge. Protein Modeling Methods. Fold Recognition. Knowledge-based methods. Introduction to Bioinformatics Protein Modeling Methods Introduction to Bioinformatics Iosif Vaisman Ab initio methods Energy-based methods Knowledge-based methods Email: ivaisman@gmu.edu Protein Modeling Methods Ab initio methods:

More information

Procheck output. Bond angles (Procheck) Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics.

Procheck output. Bond angles (Procheck) Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics. Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics Iosif Vaisman Email: ivaisman@gmu.edu ----------------------------------------------------------------- Bond

More information

Contact map guided ab initio structure prediction

Contact map guided ab initio structure prediction Contact map guided ab initio structure prediction S M Golam Mortuza Postdoctoral Research Fellow I-TASSER Workshop 2017 North Carolina A&T State University, Greensboro, NC Outline Ab initio structure prediction:

More information

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror Protein structure prediction CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror 1 Outline Why predict protein structure? Can we use (pure) physics-based methods? Knowledge-based methods Two major

More information

Dominant Paths in Protein Folding

Dominant Paths in Protein Folding Dominant Paths in Protein Folding Henri Orland SPhT, CEA-Saclay France work in collaboration with P. Faccioli, F. Pederiva, M. Sega University of Trento Henri Orland Annecy meeting 2006 Outline Basic notions

More information

Supplementary Figures. Measuring Similarity Between Dynamic Ensembles of Biomolecules

Supplementary Figures. Measuring Similarity Between Dynamic Ensembles of Biomolecules Supplementary Figures Measuring Similarity Between Dynamic Ensembles of Biomolecules Shan Yang, Loïc Salmon 2, and Hashim M. Al-Hashimi 3*. Department of Chemistry, University of Michigan, Ann Arbor, MI,

More information

Presenter: She Zhang

Presenter: She Zhang Presenter: She Zhang Introduction Dr. David Baker Introduction Why design proteins de novo? It is not clear how non-covalent interactions favor one specific native structure over many other non-native

More information

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche The molecular structure of a protein can be broken down hierarchically. The primary structure of a protein is simply its

More information

Template Free Protein Structure Modeling Jianlin Cheng, PhD

Template Free Protein Structure Modeling Jianlin Cheng, PhD Template Free Protein Structure Modeling Jianlin Cheng, PhD Associate Professor Computer Science Department Informatics Institute University of Missouri, Columbia 2013 Protein Energy Landscape & Free Sampling

More information

Template Free Protein Structure Modeling Jianlin Cheng, PhD

Template Free Protein Structure Modeling Jianlin Cheng, PhD Template Free Protein Structure Modeling Jianlin Cheng, PhD Professor Department of EECS Informatics Institute University of Missouri, Columbia 2018 Protein Energy Landscape & Free Sampling http://pubs.acs.org/subscribe/archive/mdd/v03/i09/html/willis.html

More information

Review. CS/CME/BioE/Biophys/BMI 279 Nov. 30 and Dec. 5, 2017 Ron Dror

Review. CS/CME/BioE/Biophys/BMI 279 Nov. 30 and Dec. 5, 2017 Ron Dror Review CS/CME/BioE/Biophys/BMI 279 Nov. 30 and Dec. 5, 2017 Ron Dror 1 Information on the exam The exam will focus on high-level concepts You may use two (single-sided) pages of notes, but the emphasis

More information

Are DNA Transcription Factor Proteins Maxwellian Demons?

Are DNA Transcription Factor Proteins Maxwellian Demons? Are DNA Transcription Factor Proteins Maxwellian Demons? * physics as a design constraint on molecular evolution. Alexander Grosberg, Longhua Hu, U. Minnesota, NYU U. Minnesota Biophysical Journal 2008

More information

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM Homology modeling Dinesh Gupta ICGEB, New Delhi Protein structure prediction Methods: Homology (comparative) modelling Threading Ab-initio Protein Homology modeling Homology modeling is an extrapolation

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction CMPS 6630: Introduction to Computational Biology and Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the

More information

Atomistic Modeling of Small-Angle Scattering Data Using SASSIE-web

Atomistic Modeling of Small-Angle Scattering Data Using SASSIE-web Course Introduction Atomistic Modeling of Small-Angle Scattering Data Using SASSIE-web September 21-23, 2016 Advanced Photon Source Argonne National Laboratory, Argonne, IL ccpsas.org Scatters & Simulators

More information

Course Introduction. SASSIE CCP-SAS Workshop. January 23-25, ISIS Neutron and Muon Source Rutherford Appleton Laboratory UK

Course Introduction. SASSIE CCP-SAS Workshop. January 23-25, ISIS Neutron and Muon Source Rutherford Appleton Laboratory UK Course Introduction SASSIE CCP-SAS Workshop January 23-25, 2017 ISIS Neutron and Muon Source Rutherford Appleton Laboratory UK ccpsas.org Scatters & Simulators Develop a community of users and developers

More information

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Biophysical Journal, Volume 98 Supporting Material Molecular dynamics simulations of anti-aggregation effect of ibuprofen Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Supplemental

More information

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Ruhong Zhou 1 and Bruce J. Berne 2 1 IBM Thomas J. Watson Research Center; and 2 Department of Chemistry,

More information

Limitations of temperature replica exchange (T-REMD) for protein folding simulations

Limitations of temperature replica exchange (T-REMD) for protein folding simulations Limitations of temperature replica exchange (T-REMD) for protein folding simulations Jed W. Pitera, William C. Swope IBM Research pitera@us.ibm.com Anomalies in protein folding kinetic thermodynamic 322K

More information

DNA/RNA Structure Prediction

DNA/RNA Structure Prediction C E N T R E F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U Master Course DNA/Protein Structurefunction Analysis and Prediction Lecture 12 DNA/RNA Structure Prediction Epigenectics Epigenomics:

More information

Molecular Simulation II. Classical Mechanical Treatment

Molecular Simulation II. Classical Mechanical Treatment Molecular Simulation II Quantum Chemistry Classical Mechanics E = Ψ H Ψ ΨΨ U = E bond +E angle +E torsion +E non-bond Jeffry D. Madura Department of Chemistry & Biochemistry Center for Computational Sciences

More information

Multiple time step Monte Carlo

Multiple time step Monte Carlo JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 18 8 NOVEMBER 2002 Multiple time step Monte Carlo Balázs Hetényi a) Department of Chemistry, Princeton University, Princeton, NJ 08544 and Department of Chemistry

More information

Structural Bioinformatics (C3210) Molecular Mechanics

Structural Bioinformatics (C3210) Molecular Mechanics Structural Bioinformatics (C3210) Molecular Mechanics How to Calculate Energies Calculation of molecular energies is of key importance in protein folding, molecular modelling etc. There are two main computational

More information

CMPS 3110: Bioinformatics. Tertiary Structure Prediction

CMPS 3110: Bioinformatics. Tertiary Structure Prediction CMPS 3110: Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the laws of physics! Conformation space is finite

More information

Molecular Mechanics, Dynamics & Docking

Molecular Mechanics, Dynamics & Docking Molecular Mechanics, Dynamics & Docking Lawrence Hunter, Ph.D. Director, Computational Bioscience Program University of Colorado School of Medicine Larry.Hunter@uchsc.edu http://compbio.uchsc.edu/hunter

More information

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769 Dihedral Angles Homayoun Valafar Department of Computer Science and Engineering, USC The precise definition of a dihedral or torsion angle can be found in spatial geometry Angle between to planes Dihedral

More information

Multiscale Simulations of DNA and Nucleosome Core Particles

Multiscale Simulations of DNA and Nucleosome Core Particles Multiscale Simulations of DNA and Nucleosome Core Particles Alexander Lyubartsev Department of Materials and Environmental Chemistry, Stockholm University Molecular Mobility and Order in Polymer Systems

More information

Methods of Computer Simulation. Molecular Dynamics and Monte Carlo

Methods of Computer Simulation. Molecular Dynamics and Monte Carlo Molecular Dynamics Time is of the essence in biological processes therefore how do we understand time-dependent processes at the molecular level? How do we do this experimentally? How do we do this computationally?

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror Molecular dynamics simulation CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror 1 Outline Molecular dynamics (MD): The basic idea Equations of motion Key properties of MD simulations Sample applications

More information

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Energy functions and their relationship to molecular conformation CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Yesterday s Nobel Prize: single-particle cryoelectron microscopy 2 Outline Energy

More information

DNA bending induced during Molecular Dynamics simulations: Basepair Kinks and Hinges

DNA bending induced during Molecular Dynamics simulations: Basepair Kinks and Hinges DNA bending induced during Molecular Dynamics simulations: Basepair Kinks and Hinges Thursday, October 23, 2008 Theoretical Approaches or the Genome LAPTH-LAMA-LAPP-CNRS-University o Savoie Jeremy Curuksu

More information

Facilitated diffusion of DNA-binding proteins

Facilitated diffusion of DNA-binding proteins Facilitated diffusion of DNA-binding proteins Konstantin Klenin, Joerg Langowski, DKFZ Heidelberg, Germany Holger Merlitz, Chen-Xu Wu, Xiamen University Content: What is facilitated diffusion? Two competing

More information

Protein Folding Prof. Eugene Shakhnovich

Protein Folding Prof. Eugene Shakhnovich Protein Folding Eugene Shakhnovich Department of Chemistry and Chemical Biology Harvard University 1 Proteins are folded on various scales As of now we know hundreds of thousands of sequences (Swissprot)

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Length Scales (c) ICAMS: http://www.icams.de/cms/upload/01_home/01_research_at_icams/length_scales_1024x780.png Goals for today: Background

More information

ID14-EH3. Adam Round

ID14-EH3. Adam Round Bio-SAXS @ ID14-EH3 Adam Round Contents What can be obtained from Bio-SAXS Measurable parameters Modelling strategies How to collect data at Bio-SAXS Procedure Data collection tests Data Verification and

More information

Introduction The gramicidin A (ga) channel forms by head-to-head association of two monomers at their amino termini, one from each bilayer leaflet. Th

Introduction The gramicidin A (ga) channel forms by head-to-head association of two monomers at their amino termini, one from each bilayer leaflet. Th Abstract When conductive, gramicidin monomers are linked by six hydrogen bonds. To understand the details of dissociation and how the channel transits from a state with 6H bonds to ones with 4H bonds or

More information

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Energy functions and their relationship to molecular conformation CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Outline Energy functions for proteins (or biomolecular systems more generally)

More information

Computational protein design

Computational protein design Computational protein design There are astronomically large number of amino acid sequences that needs to be considered for a protein of moderate size e.g. if mutating 10 residues, 20^10 = 10 trillion sequences

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information

A rigid-base model for DNA structure prediction. O. Gonzalez

A rigid-base model for DNA structure prediction. O. Gonzalez A rigid-base model for DNA structure prediction O. Gonzalez Introduction Objective. To develop a model to predict the structure and flexibility of standard, B-form DNA from its sequence. Introduction Objective.

More information

Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix

Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix Marcel Hellmann BIOMS Group Cellular Biophysics, Deutsches Krebsforschungszentrum (DKFZ) Theoretical Biophysics Group,

More information

Lecture 7: The Beam Element Equations.

Lecture 7: The Beam Element Equations. 4.1 Beam Stiffness. A Beam: A long slender structural component generally subjected to transverse loading that produces significant bending effects as opposed to twisting or axial effects. MECH 40: Finite

More information

Molecular Modeling. Prediction of Protein 3D Structure from Sequence. Vimalkumar Velayudhan. May 21, 2007

Molecular Modeling. Prediction of Protein 3D Structure from Sequence. Vimalkumar Velayudhan. May 21, 2007 Molecular Modeling Prediction of Protein 3D Structure from Sequence Vimalkumar Velayudhan Jain Institute of Vocational and Advanced Studies May 21, 2007 Vimalkumar Velayudhan Molecular Modeling 1/23 Outline

More information

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig part of Bioinformatik von RNA- und Proteinstrukturen Computational EvoDevo University Leipzig Leipzig, SS 2011 Protein Structure levels or organization Primary structure: sequence of amino acids (from

More information

Computational Studies of the Photoreceptor Rhodopsin. Scott E. Feller Wabash College

Computational Studies of the Photoreceptor Rhodopsin. Scott E. Feller Wabash College Computational Studies of the Photoreceptor Rhodopsin Scott E. Feller Wabash College Rhodopsin Photocycle Dark-adapted Rhodopsin hn Isomerize retinal Photorhodopsin ~200 fs Bathorhodopsin Meta-II ms timescale

More information

Laying down deep roots: Molecular models of plant hormone signaling towards a detailed understanding of plant biology

Laying down deep roots: Molecular models of plant hormone signaling towards a detailed understanding of plant biology Laying down deep roots: Molecular models of plant hormone signaling towards a detailed understanding of plant biology Alex Moffett Center for Biophysics and Quantitative Biology PI: Diwakar Shukla Department

More information

Homework Problem Set 1 Solutions

Homework Problem Set 1 Solutions Chemistry 380.37 Dr. Jean M. Standard omework Problem Set 1 Solutions 1. A student investigates a bond between atoms A and B in a molecule using a software package for molecular mechanics. The student

More information

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues Programme 8.00-8.20 Last week s quiz results + Summary 8.20-9.00 Fold recognition 9.00-9.15 Break 9.15-11.20 Exercise: Modelling remote homologues 11.20-11.40 Summary & discussion 11.40-12.00 Quiz 1 Feedback

More information

Ab-initio protein structure prediction

Ab-initio protein structure prediction Ab-initio protein structure prediction Jaroslaw Pillardy Computational Biology Service Unit Cornell Theory Center, Cornell University Ithaca, NY USA Methods for predicting protein structure 1. Homology

More information

DNA/RNA structure and packing

DNA/RNA structure and packing DNA/RNA structure and packing Reminder: Nucleic acids one oxygen atom distinguishes RNA from DNA, increases reactivity (so DNA is more stable) base attaches at 1, phosphate at 5 purines pyrimidines Replace

More information

Development of Novel Small- Angle X-ray Scattering Data Analysis Methods for Study of Flexible Proteins. Michael Kachala EMBL-Hamburg, Germany

Development of Novel Small- Angle X-ray Scattering Data Analysis Methods for Study of Flexible Proteins. Michael Kachala EMBL-Hamburg, Germany Development of Novel Small- Angle X-ray Scattering Data Analysis Methods for Study of Flexible Proteins Michael Kachala EMBL-Hamburg, Germany 60 mkl >1 mg/ml Monocromatic X-ray beam Sample Mono- or polydisperse

More information

Hierarchical Metastable States and Kinetic Transition Networks: Trajectory Mapping and Clustering

Hierarchical Metastable States and Kinetic Transition Networks: Trajectory Mapping and Clustering Hierarchical Metastable States and Kinetic Transition Networks: Trajectory Mapping and Clustering Xin Zhou xzhou@gucas.ac.cn Graduate University of Chinese Academy of Sciences, Beijing 2012.6.5 KITP, Santa

More information

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Brian Kuhlman, Gautam Dantas, Gregory C. Ireton, Gabriele Varani, Barry L. Stoddard, David Baker Presented by Kate Stafford 4 May 05 Protein

More information

Protein Structure Prediction

Protein Structure Prediction Protein Structure Prediction Michael Feig MMTSB/CTBP 2009 Summer Workshop From Sequence to Structure SEALGDTIVKNA Folding with All-Atom Models AAQAAAAQAAAAQAA All-atom MD in general not succesful for real

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 1 David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Time/s Multi-Scale Modeling Based on SDSC Blue Horizon (SP3) 1.728 Tflops

More information

Supplementary Information

Supplementary Information Supplementary Information Gi-Moon Nam and Gaurav Arya Department of NanoEngineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 9093-0448 1 Coarse-grained (CG) model of nucleosome

More information

Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation

Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation Bo Li Dept. of Math & NSF Center for Theoretical Biological Physics UC San Diego, USA Collaborators: Li-Tien Cheng

More information

The Molecular Dynamics Method

The Molecular Dynamics Method The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = d dx U(x) Conformation

More information

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals Phase Equilibria Phase diagrams and classical thermodynamics

More information

ψ j φ j+1 Motif position

ψ j φ j+1 Motif position 1.0 % Occupancy 0.8 0.6 0.4 0.2 0.0 ψ i-1 φ i ψ j φ j+1 ψ k-1 Motif position φ Supplementary Figure 1 Residue profiles for the positions in the β-sheet motif. Residue types as percentages for the six positions

More information

A sequence-dependent physical model of nucleosome occupancy along the eukaryotic chromatin fiber. Alain Arneodo

A sequence-dependent physical model of nucleosome occupancy along the eukaryotic chromatin fiber. Alain Arneodo A sequence-dependent physical model of nucleosome occupancy along the eukaryotic chromatin fiber Alain Arneodo Laboratoire de Physique, Ecole Normale Supérieure de Lyon, France Alain.Arneodo@ens-lyon.fr

More information

COMP 598 Advanced Computational Biology Methods & Research. Introduction. Jérôme Waldispühl School of Computer Science McGill University

COMP 598 Advanced Computational Biology Methods & Research. Introduction. Jérôme Waldispühl School of Computer Science McGill University COMP 598 Advanced Computational Biology Methods & Research Introduction Jérôme Waldispühl School of Computer Science McGill University General informations (1) Office hours: by appointment Office: TR3018

More information

Theory and Applications of Residual Dipolar Couplings in Biomolecular NMR

Theory and Applications of Residual Dipolar Couplings in Biomolecular NMR Theory and Applications of Residual Dipolar Couplings in Biomolecular NMR Residual Dipolar Couplings (RDC s) Relatively new technique ~ 1996 Nico Tjandra, Ad Bax- NIH, Jim Prestegard, UGA Combination of

More information

Reactive Transport in Porous Media

Reactive Transport in Porous Media Reactive Transport in Porous Media Daniel M. Tartakovsky Department of Mechanical & Aerospace Engineering University of California, San Diego Alberto Guadagnini, Politecnico di Milano, Italy Peter C. Lichtner,

More information

Exploring the Free Energy Surface of Short Peptides by Using Metadynamics

Exploring the Free Energy Surface of Short Peptides by Using Metadynamics John von Neumann Institute for Computing Exploring the Free Energy Surface of Short Peptides by Using Metadynamics C. Camilloni, A. De Simone published in From Computational Biophysics to Systems Biology

More information

Why study protein dynamics?

Why study protein dynamics? Why study protein dynamics? Protein flexibility is crucial for function. One average structure is not enough. Proteins constantly sample configurational space. Transport - binding and moving molecules

More information

Computational Chemistry - MD Simulations

Computational Chemistry - MD Simulations Computational Chemistry - MD Simulations P. Ojeda-May pedro.ojeda-may@umu.se Department of Chemistry/HPC2N, Umeå University, 901 87, Sweden. May 2, 2017 Table of contents 1 Basics on MD simulations Accelerated

More information

Nucleosome Switching

Nucleosome Switching Nucleosome Switching David J. Schwab, Robijn F. Bruinsma, Joseph Rudnick Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, 90024 & Jonathan Widom Department of

More information

Protein Structure Prediction

Protein Structure Prediction Page 1 Protein Structure Prediction Russ B. Altman BMI 214 CS 274 Protein Folding is different from structure prediction --Folding is concerned with the process of taking the 3D shape, usually based on

More information

Protein Modeling. Generating, Evaluating and Refining Protein Homology Models

Protein Modeling. Generating, Evaluating and Refining Protein Homology Models Protein Modeling Generating, Evaluating and Refining Protein Homology Models Troy Wymore and Kristen Messinger Biomedical Initiatives Group Pittsburgh Supercomputing Center Homology Modeling of Proteins

More information

Lecture 34 Protein Unfolding Thermodynamics

Lecture 34 Protein Unfolding Thermodynamics Physical Principles in Biology Biology 3550 Fall 2018 Lecture 34 Protein Unfolding Thermodynamics Wednesday, 21 November c David P. Goldenberg University of Utah goldenberg@biology.utah.edu Clicker Question

More information

Random Eigenvalue Problems Revisited

Random Eigenvalue Problems Revisited Random Eigenvalue Problems Revisited S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

Outline. The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation. Unfolded Folded. What is protein folding?

Outline. The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation. Unfolded Folded. What is protein folding? The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation By Jun Shimada and Eugine Shaknovich Bill Hawse Dr. Bahar Elisa Sandvik and Mehrdad Safavian Outline Background on protein

More information

Introduction to" Protein Structure

Introduction to Protein Structure Introduction to" Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Learning Objectives Outline the basic levels of protein structure.

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/15/07 CAP5510 1 EM Algorithm Goal: Find θ, Z that maximize Pr

More information

Bioinformatics. Macromolecular structure

Bioinformatics. Macromolecular structure Bioinformatics Macromolecular structure Contents Determination of protein structure Structure databases Secondary structure elements (SSE) Tertiary structure Structure analysis Structure alignment Domain

More information

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2 Molecular Dynamics, Monte Carlo and Docking Lecture 21 Introduction to Bioinformatics MNW2 If you throw up a stone, it is Physics. If you throw up a stone, it is Physics. If it lands on your head, it is

More information

Rare Event Simulations

Rare Event Simulations Rare Event Simulations Homogeneous nucleation is a rare event (e.g. Liquid Solid) Crystallization requires supercooling (µ solid < µ liquid ) Crystal nucleus 2r Free - energy gain r 3 4! 3! GBulk = ñr!

More information

Biophysical Journal, Volume 99. Supporting Material. Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach

Biophysical Journal, Volume 99. Supporting Material. Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach Biophysical Journal, Volume 99 Supporting Material Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach Hin Hark Gan and Tamar Schlick Supporting Material Chromatin ionic atmosphere

More information

Subject of the Lecture:

Subject of the Lecture: Subject of the Lecture: Conceptual basis for the development of force fields. Implementation/validation Water - a worked example Extensions - combining molecular mechanics and quantum mechanics (QM/MM)

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror Protein structure prediction CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror 1 Outline Why predict protein structure? Can we use (pure) physics-based methods? Knowledge-based methods Two major

More information

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

Alpha-helical Topology and Tertiary Structure Prediction of Globular Proteins Scott R. McAllister Christodoulos A. Floudas Princeton University

Alpha-helical Topology and Tertiary Structure Prediction of Globular Proteins Scott R. McAllister Christodoulos A. Floudas Princeton University Alpha-helical Topology and Tertiary Structure Prediction of Globular Proteins Scott R. McAllister Christodoulos A. Floudas Princeton University Department of Chemical Engineering Program of Applied and

More information

Protein Structure Prediction, Engineering & Design CHEM 430

Protein Structure Prediction, Engineering & Design CHEM 430 Protein Structure Prediction, Engineering & Design CHEM 430 Eero Saarinen The free energy surface of a protein Protein Structure Prediction & Design Full Protein Structure from Sequence - High Alignment

More information

Table of contents. Saturday 24 June Sunday 25 June Monday 26 June

Table of contents. Saturday 24 June Sunday 25 June Monday 26 June Table of contents Saturday 24 June 2017... 1 Sunday 25 June 2017... 3 Monday 26 June 2017... 5 i Saturday 24 June 2017 Quantitative Biology 2017: Computational and Single-Molecule Biophysics Saturday 24

More information

Potential Energy (hyper)surface

Potential Energy (hyper)surface The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = " d dx U(x) Conformation

More information

Towards accurate calculations of Zn 2+ binding free energies in zinc finger proteins

Towards accurate calculations of Zn 2+ binding free energies in zinc finger proteins Towards accurate calculations of Zn 2+ binding free energies in zinc finger proteins UNDERGRADUATE HONORS RESEARCH THESIS Presented in Partial Fulfillment of the Requirements for the Bachelor of Science

More information

Local pointwise a posteriori gradient error bounds for the Stokes equations. Stig Larsson. Heraklion, September 19, 2011 Joint work with A.

Local pointwise a posteriori gradient error bounds for the Stokes equations. Stig Larsson. Heraklion, September 19, 2011 Joint work with A. Local pointwise a posteriori gradient error bounds for the Stokes equations Stig Larsson Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Heraklion, September

More information

1. Consider the 1-DOF system described by the equation of motion, 4ẍ+20ẋ+25x = f.

1. Consider the 1-DOF system described by the equation of motion, 4ẍ+20ẋ+25x = f. Introduction to Robotics (CS3A) Homework #6 Solution (Winter 7/8). Consider the -DOF system described by the equation of motion, ẍ+ẋ+5x = f. (a) Find the natural frequency ω n and the natural damping ratio

More information

Chapter 6 Cyclic urea - a new central unit in bent-core compounds

Chapter 6 Cyclic urea - a new central unit in bent-core compounds 82 Chapter 6 Cyclic urea - a new central unit in bent-core compounds A new class of five-ring bent-core molecules with a cyclic urea group as a central unit was synthesized [94]. A significant difference

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2013 Monday, 17 June, 2.30 pm 5.45 pm 15

More information

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2 Molecular Dynamics, Monte Carlo and Docking Lecture 21 Introduction to Bioinformatics MNW2 Allowed phi-psi angles Red areas are preferred, yellow areas are allowed, and white is avoided 2.3a Hamiltonian

More information