Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix

Size: px
Start display at page:

Download "Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix"

Transcription

1 Monte Carlo Simulations of the Hyaluronan-Aggrecan Complex in the Pericellular Matrix Marcel Hellmann BIOMS Group Cellular Biophysics, Deutsches Krebsforschungszentrum (DKFZ) Theoretical Biophysics Group, Universität Heidelberg DELTA 7 Meeting, /5/27 DELTA 7 Meeting

2 Content Biological Motivation 2 The Isolated HA-aggrecan Complex Modelling and Simulations Results 3 Interacting HA-aggrecan Complexes Modelling and Simulations Results I: Vorticity Results II: Thermodynamics 4 Open Questions/Problems/Ideas DELTA 7 Meeting

3 The Human Knee Joint DELTA 7 Meeting

4 Articular Cartilage macroscopic observations: articular cartilage forms menisci in synovial joints highly elastic cushion serves as a rampart against pressure (e.g. during movements) damage results in disease (e.g. osteoarthritis) microscopic nature: highly entangled polymer network origin of synthesis: pericellular matrix arround specialized cells (fibroblasts) How do the macroscopic properties emerge from the microscopic structure? DELTA 7 Meeting

5 The Pericellular Matrix - A Simple Model A simplyfied model of the pericellular matrix (PCM) arround a fibroblast Aggrecan stretched Hyaluronan coiled Hyaluronan µm 2nm HA receptor CELL Lee et al. 993 DELTA 7 Meeting

6 Hyaluronan (hyaluronic acid, HA) chain of sugars, total molecular weight: 6 u contour length: µm; persistence length: 8 nm can be tethered to the membran by HA receptor protein = HA is a long, flexible polymer chain DELTA 7 Meeting

7 Aggrecan ( large aggregating proteoglycan ) KS CS core protein N G G2 G3 C GAG chains 3 ku core protein with side chains attached contour length: 4 nm; persistence length: nm core protein can bind to HA via linker protein = Aggrecan is a rather rigid polymer comb DELTA 7 Meeting

8 Model Characteristics backbone (HA) fully flexible with length N; end-grafted on flat substrate (cell) side chain (Aggrecan) fully rigid with length S branching site b DELTA 7 Meeting

9 Model Characteristics backbone (HA) fully flexible with length N; end-grafted on flat substrate (cell) side chain (Aggrecan) fully rigid with length S branching site b simple cubic lattice, prohibit multiple occupations of one lattice site self-avoidance good athermal solvent no interactions between monomers besides self-avoidance; no adsorbtion DELTA 7 Meeting

10 Model Characteristics backbone (HA) fully flexible with length N; end-grafted on flat substrate (cell) side chain (Aggrecan) fully rigid with length S branching site b simple cubic lattice, prohibit multiple occupations of one lattice site self-avoidance good athermal solvent no interactions between monomers besides self-avoidance; no adsorbtion Dynamical Monte Carlo to generate independent configuartions: Verdier-Stockmayer-type algorithm and random rotations of side chain DELTA 7 Meeting

11 Simulation Model, 2D-sketch monomer N monomer b side chain z monomer Substrate (z=) DELTA 7 Meeting

12 Shape of a Polymer polymer shape described by gyration tensor 2 : S mn = N N i= r (i) m r (i) n diagonalisation yields principle axes of gyration, v, v 2, v 3 defining the triaxial gyration ellipsoid 2 Šolc & Stockmayer 97 3 Bruns 992 DELTA 7 Meeting

13 Shape of a Polymer polymer shape described by gyration tensor 2 : S mn = N N i= r (i) m r (i) n diagonalisation yields principle axes of gyration, v, v 2, v 3 defining the triaxial gyration ellipsoid ratios between the lengths of these axes (L L 2 L 3 ) quantify the asphericity MC simulations reveal 3 RW: L 2 : L2 2 : L2 3 N : 2.7 : 2 SAW: L 2 : L2 2 : L2 3 N : 3. : 4 2 Šolc & Stockmayer 97 3 Bruns 992 DELTA 7 Meeting

14 Read Outs only backbone monomers are used for calculations! e z v 3 φ Rg R end v 2 gyration ellipsoid DELTA 7 Meeting

15 Simulation Results 2 g p(r ).2 N=, b=.95*n S=.*N S=.5*N S=.2*N S=.3*N S=.5*N. p(a) N=, b=.95*n S=.*N S=.5*N S=.2*N S=.3*N S=.5*N 2 g R p(φ) N=, b=.95*n S=.*N S=.5*N S=.2*N S=.3*N S=.5*N.5 A φ DELTA 7 Meeting

16 Summary: Isolated HA-aggrecan Complex Conformational changes due to rigid side chain: R g, R end increase in size 2 asphericity pronounced rod-like shape 3 angle φ backbone orientates towards z-axis 4 increased persistency below side chain 5 additional side chains streightening largely caused by uppermost side chain all changes depend on b and S strongest effect for b N, S.5 N M. H., M. Weiss, and D. W. Heermann, Phys. Rev. E 76, 282 DELTA 7 Meeting

17 Isolated HA-aggrecan Complex: 3D-Representation Conformational changes due to rigid side chain: DELTA 7 Meeting

18 Towards Dense Systems observed streightening not sufficient to explain full extension of PCM next: account for interactions between neighbouring complexes tasks/problems: simulations with single chain resolution are much too expensive! new model necessary: only account for most important degrees of freedom = physically interesting side project DELTA 7 Meeting

19 New Model idea: polymer with side chain rotating rods z side chain y x side chain p branching site backbone DELTA 7 Meeting

20 New Model account for height p above the substrate: only side chains on the same level may interact Potts model H Potts = J P δ pi p j with p i {,,..., q } i,j particular interaction between side chains unknown DELTA 7 Meeting

21 New Model account for height p above the substrate: only side chains on the same level may interact Potts model H Potts = J P δ pi p j with p i {,,..., q } i,j particular interaction between side chains unknown consider NN-ferromagnetic interaction (prefers parallel alignment) planar rotator model (XY-model) H XY = J XY S i S j cos θ i,j i,j S i S j = J i,j DELTA 7 Meeting

22 New Model hybrid model: H Hybrid = J H δ pi p j S i S j cos θ i,j with p i {,,..., q } i,j DELTA 7 Meeting

23 New Model hybrid model: H Hybrid = J H δ pi p j S i S j cos θ i,j with p i {,,..., q } i,j parameters: rotator length S i fix: S i =, number of Potts levels q fix: q = 3, system size N = L L vary, interaction strength J H ( temperature T ) vary. DELTA 7 Meeting

24 New Model hybrid model: H Hybrid = J H δ pi p j S i S j cos θ i,j with p i {,,..., q } i,j parameters: rotator length S i fix: S i =, number of Potts levels q fix: q = 3, system size N = L L vary, interaction strength J H ( temperature T ) vary. behaviour in dependence on temperature and system size? XY model, NN-ferromagnetic KT-transition 2 2D q-state Potts model: q 4 2nd order 3 hybrid: KT, st or 2nd order? DELTA 7 Meeting

25 Vorticity: XY model and hybrid model a) q = (XY model, T > T KT ) b) q = 3 (hybrid model) DELTA 7 Meeting

26 Vortex Density Vortex density (#vortices + #antivortices) / lattice size v.3.2 6x6-lattice XY-model q=3 hybrid model XY model: v exp( 2µ/T ). hybrid: v /T.5 /T DELTA 7 Meeting

27 Thermodynamics: Inner Energy and Specific Heat results of Metropolis MC U x32-lattice q=3 Potts model XY-model Hybrid model T/J C V 3 2x2-lattice Hybrid model <U >-<U> du/dt T/J transition temperature: T c.5985 DELTA 7 Meeting

28 Wolff s Cluster Algorithm 4 Wolff Cluster Flipping randomly choose a lattice site draw bonds to all nearest neighbours with probability P = exp ( K δ pi,p j ) (with K J/k B T ) proceed recursevily until no more new bonds are created flip all spins in the cluster hybrid model has two dof : p (discrete) and θ (continuous) flip cluster with respect to embedded variables 4 Wolff, 989 DELTA 7 Meeting

29 Embedding I XY degree of freedom embedding procedure for XY model well known (Wolff Embedding Trick) consider projection of spin vector onto x-axis Ising model of projected spins add bond between nearest neighbour sites with ( ) P = exp δ pi,p j min[, 2K Si x Sj x ] invert the x-component of all spins in the cluster to provide ergodicity rotate all spins by the same angle DELTA 7 Meeting

30 Embedding II Potts degree of freedom choose randomly a pair of p-values: (,), (,2), (,2) calculate effective interaction strength: J eff = J H S i S j cos θ i,j if J eff > ferromagnetic coupling: P = exp ( ) K eff δ pi =p j if J eff < anti-ferromagnetic coupling: ) P = exp (K eff δ pi p j switch all Potts spins in the cluster DELTA 7 Meeting

31 Recent Results: Inner Energy Distribution p(u) 7 Inner Energy (T~Tc) 64x x28 256x U DELTA 7 Meeting

32 Recent Results: Transition Temperature.65.6 T eff c a*x+b.5995 T c /L linear fit T eff c (L ) = DELTA 7 Meeting

33 Open Questions/Problems/Ideas character/order of phase transition? Weak st order or 2nd order? order parameter? use results obtained for isolated complex (distribution for p) biologically motivated interaction (e.g. steric, electrostatic)? obtain macroscopic quantities (e.g. disjoining force) biological/biophysical implications? DELTA 7 Meeting

34 Thank You for Your Attention! Supervisors Prof. Dr. D. W. Heermann, Theoretical Biophysics Group, Universität Heidelberg Dr. Matthias Weiss, BIOMS Group Cellular Biophysics, Deutsches Krebsforschungszentrum Collab. partner Dr. Youjin Deng, Univ. Heidelberg Special Thanks to Dennis Große Manfred Bohn Contact DELTA 7 Meeting

Potts And XY, Together At Last

Potts And XY, Together At Last Potts And XY, Together At Last Daniel Kolodrubetz Massachusetts Institute of Technology, Center for Theoretical Physics (Dated: May 16, 212) We investigate the behavior of an XY model coupled multiplicatively

More information

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

V(φ) CH 3 CH 2 CH 2 CH 3. High energy states. Low energy states. Views along the C2-C3 bond

V(φ) CH 3 CH 2 CH 2 CH 3. High energy states. Low energy states. Views along the C2-C3 bond Example V(φ): Rotational conformations of n-butane C 3 C C C 3 Potential energy of a n-butane molecule as a function of the angle φ of bond rotation. V(φ) Potential energy/kj mol -1 0 15 10 5 eclipse gauche

More information

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics Proteins polymer molecules, folded in complex structures Konstantin Popov Department of Biochemistry and Biophysics Outline General aspects of polymer theory Size and persistent length of ideal linear

More information

Appendix C - Persistence length 183. Consider an ideal chain with N segments each of length a, such that the contour length L c is

Appendix C - Persistence length 183. Consider an ideal chain with N segments each of length a, such that the contour length L c is Appendix C - Persistence length 183 APPENDIX C - PERSISTENCE LENGTH Consider an ideal chain with N segments each of length a, such that the contour length L c is L c = Na. (C.1) If the orientation of each

More information

The XY-Model. David-Alexander Robinson Sch th January 2012

The XY-Model. David-Alexander Robinson Sch th January 2012 The XY-Model David-Alexander Robinson Sch. 08332461 17th January 2012 Contents 1 Introduction & Theory 2 1.1 The XY-Model............................... 2 1.2 Markov Chains...............................

More information

Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment

Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment Jacob Klein Science 323, 47, 2009 Manfred Schmidt (Mainz) Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment http://www.blueberryforest.com Hsiao-Ping Hsu Institut für Physik, Johannes

More information

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Numerical Analysis of 2-D Ising Model By Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Contents Abstract Acknowledgment Introduction Computational techniques Numerical Analysis

More information

VSOP19, Quy Nhon 3-18/08/2013. Ngo Van Thanh, Institute of Physics, Hanoi, Vietnam.

VSOP19, Quy Nhon 3-18/08/2013. Ngo Van Thanh, Institute of Physics, Hanoi, Vietnam. VSOP19, Quy Nhon 3-18/08/2013 Ngo Van Thanh, Institute of Physics, Hanoi, Vietnam. Part II. Monte Carlo Simulation Methods II.1. The spin models II.2. Boundary conditions II.3. Simple sampling Monte Carlo

More information

Copyright 2001 University of Cambridge. Not to be quoted or copied without permission.

Copyright 2001 University of Cambridge. Not to be quoted or copied without permission. Course MP3 Lecture 4 13/11/2006 Monte Carlo method I An introduction to the use of the Monte Carlo method in materials modelling Dr James Elliott 4.1 Why Monte Carlo? The name derives from the association

More information

Statistical Thermodynamics Exercise 11 HS Exercise 11

Statistical Thermodynamics Exercise 11 HS Exercise 11 Exercise 11 Release: 412215 on-line Return: 1112215 your assistant Discussion: 1512215 your tutorial room Macromolecules (or polymers) are large molecules consisting of smaller subunits (referred to as

More information

Olle Inganäs: Polymers structure and dynamics. Polymer physics

Olle Inganäs: Polymers structure and dynamics. Polymer physics Polymer physics Polymers are macromolecules formed by many identical monomers, connected through covalent bonds, to make a linear chain of mers a polymer. The length of the chain specifies the weight of

More information

Topological defects and its role in the phase transition of a dense defect system

Topological defects and its role in the phase transition of a dense defect system Topological defects and its role in the phase transition of a dense defect system Suman Sinha * and Soumen Kumar Roy Depatrment of Physics, Jadavpur University Kolkata- 70003, India Abstract Monte Carlo

More information

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution page 1 of 7 EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December 2013 Suggested resolution Exercise 1. [total: 25 p] a) [t: 5 p] Describe the bonding [1.5 p] and the molecular orbitals [1.5 p] of the ethylene

More information

4. Cluster update algorithms

4. Cluster update algorithms 4. Cluster update algorithms Cluster update algorithms are the most succesful global update methods in use. These methods update the variables globally, in one step, whereas the standard local methods

More information

Coarse-Grained Models!

Coarse-Grained Models! Coarse-Grained Models! Large and complex molecules (e.g. long polymers) can not be simulated on the all-atom level! Requires coarse-graining of the model! Coarse-grained models are usually also particles

More information

Phase transitions and finite-size scaling

Phase transitions and finite-size scaling Phase transitions and finite-size scaling Critical slowing down and cluster methods. Theory of phase transitions/ RNG Finite-size scaling Detailed treatment: Lectures on Phase Transitions and the Renormalization

More information

Supporting Information

Supporting Information Supporting Information Design of End-to-End Assembly of Side-Grafted Nanorods in a Homopolymer Matrix Yulong Chen 1, Qian Xu 1, Yangfu Jin 1, Xin Qian 1 *, Li Liu 2, Jun Liu 2 *, and Venkat Ganesan 3 *

More information

Introduction. Model DENSITY PROFILES OF SEMI-DILUTE POLYMER SOLUTIONS NEAR A HARD WALL: MONTE CARLO SIMULATION

Introduction. Model DENSITY PROFILES OF SEMI-DILUTE POLYMER SOLUTIONS NEAR A HARD WALL: MONTE CARLO SIMULATION 169 DENSITY PROFILES OF SEMI-DILUTE POLYMER SOLUTIONS NEAR A HARD WALL: MONTE CARLO SIMULATION WAN Y. SHIH, WEI-HENG SHIH and ILHAN A. AKSAY Dept. of Materials Science and Engineering University of Washington,

More information

Multimedia : Fibronectin and Titin unfolding simulation movies.

Multimedia : Fibronectin and Titin unfolding simulation movies. I LECTURE 21: SINGLE CHAIN ELASTICITY OF BIOMACROMOLECULES: THE GIANT PROTEIN TITIN AND DNA Outline : REVIEW LECTURE #2 : EXTENSIBLE FJC AND WLC... 2 STRUCTURE OF MUSCLE AND TITIN... 3 SINGLE MOLECULE

More information

Monte Carlo Simulation of Spins

Monte Carlo Simulation of Spins Monte Carlo Simulation of Spins Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Chemical Engineering &

More information

Monte Carlo simulation of super-selective supramolecular polymers on cell membranes

Monte Carlo simulation of super-selective supramolecular polymers on cell membranes Monte Carlo simulation of super-selective supramolecular polymers on cell membranes Author: Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Ignacio Pagonabarraga

More information

Measurements of interaction forces in (biological) model systems

Measurements of interaction forces in (biological) model systems Measurements of interaction forces in (biological) model systems Marina Ruths Department of Chemistry, UMass Lowell What can force measurements tell us about a system? Depending on the technique, we might

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

End-to-end length of a stiff polymer

End-to-end length of a stiff polymer End-to-end length of a stiff polymer Jellie de Vries April 21st, 2005 Bachelor Thesis Supervisor: dr. G.T. Barkema Faculteit Btawetenschappen/Departement Natuur- en Sterrenkunde Institute for Theoretical

More information

Monte Carlo Simulation of the Ising Model. Abstract

Monte Carlo Simulation of the Ising Model. Abstract Monte Carlo Simulation of the Ising Model Saryu Jindal 1 1 Department of Chemical Engineering and Material Sciences, University of California, Davis, CA 95616 (Dated: June 9, 2007) Abstract This paper

More information

Swelling and Collapse of Single Polymer Molecules and Gels.

Swelling and Collapse of Single Polymer Molecules and Gels. Swelling and Collapse of Single Polymer Molecules and Gels. Coil-Globule Transition in Single Polymer Molecules. the coil-globule transition If polymer chains are not ideal, interactions of non-neighboring

More information

CS 273 Prof. Serafim Batzoglou Prof. Jean-Claude Latombe Spring Lecture 12 : Energy maintenance (1) Lecturer: Prof. J.C.

CS 273 Prof. Serafim Batzoglou Prof. Jean-Claude Latombe Spring Lecture 12 : Energy maintenance (1) Lecturer: Prof. J.C. CS 273 Prof. Serafim Batzoglou Prof. Jean-Claude Latombe Spring 2006 Lecture 12 : Energy maintenance (1) Lecturer: Prof. J.C. Latombe Scribe: Neda Nategh How do you update the energy function during the

More information

arxiv: v1 [cond-mat.soft] 22 Oct 2007

arxiv: v1 [cond-mat.soft] 22 Oct 2007 Conformational Transitions of Heteropolymers arxiv:0710.4095v1 [cond-mat.soft] 22 Oct 2007 Michael Bachmann and Wolfhard Janke Institut für Theoretische Physik, Universität Leipzig, Augustusplatz 10/11,

More information

Hanoi 7/11/2018. Ngo Van Thanh, Institute of Physics, Hanoi, Vietnam.

Hanoi 7/11/2018. Ngo Van Thanh, Institute of Physics, Hanoi, Vietnam. Hanoi 7/11/2018 Ngo Van Thanh, Institute of Physics, Hanoi, Vietnam. Finite size effects and Reweighting methods 1. Finite size effects 2. Single histogram method 3. Multiple histogram method 4. Wang-Landau

More information

There are self-avoiding walks of steps on Z 3

There are self-avoiding walks of steps on Z 3 There are 7 10 26 018 276 self-avoiding walks of 38 797 311 steps on Z 3 Nathan Clisby MASCOS, The University of Melbourne Institut für Theoretische Physik Universität Leipzig November 9, 2012 1 / 37 Outline

More information

Polymer Solution Thermodynamics:

Polymer Solution Thermodynamics: Polymer Solution Thermodynamics: 3. Dilute Solutions with Volume Interactions Brownian particle Polymer coil Self-Avoiding Walk Models While the Gaussian coil model is useful for describing polymer solutions

More information

REVIEW: Derivation of the Mean Field Result

REVIEW: Derivation of the Mean Field Result Lecture 18: Mean Field and Metropolis Ising Model Solutions 1 REVIEW: Derivation of the Mean Field Result The Critical Temperature Dependence The Mean Field Approximation assumes that there will be an

More information

Monte Carlo (MC) Simulation Methods. Elisa Fadda

Monte Carlo (MC) Simulation Methods. Elisa Fadda Monte Carlo (MC) Simulation Methods Elisa Fadda 1011-CH328, Molecular Modelling & Drug Design 2011 Experimental Observables A system observable is a property of the system state. The system state i is

More information

Institut fur Theoretische Physik. Universitat Heidelberg. Philosophenweg 19. Germany. and. Interdisziplinares Zentrum. fur Wissenschaftliches Rechnen

Institut fur Theoretische Physik. Universitat Heidelberg. Philosophenweg 19. Germany. and. Interdisziplinares Zentrum. fur Wissenschaftliches Rechnen A new general model with non-spherical interactions for dense polymer systems and a potential parametrization for Bisphenol-A-Polycarbonate Klaus M. Zimmer, Andreas Linke and Dieter W. Heermann Institut

More information

Massively parallel Monte Carlo simulation of a possible topological phase transition in two-dimensional frustrated spin systems

Massively parallel Monte Carlo simulation of a possible topological phase transition in two-dimensional frustrated spin systems Massively parallel Monte Carlo simulation of a possible topological phase transition in two-dimensional frustrated spin systems Tsuyoshi OKUBO Institute for Solid State Physics, University of Tokyo Kashiwa-no-ha,

More information

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 4.0 Polymers at interfaces

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 4.0 Polymers at interfaces Chemistry C302-2006: Polymers Section Dr. Edie Sevick, Research School of Chemistry, ANU 4.0 Polymers at interfaces In this section, we begin to investigate the conformation at interfaces, including multiplechains

More information

Jacob Klein Science 323, 47, p. 2

Jacob Klein Science 323, 47, p. 2 p. 1 Jacob Klein Science 323, 47, 2009 p. 2 BOTTLEBRUSH POLYMERS bond fluctuation model simulation SNAPSHOT Backbone chainlength N b = 131 grafting density σ = 1 side-chain length N = 6 p. 3 N b = 131

More information

AGuideto Monte Carlo Simulations in Statistical Physics

AGuideto Monte Carlo Simulations in Statistical Physics AGuideto Monte Carlo Simulations in Statistical Physics Second Edition David P. Landau Center for Simulational Physics, The University of Georgia Kurt Binder Institut für Physik, Johannes-Gutenberg-Universität

More information

MONTE CARLO METHODS IN SEQUENTIAL AND PARALLEL COMPUTING OF 2D AND 3D ISING MODEL

MONTE CARLO METHODS IN SEQUENTIAL AND PARALLEL COMPUTING OF 2D AND 3D ISING MODEL Journal of Optoelectronics and Advanced Materials Vol. 5, No. 4, December 003, p. 971-976 MONTE CARLO METHODS IN SEQUENTIAL AND PARALLEL COMPUTING OF D AND 3D ISING MODEL M. Diaconu *, R. Puscasu, A. Stancu

More information

Phys 450 Spring 2011 Solution set 6. A bimolecular reaction in which A and B combine to form the product P may be written as:

Phys 450 Spring 2011 Solution set 6. A bimolecular reaction in which A and B combine to form the product P may be written as: Problem Phys 45 Spring Solution set 6 A bimolecular reaction in which A and combine to form the product P may be written as: k d A + A P k d k a where k d is a diffusion-limited, bimolecular rate constant

More information

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group Complex Systems Methods 9. Critical Phenomena: The Renormalization Group Eckehard Olbrich e.olbrich@gmx.de http://personal-homepages.mis.mpg.de/olbrich/complex systems.html Potsdam WS 2007/08 Olbrich (Leipzig)

More information

Computer Simulation of Peptide Adsorption

Computer Simulation of Peptide Adsorption Computer Simulation of Peptide Adsorption M P Allen Department of Physics University of Warwick Leipzig, 28 November 2013 1 Peptides Leipzig, 28 November 2013 Outline Lattice Peptide Monte Carlo 1 Lattice

More information

Monte Caro simulations

Monte Caro simulations Monte Caro simulations Monte Carlo methods - based on random numbers Stanislav Ulam s terminology - his uncle frequented the Casino in Monte Carlo Random (pseudo random) number generator on the computer

More information

CS273: Algorithms for Structure Handout # 2 and Motion in Biology Stanford University Thursday, 1 April 2004

CS273: Algorithms for Structure Handout # 2 and Motion in Biology Stanford University Thursday, 1 April 2004 CS273: Algorithms for Structure Handout # 2 and Motion in Biology Stanford University Thursday, 1 April 2004 Lecture #2: 1 April 2004 Topics: Kinematics : Concepts and Results Kinematics of Ligands and

More information

Polymer Simulations with Pruned-Enriched Rosenbluth Method I

Polymer Simulations with Pruned-Enriched Rosenbluth Method I Polymer Simulations with Pruned-Enriched Rosenbluth Method I Hsiao-Ping Hsu Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany Polymer simulations with PERM I p. 1 Introduction Polymer:

More information

A Monte Carlo Implementation of the Ising Model in Python

A Monte Carlo Implementation of the Ising Model in Python A Monte Carlo Implementation of the Ising Model in Python Alexey Khorev alexey.s.khorev@gmail.com 2017.08.29 Contents 1 Theory 1 1.1 Introduction...................................... 1 1.2 Model.........................................

More information

The Monte Carlo Method in Condensed Matter Physics

The Monte Carlo Method in Condensed Matter Physics The Monte Carlo Method in Condensed Matter Physics Edited by K. Binder With Contributions by A. Baumgärtner K. Binder A.N. Burkitt D.M. Ceperley H. De Raedt A.M. Ferrenberg D.W. Heermann H.J. Herrmann

More information

Wang-Landau sampling for Quantum Monte Carlo. Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart

Wang-Landau sampling for Quantum Monte Carlo. Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart Wang-Landau sampling for Quantum Monte Carlo Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart Overview Classical Monte Carlo First order phase transitions Classical Wang-Landau

More information

Polymer Theory: Freely Jointed Chain

Polymer Theory: Freely Jointed Chain Polymer Theory: Freely Jointed Chain E.H.F. February 2, 23 We ll talk today about the most simple model for a single polymer in solution. It s called the freely jointed chain model. Each monomer occupies

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Length Scales (c) ICAMS: http://www.icams.de/cms/upload/01_home/01_research_at_icams/length_scales_1024x780.png Goals for today: Background

More information

The Phase Transition of the 2D-Ising Model

The Phase Transition of the 2D-Ising Model The Phase Transition of the 2D-Ising Model Lilian Witthauer and Manuel Dieterle Summer Term 2007 Contents 1 2D-Ising Model 2 1.1 Calculation of the Physical Quantities............... 2 2 Location of the

More information

Modeling diffusional transport in the interphase cell nucleus

Modeling diffusional transport in the interphase cell nucleus THE JOURNAL OF CHEMICAL PHYSICS 127, 045102 2007 Modeling diffusional transport in the interphase cell nucleus Annika Wedemeier Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany Holger Merlitz

More information

Frontiers in Physics 27-29, Sept Self Avoiding Growth Walks and Protein Folding

Frontiers in Physics 27-29, Sept Self Avoiding Growth Walks and Protein Folding Frontiers in Physics 27-29, Sept. 2012 Self Avoiding Growth Walks and Protein Folding K P N Murthy, K Manasa, and K V K Srinath School of Physics, School of Life Sciences University of Hyderabad September

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

Modeling Biological Systems Opportunities for Computer Scientists

Modeling Biological Systems Opportunities for Computer Scientists Modeling Biological Systems Opportunities for Computer Scientists Filip Jagodzinski RBO Tutorial Series 25 June 2007 Computer Science Robotics & Biology Laboratory Protein: πρώτα, "prota, of Primary Importance

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction This thesis is concerned with the behaviour of polymers in flow. Both polymers in solutions and polymer melts will be discussed. The field of research that studies the flow behaviour

More information

Markov Chain Monte Carlo Method

Markov Chain Monte Carlo Method Markov Chain Monte Carlo Method Macoto Kikuchi Cybermedia Center, Osaka University 6th July 2017 Thermal Simulations 1 Why temperature 2 Statistical mechanics in a nutshell 3 Temperature in computers 4

More information

Forces by and on a Polymer Grafted to a Repulsive Wall

Forces by and on a Polymer Grafted to a Repulsive Wall International Journal of Modern Physics C c World Scientific Publishing Company Forces by and on a Polymer Grafted to a Repulsive Wall Jens Odenheimer Institut für Theoretische Physik, Universität Heidelberg,

More information

Chiral selection in wrapping, crossover, and braiding of DNA mediated by asymmetric bend-writhe elasticity

Chiral selection in wrapping, crossover, and braiding of DNA mediated by asymmetric bend-writhe elasticity http://www.aimspress.com/ AIMS Biophysics, 2(4): 666-694. DOI: 10.3934/biophy.2015.4.666 Received date 28 August 2015, Accepted date 29 October 2015, Published date 06 November 2015 Research article Chiral

More information

Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation

Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation Jakob P. Ulmschneider and William L. Jorgensen J.A.C.S. 2004, 126, 1849-1857 Presented by Laura L. Thomas and

More information

Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya Interaction

Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya Interaction Commun. Theor. Phys. (Beijing, China) 46 (2006) pp. 663 667 c International Academic Publishers Vol. 46, No. 4, October 15, 2006 Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya

More information

Critical polymer-polymer phase separation in ternary solutions

Critical polymer-polymer phase separation in ternary solutions THE JOURNAL OF CHEMICAL PHYSICS 123, 074907 2005 Critical polymer-polymer phase separation in ternary solutions Lei Guo and Erik Luijten a Department of Materials Science and Engineering, University of

More information

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization 8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization This problem set is partly intended to introduce the transfer matrix method, which is used

More information

Part III : M6 Polymeric Materials

Part III : M6 Polymeric Materials 16/1/004 Part III : M6 Polymeric Materials Course overview, motivations and objectives Isolated polymer chains Dr James Elliott 1.1 Course overview Two-part course building on Part IB and II First 6 lectures

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

) is the interaction energy between a pair of chain units in the state ψ i 1

) is the interaction energy between a pair of chain units in the state ψ i 1 Persistence Length, One Application of the Ising-Chain and the RIS Model. Local features of a polymer chain such as the chain persistence, and the pair correlation function, g(r), and the associated high-q

More information

Parallel Tempering Algorithm in Monte Carlo Simulation

Parallel Tempering Algorithm in Monte Carlo Simulation Parallel Tempering Algorithm in Monte Carlo Simulation Tony Cheung (CUHK) Kevin Zhao (CUHK) Mentors: Ying Wai Li (ORNL) Markus Eisenbach (ORNL) Kwai Wong (UTK/ORNL) Metropolis Algorithm on Ising Model

More information

Janus: FPGA Based System for Scientific Computing Filippo Mantovani

Janus: FPGA Based System for Scientific Computing Filippo Mantovani Janus: FPGA Based System for Scientific Computing Filippo Mantovani Physics Department Università degli Studi di Ferrara Ferrara, 28/09/2009 Overview: 1. The physical problem: - Ising model and Spin Glass

More information

Phase Transition & Approximate Partition Function In Ising Model and Percolation In Two Dimension: Specifically For Square Lattices

Phase Transition & Approximate Partition Function In Ising Model and Percolation In Two Dimension: Specifically For Square Lattices IOSR Journal of Applied Physics (IOSR-JAP) ISS: 2278-4861. Volume 2, Issue 3 (ov. - Dec. 2012), PP 31-37 Phase Transition & Approximate Partition Function In Ising Model and Percolation In Two Dimension:

More information

NANO 243/CENG 207 Course Use Only

NANO 243/CENG 207 Course Use Only L8. Drug Dispersion and Diffusion in Biological Systems (2) April 26, 2018 2. Diffusion in Water (3) Diffusion of small molecule in water drug molecules/solvents are identical to solvent Assume molecules

More information

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I)

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) Overview: General Properties of Macromolecules in Solution Molar Mass Dependencies Molar Mass Distributions Generalized Ratios Albena Lederer Leibniz-Institute

More information

arxiv: v1 [cond-mat.dis-nn] 12 Nov 2014

arxiv: v1 [cond-mat.dis-nn] 12 Nov 2014 Representation for the Pyrochlore Lattice arxiv:1411.3050v1 [cond-mat.dis-nn] 12 Nov 2014 André Luis Passos a, Douglas F. de Albuquerque b, João Batista Santos Filho c Abstract a DFI, CCET, Universidade

More information

Geometry, topology and frustration: the physics of spin ice

Geometry, topology and frustration: the physics of spin ice Geometry, topology and frustration: the physics of spin ice Roderich Moessner CNRS and LPT-ENS 9 March 25, Magdeburg Overview Spin ice: experimental discovery and basic model Spin ice in a field dimensional

More information

The Ising model Summary of L12

The Ising model Summary of L12 The Ising model Summary of L2 Aim: Study connections between macroscopic phenomena and the underlying microscopic world for a ferromagnet. How: Study the simplest possible model of a ferromagnet containing

More information

A Monte Carlo simulation study of branched polymers

A Monte Carlo simulation study of branched polymers THE JOURNAL OF CHEMICAL PHYSICS 125, 204901 2006 A Monte Carlo simulation study of branched polymers Arun Yethiraj Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin,

More information

1. what are the limitations in MD simulations? Name What are the advantages of using periodic boundary condition for MD?

1. what are the limitations in MD simulations? Name What are the advantages of using periodic boundary condition for MD? 1. what are the limitations in MD simulations? Name 2. 2. What are the advantages of using periodic boundary condition for MD? Name 2 3. what is the metropolis Monte Carlo simulation? 4. Why argon is chosen

More information

Dilute-solution properties of biomacromolecules as indicators of macromolecular structure and interactions

Dilute-solution properties of biomacromolecules as indicators of macromolecular structure and interactions Dilute-solution properties of biomacromolecules as indicators of macromolecular structure and interactions José García de la Torre, Departament of Physical Chemistry University of Murcia, Spain jgt@um.es

More information

University of Groningen. Conformational properties of comb copolymer brushes de Jong, Johannes Rinse

University of Groningen. Conformational properties of comb copolymer brushes de Jong, Johannes Rinse University of Groningen Conformational properties of comb copolymer brushes de Jong, Johannes Rinse IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite

More information

Introduction to the Renormalization Group

Introduction to the Renormalization Group Introduction to the Renormalization Group Gregory Petropoulos University of Colorado Boulder March 4, 2015 1 / 17 Summary Flavor of Statistical Physics Universality / Critical Exponents Ising Model Renormalization

More information

Phase Transition in a Bond. Fluctuating Lattice Polymer

Phase Transition in a Bond. Fluctuating Lattice Polymer Phase Transition in a Bond arxiv:1204.2691v2 [cond-mat.soft] 13 Apr 2012 Fluctuating Lattice Polymer Hima Bindu Kolli and K.P.N.Murthy School of Physics, University of Hyderabad Hyderabad 500046 November

More information

Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany

Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals From Micro to Macro Statistical Mechanics (Statistical

More information

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber Scaling Theory Roger Herrigel Advisor: Helmut Katzgraber 7.4.2007 Outline The scaling hypothesis Critical exponents The scaling hypothesis Derivation of the scaling relations Heuristic explanation Kadanoff

More information

Mean end-to-end distance of branched polymers

Mean end-to-end distance of branched polymers J. Phys. A: Math. Gen., Vol. 12, No. 9, 1979. Printed in Great Britain LETTER TO THE EDITOR Mean end-to-end distance of branched polymers S Redner Department of Physics, Boston University, Boston, Mass.

More information

arxiv:cond-mat/ v1 19 Sep 1995

arxiv:cond-mat/ v1 19 Sep 1995 Large-scale Simulation of the Two-dimensional Kinetic Ising Model arxiv:cond-mat/9509115v1 19 Sep 1995 Andreas Linke, Dieter W. Heermann Institut für theoretische Physik Universität Heidelberg Philosophenweg

More information

Two simple lattice models of the equilibrium shape and the surface morphology of supported 3D crystallites

Two simple lattice models of the equilibrium shape and the surface morphology of supported 3D crystallites Bull. Nov. Comp. Center, Comp. Science, 27 (2008), 63 69 c 2008 NCC Publisher Two simple lattice models of the equilibrium shape and the surface morphology of supported 3D crystallites Michael P. Krasilnikov

More information

Lecture 4: viscoelasticity and cell mechanics

Lecture 4: viscoelasticity and cell mechanics Teaser movie: flexible robots! R. Shepherd, Whitesides group, Harvard 1 Lecture 4: viscoelasticity and cell mechanics S-RSI Physics Lectures: Soft Condensed Matter Physics Jacinta C. Conrad University

More information

Introduction The gramicidin A (ga) channel forms by head-to-head association of two monomers at their amino termini, one from each bilayer leaflet. Th

Introduction The gramicidin A (ga) channel forms by head-to-head association of two monomers at their amino termini, one from each bilayer leaflet. Th Abstract When conductive, gramicidin monomers are linked by six hydrogen bonds. To understand the details of dissociation and how the channel transits from a state with 6H bonds to ones with 4H bonds or

More information

Simulation of Coarse-Grained Equilibrium Polymers

Simulation of Coarse-Grained Equilibrium Polymers Simulation of Coarse-Grained Equilibrium Polymers J. P. Wittmer, Institut Charles Sadron, CNRS, Strasbourg, France Collaboration with: M.E. Cates (Edinburgh), P. van der Schoot (Eindhoven) A. Milchev (Sofia),

More information

Amneh Auben. Abdulrahman Jabr. Diala Abu-Hassan

Amneh Auben. Abdulrahman Jabr. Diala Abu-Hassan 21 Amneh Auben Abdulrahman Jabr Diala Abu-Hassan Matrix polysaccharides Extracellular matrix (ECM): It s a collection of components that fills the spaces outside the cell or between the cells. ---------

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2013 Monday, 17 June, 2.30 pm 5.45 pm 15

More information

Contents. References Index... 47

Contents. References Index... 47 Contents 1. Stochastic Methods....................................... 1 1.1 Monte-Carlo Method.................................... 1 1.1.1 Simple Sampling: Random Walks................... 1 1.1.2 Correlated

More information

Novel Monte Carlo Methods for Protein Structure Modeling. Jinfeng Zhang Department of Statistics Harvard University

Novel Monte Carlo Methods for Protein Structure Modeling. Jinfeng Zhang Department of Statistics Harvard University Novel Monte Carlo Methods for Protein Structure Modeling Jinfeng Zhang Department of Statistics Harvard University Introduction Machines of life Proteins play crucial roles in virtually all biological

More information

F. Piazza Center for Molecular Biophysics and University of Orléans, France. Selected topic in Physical Biology. Lecture 1

F. Piazza Center for Molecular Biophysics and University of Orléans, France. Selected topic in Physical Biology. Lecture 1 Zhou Pei-Yuan Centre for Applied Mathematics, Tsinghua University November 2013 F. Piazza Center for Molecular Biophysics and University of Orléans, France Selected topic in Physical Biology Lecture 1

More information

Evaluation of Wang-Landau Monte Carlo Simulations

Evaluation of Wang-Landau Monte Carlo Simulations 2012 4th International Conference on Computer Modeling and Simulation (ICCMS 2012) IPCSIT vol.22 (2012) (2012) IACSIT Press, Singapore Evaluation of Wang-Landau Monte Carlo Simulations Seung-Yeon Kim School

More information

Size exclusion chromatography of branched polymers: Star and comb polymers

Size exclusion chromatography of branched polymers: Star and comb polymers Macromol. Theory Simul. 8, 513 519 (1999) 513 Size exclusion chromatography of branched polymers: Star and comb polymers Hidetaka Tobita*, Sadayuki Saito Department of Materials Science and Engineering,

More information

Chain Stiffness and Attachment-Dependent Attraction between Polyelectrolyte-Grafted Colloids

Chain Stiffness and Attachment-Dependent Attraction between Polyelectrolyte-Grafted Colloids 15886 J. Phys. Chem. B 2010, 114, 15886 15896 Chain Stiffness and Attachment-Dependent Attraction between Polyelectrolyte-Grafted Colloids Gaurav Arya* Department of NanoEngineering, 9500 Gilman DriVe,

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 Jul 2001

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 Jul 2001 Autocorrelation functions in 3D Fully Frustrated Systems arxiv:cond-mat/0107509v1 [cond-mat.stat-mech] 24 Jul 2001 G. Franzese a, A. Fierro a, A. De Candia a and A. Coniglio a,b Dipartimento di Scienze

More information

J ij S i S j B i S i (1)

J ij S i S j B i S i (1) LECTURE 18 The Ising Model (References: Kerson Huang, Statistical Mechanics, Wiley and Sons (1963) and Colin Thompson, Mathematical Statistical Mechanics, Princeton Univ. Press (1972)). One of the simplest

More information

LECTURE 10: Monte Carlo Methods II

LECTURE 10: Monte Carlo Methods II 1 LECTURE 10: Monte Carlo Methods II In this chapter, we discuss more advanced Monte Carlo techniques, starting with the topics of percolation and random walks, and then continuing to equilibrium statistical

More information