Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya Interaction

Size: px
Start display at page:

Download "Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya Interaction"

Transcription

1 Commun. Theor. Phys. (Beijing, China) 46 (2006) pp c International Academic Publishers Vol. 46, No. 4, October 15, 2006 Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya Interaction SUN Yun-Zhou, LIU Hui-Ping, and YI Lin Department of Physics and State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, Wuhan , China (Received December 19, 2005; Revised March 21, 2006) Abstract With the help of an improvement Monte Carlo method, the Berezinskii Kosterlitz Thouless phase transition arising in two-dimensional planar rotator model with weak Dzyaloshinsky Moriya (DM) interaction is investigated. The effects of the DM interaction on specific heat, susceptibility, and magnetization are simulated. The critical temperature of transitions is determined by the so-called Binder cumulant and the susceptibility of finite-size scaling. We find that the chiral Z 2 symmetry reduced by the DM interactions plays an important role in a two-dimensional XY spin system, typically, the critical temperature is sensitive to weak DM spin couplings. PACS numbers: Tp, Ka, Lm, Hk Key words: Monte Carlo method, Berezinskii Kosterlitz Thouless phase transition, Dzyaloshinsky Moriya interaction, XY model The role of frustrating interactions in low-dimensional systems is a very important aspect in the modern field theory of magnetism in solids and molecular clusters. In particular, the presence of finite temperature phase transitions in two-dimensional systems with continuous spinrotational symmetry, which are ruled out by a naive interpretation of the Mermin and Wigner theorem, has been clearly documented during the last years and continues to attract much interest since the variety of phenomena that could be generated at low temperatures. [1,2] For recent years, there has been increasing interest in the study of the effect of anisotropy on the critical behavior, arising in magnetic systems. As an example, Dzyaloshinsky Moriya (DM) interaction between spins is such an important type of anisotropy. It has been known that DM interaction plays an important role in the study of spin glasses as well as the emergence of weak ferromagnetism observed in the low temperature orthorhombic phase of lamellar copper oxide superconductors. [3,4] On the other hand, the DM interaction has also been found to violate the crystal symmetry of quantum spin liquid system SrC u2 (BO 3 ) 2, provided magnetic field is high. [5] On the appearance of anisotropic interactions, a number of transitions occur and the system displays complex thermodynamic and magnetic characteristics that have to simulate numerically. The Berezinskii Kosterlitz Thouless (BKT) phase transition that is caused by the unbinding of vortexantivortex pairs is found to be common in a twodimensional XY model. [6 9] The DM interaction can induce an easy-plane anisotropy, from which a BKT transition is thereby expected. [10 12] In the past years, many methods such as mean-field theory, high temperature series expansion and the Monte Carlo (MC) simulation are proved to be efficient for the study of such transition phenomenon. With the development of nonlocal updated algorithms, the Monte Carlo methods are verified to be a good way for the study of various complex problems such as phase transitions. For spin systems, the MC method is usually combined with the finite-size scaling (FSS), cluster algorithms turn out to be particularly successful to the study of critical properties. The applications of the multiple and single cluster variants to different models have demonstrated that Swenden Wang (SW) multiple [9,13] and Wolff single cluster variants [14] are both good tools to simulate two-dimensional systems. In this letter, we use metropolis method combined with SW cluster algorithm to study the critical problems of planar rotator model with weak DM interaction on an L L periodic square lattice. According to the simulated results, we find that the DM effects on the phase transition is of great importance even if the DM strength is weak. The model Hamiltonian under considerations reads H = J S i S j D ( S i S j ) ij ij = J ij cos(θ i θ j ϕ), (1) where S i are two-component classical vectors of unit length, while the DM vector D is considered to be along the z-axial direction. For simplicity, J = J 1 + d2, d = D/J, and ϕ = cos 1 (J/ J). The symbols, J and D, are positive and denote the strengths of the nearest neighbors ferromagnetic coupling and DM interaction respectively. indicates the sum over the nearest neighbors. Here θ i and θ j are the spin rotation angles of the i-th and j-th sites, relative to x-axial direction, respectively. To simplify the model, we introduce a rotational transformation that takes the form θ i = θ 0 i π 2 (1 + σ i), (2) The project supported by Natural Science Foundation of Hubei Province of China under Grant No. 2003ABA004 liuhuiping@hust.edu.cn

2 664 SUN Yun-Zhou, LIU Hui-Ping, and YI Lin Vol. 46 where σ i = ±1, and θi 0 denotes a trial angle at the site. Inserting Eq. (2) into Eq. (1), one has H = J ij cos(θ 0 i θ 0 j ϕ)σ i σ j = ij J ij σ i σ j, (3) where J ij = J cos(θi 0 θ0 j ϕ) is an effective Ising coupling between spins. In the MC simulations, we first take a standard Metropolis algorithm to determine whether one Metropolis step is accepted or not. Subsequently, we run SW code followed by Metropolis progress, in which σ i = 1 is chosen as the initial spin configuration. For each lattice we perform N measurements after MC steps for enough thermal equilibration. In order to avoid a correlation, measurements were taken every 4 8 MC steps. For each run, we record the time series of the energy density e = E/V and order parameter magnetization density m = M/V, where lattice size V = L L. The magnetization M chosen as an order parameter in the MC simulations can be expressed as [15] M = ( V ) 2 ( V ) 2 cos θi 0 + sin θi 0. (4) i=1 i=1 The associated susceptibility is given by χ = (M)2 M 2. (5) V k B T The average energy per site and the specific heat can be determined by e = 1 N J ij, (6) NV n=1 ij C V = E2 E 2 V k B T 2, (7) where k B is the Boltzmann constant and T indicates temperature. In our paper, the temperature, the specific heat, the energy per spin, the order parameter, and the susceptibility are measured in unites of J/k B, k B, J, gµ B S, and (gµ B S) 2 /J respectively, where g is the Lande factor, µ B is the Bohr magneton. The spin is fixed at S = 1 for simplicity. Fig. 1 The specific heat of different lattice sizes measured with d = Errors are comparable to the symbol sizes. Fig. 2 (a) Variation of magnetization density, specific heat, and energy with temperature when L = 24, d = 0.0 and (b) Magnetization density versus temperature for various sizes at d = Figure 1 shows the specific heat for d = 0.05 with system size is L = 8, 16, 24, 32, where the maximum value of C V is independent of the lattice size for large enough lattice. The pseudo-transition temperature T c (L) of C V maximum has nothing to do with KT transition temperature, which is the characteristic of KT transition. The energy, order parameter magnetization density, and specific heat per spin of d = 0.08, compared with the system with-

3 No. 4 Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya Interaction 665 out DM interaction, are shown in Fig. 2(a). The major difference is that the transition temperature and the specific heat are lowered when the DM interaction appears. The order parameter magnetization density tends to zero in the high temperature phase, and with the increase of size, it has a sharp drop off as pointed in Fig. 2(b). Note that the energy has also a rather weak dependence on the size as the specific heat. Strikingly, there is difference near the pseudo-transition temperature due to the DM effects. and below T c. In this sense, the susceptibility is scaled in terms of a power form of size L, yielding χ L 2 η, (12) where η represents the exponent of spin correlation below T c. Fig. 4 Variation of the susceptibility of finite-size scaling with size, where d = Fig. 3 Least square fit of Binder cumulant, where d = 0 and L = 8, 16, 24, 32. During the MC algorithm proceeds, we observe the change of the plane magnetization components through calculating the following term M = (M x, M y ) = S i. (8) i This offers us the important information of susceptibility components, χ α = M α 2 M α 2. (9) V k B T Subsequently, the average of χ x and χ y over the MC configurations yields χ = 1 2 (χx + χ y ). (10) The critical temperature is obtained by calculating the Binder cumulant as follows: [16,17] U L = 1 (M 2 x + M 2 y ) 2 2 M 2 x + M 2 y 2. (11) The Binder cumulant, U L, is expected to be approximately independent of lattice sizes at the critical point. According to the crossing point of U L at various sizes, a critical temperature T c can be obtained. Figure 3 shows the variation of U L with size L of model without DM interaction. In our simulations, the critical temperature is T c 0.92 at the crossing point. This value is comparable to the exact value 0.89 to 0.9 for the relevant large samples. [18 21] In Ref. [22], an efficient and precise way to find T c was provided, based on the scaling relation near For the planar rotator, transition temperature is located at the temperature where η = 1/4. Finite-size scaling of the χ data can be used to determine η(t ) by the slope of the plot ln(χ/l 2 ) versus ln(l). As an example, we show the linear fit of finite-size scaling of the susceptibility data with different temperature at d = 0.05 in Fig. 4. It is interesting that weak DM interaction can only change the basic symmetries slightly in the transition, therefore we find that the condition η = 1/4 at T c is valid for the present model. A curve of η(t ) at d = 0.0 is shown in Fig. 5(a), where the transition temperature T c This is in agreement with the BKT temperature. [18 21] Because the correction term in Eq. (12) is neglected, the calculated value is a little higher than exact estimated value When measured at T = 0.894, the value of η is 0.237, which is consistent with the value in Ref. [21]. Figure 5 also shows η(t ) at d = 0.02, 0.05, 0.08, separately, the transition temperatures follow as T c = 0.908, 0.896, and 0.865, corresponding to d = 0.02, 0.05, and 0.08 respectively. The simulations of transition temperature are carried and exhibit the variation of χ/l (2 η) with T, similar to the results in Ref. [22] as shown in Fig. 6. The result of T c is in excellent agreement with the calculations using by η(t ) method. The change of T c with DM interaction is also shown in the inset of Fig. 7. Strikingly, the critical temperature is varied with the DM interaction. Alternative method to find transition temperature is as pointed in Ref. [23] [25]. From Eq. (5), the maximum of susceptibility at the pseudo-transition point T c (L) is obtained. According to the finite-size scaling relation, we have π 2 T c (L) T c + 4c(ln L) 2. (13)

4 666 SUN Yun-Zhou, LIU Hui-Ping, and YI Lin Vol. 46 Fig. 5 (a) Variation of η with temperature when d = 0.00, 0.05, and 0.08; (b) d = Fig. 6 Variation of χ/l (2 η) with T. (a) d = 0.0; (b) d = Fig. 7 Calculation of critical temperature from the finite-size scaling relation (13). The inset displays the change of T c with d. Furthermore, we plot T c (L) as a function of (ln L) 2 and determine its value from the crossing point of the linear fit straight line with the y axis simply. It is noted that this method needs more MC computer time to get T c (L) exactly, while the maximum of the order susceptibility is not easy to find since the so-called critical slowing down. So the T c obtained in this way is not very exact, provided the size is too small. For instance, T c is at d = 0.0, comparative higher than the exact value as shown in Fig. 7. In conclusion, the critical properties of planar rotator model with weak DM interaction are studied at various reduced DM interactions with the help of the multi- MC method. The associated temperatures of the BKT transition are calculated by using different methods. It is found that thermodynamic and magnetic properties and the phase transition are affected since the DM interaction and the reduced Z 2 chirality. Acknowledgments We are indebted to professor Wang Jian-Sheng for his stimulating discussions.

5 No. 4 Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya Interaction 667 References [1] I.E. Dzyaloshinski, J. Phys. Chem. Solids 4 (1958) 241. [2] T. Moriya, Phys. Rev. Lett. 4 (1960) 228. [3] L. Yi, G. Buttner, and K.D. Usadel, Phys. Rev. B 47 (1993) 254. [4] W. Koshibae, Y. Ohta, and S. Maekawa, Phys. Rev. Lett. 71 (1993) 467. [5] G.A. Jorge, et al., Phys. Rev. B 71 (2005) [6] S. Teitel and C. Jayaprakash, Phys. Rev. B 27 (1983) 598. [7] J.F. Fernandez, et al., Phys. Rev. B 34 (1986) 292. [8] H.Q. Ding and M.S. Makivic, Phys. Rev. B 42 (1990) [9] J.S. Wang and R.H. Swendsen, Physica A 162 (1990) 210. [10] J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6 (1973) [11] J.M. Kosterlitz, J. Phys. C 7 (1974) [12] A.R. Volkel, F.G. Mertens, A.R. Bishop, and G.M. Wysin, Ann. Phys. (N.Y.) 2 (1993) 308. [13] R.H. Swendsen and J.S. Wang, Phys. Rev. Lett. 58 (1987) 86. [14] U. Wolff, Phys. Rev. Lett. 62 (1989) 361. [15] E. Rastelli, S. Regina, and A. Tassi, Phys. Rev. B 70, (2004) ; Phys. Rev. B 69 (2004) [16] K. Binder, Z. Phys. B: Condens. Matter 43 (1981) 119. [17] Monte Carlo Simulation in Statistical Physics, eds. K. Binder and D.W. Heermann, Springer, Berlin (1994). [18] R. Gupta, et al., Phys. Rev. Lett. 61 (1988) [19] U. Wolff, Nucl. Phys. B 322 (1989) 759. [20] R. Gupta and C.F. Baillie, Phys. Rev. B 45 (1992) [21] B. Zheng, M. Schulz, and S. Trimper, Phys. Rev. E 59 (1998) R1351. [22] A. Cuccoli, V. Tognetti, and R. Vaia, Phys. Rev. B 52 (1995) [23] S.T. Bramwell and P.C.W. Holdsworth, Phys. Rev. B 49 (1994) [24] S.G. Chung, Phys. Rev. B 60 (1999) [25] K.W. Lee and C.E. Lee, Phys. Rev. B 72 (2005)

Solitonic elliptical solutions in the classical XY model

Solitonic elliptical solutions in the classical XY model Solitonic elliptical solutions in the classical XY model Rodrigo Ferrer, José Rogan, Sergio Davis, Gonzalo Gutiérrez Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago,

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 76 4 MARCH 1996 NUMBER 10 Finite-Size Scaling and Universality above the Upper Critical Dimensionality Erik Luijten* and Henk W. J. Blöte Faculty of Applied Physics, Delft

More information

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 6656-261 (June 19, 1996) We develop

More information

Application of Mean-Field Jordan Wigner Transformation to Antiferromagnet System

Application of Mean-Field Jordan Wigner Transformation to Antiferromagnet System Commun. Theor. Phys. Beijing, China 50 008 pp. 43 47 c Chinese Physical Society Vol. 50, o. 1, July 15, 008 Application of Mean-Field Jordan Wigner Transformation to Antiferromagnet System LI Jia-Liang,

More information

Massively parallel Monte Carlo simulation of a possible topological phase transition in two-dimensional frustrated spin systems

Massively parallel Monte Carlo simulation of a possible topological phase transition in two-dimensional frustrated spin systems Massively parallel Monte Carlo simulation of a possible topological phase transition in two-dimensional frustrated spin systems Tsuyoshi OKUBO Institute for Solid State Physics, University of Tokyo Kashiwa-no-ha,

More information

MONTE CARLO METHODS IN SEQUENTIAL AND PARALLEL COMPUTING OF 2D AND 3D ISING MODEL

MONTE CARLO METHODS IN SEQUENTIAL AND PARALLEL COMPUTING OF 2D AND 3D ISING MODEL Journal of Optoelectronics and Advanced Materials Vol. 5, No. 4, December 003, p. 971-976 MONTE CARLO METHODS IN SEQUENTIAL AND PARALLEL COMPUTING OF D AND 3D ISING MODEL M. Diaconu *, R. Puscasu, A. Stancu

More information

Hanoi 7/11/2018. Ngo Van Thanh, Institute of Physics, Hanoi, Vietnam.

Hanoi 7/11/2018. Ngo Van Thanh, Institute of Physics, Hanoi, Vietnam. Hanoi 7/11/2018 Ngo Van Thanh, Institute of Physics, Hanoi, Vietnam. Finite size effects and Reweighting methods 1. Finite size effects 2. Single histogram method 3. Multiple histogram method 4. Wang-Landau

More information

Topological defects and its role in the phase transition of a dense defect system

Topological defects and its role in the phase transition of a dense defect system Topological defects and its role in the phase transition of a dense defect system Suman Sinha * and Soumen Kumar Roy Depatrment of Physics, Jadavpur University Kolkata- 70003, India Abstract Monte Carlo

More information

Invaded cluster dynamics for frustrated models

Invaded cluster dynamics for frustrated models PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998 Invaded cluster dynamics for frustrated models Giancarlo Franzese, 1, * Vittorio Cataudella, 1, * and Antonio Coniglio 1,2, * 1 INFM, Unità di Napoli,

More information

0. Construction of d-dimensional Isotropic and Anisotropic Hierarchical Lattices 1. Frustrated Systems and Chaotic Renormalization- Group

0. Construction of d-dimensional Isotropic and Anisotropic Hierarchical Lattices 1. Frustrated Systems and Chaotic Renormalization- Group Hierarchical Lattices: Renormalization-Group Solutions of Plain, Anisotropic,Chaotic, Heterogeneous, and Clustered Systems Collaborators: D. Andelman, A. Erbaş, A. Falicov, K. Hui, M. Hinczewski, A. Kabakçıoğlu,

More information

Phase Transitions of Random Binary Magnetic Square Lattice Ising Systems

Phase Transitions of Random Binary Magnetic Square Lattice Ising Systems I. Q. Sikakana Department of Physics and Non-Destructive Testing, Vaal University of Technology, Vanderbijlpark, 1900, South Africa e-mail: ike@vut.ac.za Abstract Binary magnetic square lattice Ising system

More information

The critical behaviour of the long-range Potts chain from the largest cluster probability distribution

The critical behaviour of the long-range Potts chain from the largest cluster probability distribution Physica A 314 (2002) 448 453 www.elsevier.com/locate/physa The critical behaviour of the long-range Potts chain from the largest cluster probability distribution Katarina Uzelac a;, Zvonko Glumac b a Institute

More information

Monte Carlo and spin dynamics simulation of the fully frustrated anisotropic two-dimensional Heisenberg model

Monte Carlo and spin dynamics simulation of the fully frustrated anisotropic two-dimensional Heisenberg model Journal of Magnetism and Magnetic Materials 6 () 4 Monte Carlo and spin dynamics simulation of the fully frustrated anisotropic two-dimensional Heisenberg model A.B. Lima*, B.V. Costa Departamento de F!ısica,

More information

Graphical Representations and Cluster Algorithms

Graphical Representations and Cluster Algorithms Graphical Representations and Cluster Algorithms Jon Machta University of Massachusetts Amherst Newton Institute, March 27, 2008 Outline Introduction to graphical representations and cluster algorithms

More information

Vacancy effects in an easy-plane Heisenberg model: reduction of T c and doubly-charged vortices

Vacancy effects in an easy-plane Heisenberg model: reduction of T c and doubly-charged vortices Vacancy effects in an easy-plane Heisenberg model: reduction of T c and doubly-charged vortices G. M. Wysin Departamento de Física, Universidade Federal de Viçosa, Viçosa, 3657-, Minas Gerais, Brazil (Dated:

More information

Potts And XY, Together At Last

Potts And XY, Together At Last Potts And XY, Together At Last Daniel Kolodrubetz Massachusetts Institute of Technology, Center for Theoretical Physics (Dated: May 16, 212) We investigate the behavior of an XY model coupled multiplicatively

More information

VSOP19, Quy Nhon 3-18/08/2013. Ngo Van Thanh, Institute of Physics, Hanoi, Vietnam.

VSOP19, Quy Nhon 3-18/08/2013. Ngo Van Thanh, Institute of Physics, Hanoi, Vietnam. VSOP19, Quy Nhon 3-18/08/2013 Ngo Van Thanh, Institute of Physics, Hanoi, Vietnam. Part III. Finite size effects and Reweighting methods III.1. Finite size effects III.2. Single histogram method III.3.

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Improvement of Monte Carlo estimates with covariance-optimized finite-size scaling at fixed phenomenological coupling

Improvement of Monte Carlo estimates with covariance-optimized finite-size scaling at fixed phenomenological coupling Improvement of Monte Carlo estimates with covariance-optimized finite-size scaling at fixed phenomenological coupling Francesco Parisen Toldin Max Planck Institute for Physics of Complex Systems Dresden

More information

arxiv: v1 [cond-mat.dis-nn] 12 Nov 2014

arxiv: v1 [cond-mat.dis-nn] 12 Nov 2014 Representation for the Pyrochlore Lattice arxiv:1411.3050v1 [cond-mat.dis-nn] 12 Nov 2014 André Luis Passos a, Douglas F. de Albuquerque b, João Batista Santos Filho c Abstract a DFI, CCET, Universidade

More information

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Numerical Analysis of 2-D Ising Model By Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Contents Abstract Acknowledgment Introduction Computational techniques Numerical Analysis

More information

Critical Dynamics of Two-Replica Cluster Algorithms

Critical Dynamics of Two-Replica Cluster Algorithms University of Massachusetts Amherst From the SelectedWorks of Jonathan Machta 2001 Critical Dynamics of Two-Replica Cluster Algorithms X. N. Li Jonathan Machta, University of Massachusetts Amherst Available

More information

GPU-based computation of the Monte Carlo simulation of classical spin systems

GPU-based computation of the Monte Carlo simulation of classical spin systems Perspectives of GPU Computing in Physics and Astrophysics, Sapienza University of Rome, Rome, Italy, September 15-17, 2014 GPU-based computation of the Monte Carlo simulation of classical spin systems

More information

Phase transitions and finite-size scaling

Phase transitions and finite-size scaling Phase transitions and finite-size scaling Critical slowing down and cluster methods. Theory of phase transitions/ RNG Finite-size scaling Detailed treatment: Lectures on Phase Transitions and the Renormalization

More information

CONTINUOUS- AND FIRST-ORDER PHASE TRANSITIONS IN ISING ANTIFERROMAGNETS WITH NEXT-NEAREST- NEIGHBOUR INTERACTIONS

CONTINUOUS- AND FIRST-ORDER PHASE TRANSITIONS IN ISING ANTIFERROMAGNETS WITH NEXT-NEAREST- NEIGHBOUR INTERACTIONS Continuous- Rev.Adv.Mater.Sci. and first-order 14(2007) phase 1-10 transitions in ising antiferromagnets with next-nearest-... 1 CONTINUOUS- AND FIRST-ORDER PHASE TRANSITIONS IN ISING ANTIFERROMAGNETS

More information

arxiv: v1 [cond-mat.stat-mech] 22 Sep 2009

arxiv: v1 [cond-mat.stat-mech] 22 Sep 2009 Phase diagram and critical behavior of the square-lattice Ising model with competing nearest- and next-nearest-neighbor interactions Junqi Yin and D. P. Landau Center for Simulational Physics, University

More information

Phase Transitions in Spin Glasses

Phase Transitions in Spin Glasses Phase Transitions in Spin Glasses Peter Young Talk available at http://physics.ucsc.edu/ peter/talks/sinica.pdf e-mail:peter@physics.ucsc.edu Supported by the Hierarchical Systems Research Foundation.

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

Phase transitions in the Potts spin-glass model

Phase transitions in the Potts spin-glass model PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 1998 Phase transitions in the Potts spin-glass model Giancarlo Franzese 1 and Antonio Coniglio 1,2 1 Dipartimento di Scienze Fisiche, Università di Napoli,

More information

Constructing Landau Formalism for Topological Order: Spin Chains and Ladders

Constructing Landau Formalism for Topological Order: Spin Chains and Ladders Constructing Landau Formalism for Topological Order: Spin Chains and Ladders Gennady Y. Chitov Laurentian University Sudbury, Canada Talk at Washington University in St. Louis, October 20, 2016 Collaborators:

More information

Observation of topological phenomena in a programmable lattice of 1800 superconducting qubits

Observation of topological phenomena in a programmable lattice of 1800 superconducting qubits Observation of topological phenomena in a programmable lattice of 18 superconducting qubits Andrew D. King Qubits North America 218 Nature 56 456 46, 218 Interdisciplinary teamwork Theory Simulation QA

More information

Guiding Monte Carlo Simulations with Machine Learning

Guiding Monte Carlo Simulations with Machine Learning Guiding Monte Carlo Simulations with Machine Learning Yang Qi Department of Physics, Massachusetts Institute of Technology Joining Fudan University in 2017 KITS, June 29 2017. 1/ 33 References Works led

More information

Critical Behaviors and Finite-Size Scaling of Principal Fluctuation Modes in Complex Systems

Critical Behaviors and Finite-Size Scaling of Principal Fluctuation Modes in Complex Systems Commun. Theor. Phys. 66 (2016) 355 362 Vol. 66, No. 3, September 1, 2016 Critical Behaviors and Finite-Size Scaling of Principal Fluctuation Modes in Complex Systems Xiao-Teng Li ( 李晓腾 ) and Xiao-Song

More information

arxiv:cond-mat/ v1 22 Sep 1998

arxiv:cond-mat/ v1 22 Sep 1998 Scaling properties of the cluster distribution of a critical nonequilibrium model Marta Chaves and Maria Augusta Santos Departamento de Física and Centro de Física do Porto, Faculdade de Ciências, Universidade

More information

Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction

Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction Chin. Phys. B Vol. 19, No. 1 010) 010305 Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction Li Zhi-Jian 李志坚 ), Cheng Lu 程璐 ), and Wen Jiao-Jin

More information

Mean-field theory for arrays of Josephson-coupled wires

Mean-field theory for arrays of Josephson-coupled wires PHYSICAL REVIEW B VOLUME 58, NUMBER 14 Mean-field theory for arrays of Josephson-coupled wires J. Kent Harbaugh and D. Stroud Department of Physics, the Ohio State University, Columbus, Ohio 43210 Received

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 27 Aug 2002

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 27 Aug 2002 arxiv:cond-mat/0208521v1 [cond-mat.stat-mech] 27 Aug 2002 EUROPHYSICS LETTERS Europhys. Lett., xx (x), pp. 1-7 (2002) today Correlations in the low-temperature phase of the twodimensional XY model B. Berche

More information

Statistical description of magnetic domains in the Ising model

Statistical description of magnetic domains in the Ising model arxiv:0804.3522v1 [cond-mat.stat-mech] 22 Apr 2008 Statistical description of magnetic domains in the Ising model K. Lukierska-Walasek Institute of Physics University of Zielona Góra ul. Z. Szafrana 4a,

More information

Low Temperature Static and Dynamic Behavior of the Two-Dimensional Easy Axis Heisenberg Model

Low Temperature Static and Dynamic Behavior of the Two-Dimensional Easy Axis Heisenberg Model Low Temperature Static and Dynamic Behavior of the Two-Dimensional Easy Axis Heisenberg Model M. E. Gouvêa, G.M. Wysin, S. A. Leonel, A. S. T. Pires, T. Kamppeter, + and F.G. Mertens + Departamento de

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/49403 holds various files of this Leiden University dissertation. Author: Keesman, R. Title: Topological phases and phase transitions in magnets and ice

More information

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University PY502, Computational Physics, December 12, 2017 Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Advancing Research in Basic Science and Mathematics Example:

More information

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

Phase Transitions in Spin Glasses

Phase Transitions in Spin Glasses p.1 Phase Transitions in Spin Glasses Peter Young http://physics.ucsc.edu/ peter/talks/bifi2008.pdf e-mail:peter@physics.ucsc.edu Work supported by the and the Hierarchical Systems Research Foundation.

More information

A Monte Carlo Study of the Order-Disorder Layering Transitions in the Blume-Capel Model

A Monte Carlo Study of the Order-Disorder Layering Transitions in the Blume-Capel Model A Monte Carlo Study of the Order-Disorder Layering Transitions in the Blume-Capel Model L. Bahmad, A. Benyoussef and H. Ez-Zahraouy* Laboratoire de Magnétisme et de la Physique des Hautes Energies Université

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

Supplementary Figure 1 Representative sample of DW spin textures in a

Supplementary Figure 1 Representative sample of DW spin textures in a Supplementary Figure 1 Representative sample of DW spin textures in a Fe/Ni/W(110) film. (a) to (d) Compound SPLEEM images of the Fe/Ni/W(110) sample. As in Fig. 2 in the main text, Fe thickness is 1.5

More information

Wang-Landau Sampling of an Asymmetric Ising Model: A Study of the Critical Endpoint Behavior

Wang-Landau Sampling of an Asymmetric Ising Model: A Study of the Critical Endpoint Behavior Brazilian Journal of Physics, vol. 36, no. 3A, September, 26 635 Wang-andau Sampling of an Asymmetric Ising Model: A Study of the Critical Endpoint Behavior Shan-o sai a,b, Fugao Wang a,, and D.P. andau

More information

Phase Transition in Vector Spin Glasses. Abstract

Phase Transition in Vector Spin Glasses. Abstract Phase Transition in Vector Spin Glasses A. P. Young Department of Physics, University of California, Santa Cruz, California 95064 (Dated: June 3, 2004) Abstract We first give an experimental and theoretical

More information

POWER-LAW CORRELATED PHASE IN RANDOM-FIELD XY MODELS AND RANDOMLY PINNED CHARGE-DENSITY WAVES Ronald Fisch Dept. of Physics Washington Univ. St. Louis, MO 63130 ABSTRACT: Monte Carlo simulations have been

More information

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group Complex Systems Methods 9. Critical Phenomena: The Renormalization Group Eckehard Olbrich e.olbrich@gmx.de http://personal-homepages.mis.mpg.de/olbrich/complex systems.html Potsdam WS 2007/08 Olbrich (Leipzig)

More information

Effects of Different Spin-Spin Couplings and Magnetic Fields on Thermal Entanglement in Heisenberg XY Z Chain

Effects of Different Spin-Spin Couplings and Magnetic Fields on Thermal Entanglement in Heisenberg XY Z Chain Commun. heor. Phys. (Beijing China 53 (00 pp. 659 664 c Chinese Physical Society and IOP Publishing Ltd Vol. 53 No. 4 April 5 00 Effects of Different Spin-Spin Couplings and Magnetic Fields on hermal Entanglement

More information

Phase Transition in Vector Spin Glasses. Abstract

Phase Transition in Vector Spin Glasses. Abstract Phase Transition in Vector Spin Glasses A. P. Young Department of Physics, University of California, Santa Cruz, California 95064 (Dated: June 2, 2004) Abstract We first give an experimental and theoretical

More information

The Phase Transition of the 2D-Ising Model

The Phase Transition of the 2D-Ising Model The Phase Transition of the 2D-Ising Model Lilian Witthauer and Manuel Dieterle Summer Term 2007 Contents 1 2D-Ising Model 2 1.1 Calculation of the Physical Quantities............... 2 2 Location of the

More information

The mixed-spins 1/2 and 3/2 Blume Capel model with a random crystal field

The mixed-spins 1/2 and 3/2 Blume Capel model with a random crystal field The mixed-spins 1/2 and 3/2 Blume Capel model with a random crystal field Erhan Albayrak Erciyes University, Department of Physics, 38039, Kayseri, Turkey (Received 25 August 2011; revised manuscript received

More information

Bond Dilution Effects on Bethe Lattice the Spin-1 Blume Capel Model

Bond Dilution Effects on Bethe Lattice the Spin-1 Blume Capel Model Commun. Theor. Phys. 68 (2017) 361 365 Vol. 68, No. 3, September 1, 2017 Bond Dilution Effects on Bethe Lattice the Spin-1 Blume Capel Model Erhan Albayrak Erciyes University, Department of Physics, 38039,

More information

arxiv: v1 [cond-mat.stat-mech] 19 Oct 2015

arxiv: v1 [cond-mat.stat-mech] 19 Oct 2015 Critical behavior of a triangular lattice Ising AF/FM bilayer arxiv:1510.05383v1 [cond-mat.stat-mech] 19 Oct 2015 M. Žukovič, A. Bobák Department of Theoretical Physics and Astrophysics, Faculty of Science,

More information

Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY , USA. Florida State University, Tallahassee, Florida , USA

Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY , USA. Florida State University, Tallahassee, Florida , USA 5 Dynamic Phase Diagram for a Periodically Driven Kinetic Square-lattice Ising Ferromagnet: Finite-size Scaling Evidence for the Absence of a Tri-critical Point G. Korniss 1, P.A. Rikvold 2,3, and M.A.

More information

Effects of Particle Shape and Microstructure on Effective Nonlinear Response

Effects of Particle Shape and Microstructure on Effective Nonlinear Response Commun. Theor. Phys. (Beijing, China) 36 (2001) pp. 365 369 c International Academic Publishers Vol. 36, No. 3, September 15, 2001 Effects of Particle Shape and Microstructure on Effective Nonlinear Response

More information

5 Topological defects and textures in ordered media

5 Topological defects and textures in ordered media 5 Topological defects and textures in ordered media In this chapter we consider how to classify topological defects and textures in ordered media. We give here only a very short account of the method following

More information

S i J <ij> h mf = h + Jzm (4) and m, the magnetisation per spin, is just the mean value of any given spin. S i = S k k (5) N.

S i J <ij> h mf = h + Jzm (4) and m, the magnetisation per spin, is just the mean value of any given spin. S i = S k k (5) N. Statistical Physics Section 10: Mean-Field heory of the Ising Model Unfortunately one cannot solve exactly the Ising model or many other interesting models) on a three dimensional lattice. herefore one

More information

Ginzburg-Landau theory of supercondutivity

Ginzburg-Landau theory of supercondutivity Ginzburg-Landau theory of supercondutivity Ginzburg-Landau theory of superconductivity Let us apply the above to superconductivity. Our starting point is the free energy functional Z F[Ψ] = d d x [F(Ψ)

More information

A Monte Carlo Study of the Specific Heat of Diluted Antiferromagnets

A Monte Carlo Study of the Specific Heat of Diluted Antiferromagnets A Monte Carlo Study of the Specific Heat of Diluted Antiferromagnets M. Staats and K. D. Usadel email: michael@thp.uni-duisburg.de Theoretische Physik and SFB 166 Gerhard-Mercator-Universität Gesamthochschule

More information

COMPARISON OF VORTEX NORMAL MODES IN EASY-PLANE FERROMAGNETS AND ANTIFERROMAGNETS

COMPARISON OF VORTEX NORMAL MODES IN EASY-PLANE FERROMAGNETS AND ANTIFERROMAGNETS COMPARISON OF VORTEX NORMAL MODES IN EASY-PLANE FERROMAGNETS AND ANTIFERROMAGNETS G. M. Wysin Department of Physics, Kansas State University, Manhattan, KS 66506 U.S.A. A. R. Völkel University of Toronto,

More information

Spontaneous magnetization of the square 2D Ising lattice with nearest- and weak next-nearest-neighbour interactions

Spontaneous magnetization of the square 2D Ising lattice with nearest- and weak next-nearest-neighbour interactions Phase Transitions Vol. 82, No. 2, February 2009, 191 196 Spontaneous magnetization of the square 2D Ising lattice with nearest- and weak next-nearest-neighbour interactions H.J.W. Zandvliet a * and C.

More information

arxiv:cond-mat/ v1 19 Sep 1995

arxiv:cond-mat/ v1 19 Sep 1995 Large-scale Simulation of the Two-dimensional Kinetic Ising Model arxiv:cond-mat/9509115v1 19 Sep 1995 Andreas Linke, Dieter W. Heermann Institut für theoretische Physik Universität Heidelberg Philosophenweg

More information

4. Cluster update algorithms

4. Cluster update algorithms 4. Cluster update algorithms Cluster update algorithms are the most succesful global update methods in use. These methods update the variables globally, in one step, whereas the standard local methods

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 Jul 2001

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 Jul 2001 Autocorrelation functions in 3D Fully Frustrated Systems arxiv:cond-mat/0107509v1 [cond-mat.stat-mech] 24 Jul 2001 G. Franzese a, A. Fierro a, A. De Candia a and A. Coniglio a,b Dipartimento di Scienze

More information

arxiv: v1 [cond-mat.stat-mech] 20 Feb 2018

arxiv: v1 [cond-mat.stat-mech] 20 Feb 2018 Spin-1/2 anisotropic Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interaction via mean-field approximation arxiv:1802.07172v1 [cond-mat.stat-mech] 20 Feb 2018 Walter E. F. Parente Universidade

More information

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Surface effects in frustrated magnetic materials: phase transition and spin resistivity Surface effects in frustrated magnetic materials: phase transition and spin resistivity H T Diep (lptm, ucp) in collaboration with Yann Magnin, V. T. Ngo, K. Akabli Plan: I. Introduction II. Surface spin-waves,

More information

arxiv:cond-mat/ v4 [cond-mat.dis-nn] 23 May 2001

arxiv:cond-mat/ v4 [cond-mat.dis-nn] 23 May 2001 Phase Diagram of the three-dimensional Gaussian andom Field Ising Model: A Monte Carlo enormalization Group Study arxiv:cond-mat/488v4 [cond-mat.dis-nn] 3 May M. Itakura JS Domestic esearch Fellow, Center

More information

arxiv:hep-lat/ v1 9 Mar 1994

arxiv:hep-lat/ v1 9 Mar 1994 Correlation Function in Ising Models arxiv:hep-lat/9403009v1 9 Mar 1994 C. Ruge a, P. Zhu b and F. Wagner a a) Institut für Theoretische Physik und Sternwarte Univ. Kiel, D-24098 Kiel, Germany E Mail:

More information

Notes on Renormalization Group: Berezinskii-Kosterlitz-Thouless (BKT) transition and Sine-Gordon model

Notes on Renormalization Group: Berezinskii-Kosterlitz-Thouless (BKT) transition and Sine-Gordon model Notes on Renormalization Group: Berezinskii-Kosterlitz-Thouless (BKT) transition and Sine-Gordon model Yi Zhou (Dated: December 4, 05) We shall discuss BKT transition based on +D sine-gordon model. I.

More information

Triangular Ising model with nearestand

Triangular Ising model with nearestand Chapter 3 Triangular Ising model with nearestand next-nearest-neighbor couplings in a field We study the Ising model on the triangular lattice with nearest-neighbor couplings K nn, next-nearest-neighbor

More information

Monte Carlo simulation calculation of the critical coupling constant for two-dimensional continuum 4 theory

Monte Carlo simulation calculation of the critical coupling constant for two-dimensional continuum 4 theory Monte Carlo simulation calculation of the critical coupling constant for two-dimensional continuum 4 theory Will Loinaz * Institute for Particle Physics and Astrophysics, Physics Department, Virginia Tech,

More information

Instability of In-Plane Vortices in Two-Dimensional Easy-Plane Ferromagnets

Instability of In-Plane Vortices in Two-Dimensional Easy-Plane Ferromagnets Instability of In-Plane Vortices in Two-Dimensional Easy-Plane Ferromagnets G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-260 (November 9, 993) An analysis of the core region

More information

The XY-Model. David-Alexander Robinson Sch th January 2012

The XY-Model. David-Alexander Robinson Sch th January 2012 The XY-Model David-Alexander Robinson Sch. 08332461 17th January 2012 Contents 1 Introduction & Theory 2 1.1 The XY-Model............................... 2 1.2 Markov Chains...............................

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Jun 1997

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Jun 1997 arxiv:cond-mat/9706065v1 [cond-mat.stat-mech] 6 Jun 1997 LETTER TO THE EDITOR Logarithmic corrections to gap scaling in random-bond Ising strips S L A de Queiroz Instituto de Física, UFF, Avenida Litorânea

More information

Critical Behaviour of the 3D XY -Model: A Monte Carlo Study

Critical Behaviour of the 3D XY -Model: A Monte Carlo Study KL-TH-93/10 CERN-TH.6885/93 Critical Behaviour of the 3D XY -Model: A Monte Carlo Study arxiv:cond-mat/9305020v1 18 May 1993 Aloysius P. Gottlob Universität Kaiserslautern, D-6750 Kaiserslautern, Germany

More information

A New Method to Determine First-Order Transition Points from Finite-Size Data

A New Method to Determine First-Order Transition Points from Finite-Size Data A New Method to Determine First-Order Transition Points from Finite-Size Data Christian Borgs and Wolfhard Janke Institut für Theoretische Physik Freie Universität Berlin Arnimallee 14, 1000 Berlin 33,

More information

Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/ v1 [cond-mat.stat-mech] 22 Sep 1999

Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/ v1 [cond-mat.stat-mech] 22 Sep 1999 Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/9909323v1 [cond-mat.stat-mech] 22 Sep 1999 B. Zheng FB Physik, Universität Halle, 06099 Halle, Germany Abstract Numerically we

More information

221B Lecture Notes Spontaneous Symmetry Breaking

221B Lecture Notes Spontaneous Symmetry Breaking B Lecture Notes Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking is an ubiquitous concept in modern physics, especially in condensed matter and particle physics.

More information

Berry s phase under the Dzyaloshinskii-Moriya interaction

Berry s phase under the Dzyaloshinskii-Moriya interaction PHYSICAL REVIEW A 77, 8 erry s phase under the Dzyaloshinskii-Moriya interaction M. K. Kwan, Zeynep ilhan Gurkan, and L. C. Kwek, ational Institute of Education, anyang Technological University, anyang

More information

A Monte Carlo Implementation of the Ising Model in Python

A Monte Carlo Implementation of the Ising Model in Python A Monte Carlo Implementation of the Ising Model in Python Alexey Khorev alexey.s.khorev@gmail.com 2017.08.29 Contents 1 Theory 1 1.1 Introduction...................................... 1 1.2 Model.........................................

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Phase transitions beyond the Landau-Ginzburg theory

Phase transitions beyond the Landau-Ginzburg theory Phase transitions beyond the Landau-Ginzburg theory Yifei Shi 21 October 2014 1 Phase transitions and critical points 2 Laudau-Ginzburg theory 3 KT transition and vortices 4 Phase transitions beyond Laudau-Ginzburg

More information

Monte Caro simulations

Monte Caro simulations Monte Caro simulations Monte Carlo methods - based on random numbers Stanislav Ulam s terminology - his uncle frequented the Casino in Monte Carlo Random (pseudo random) number generator on the computer

More information

Metropolis Monte Carlo simulation of the Ising Model

Metropolis Monte Carlo simulation of the Ising Model Metropolis Monte Carlo simulation of the Ising Model Krishna Shrinivas (CH10B026) Swaroop Ramaswamy (CH10B068) May 10, 2013 Modelling and Simulation of Particulate Processes (CH5012) Introduction The Ising

More information

Meron-Cluster and Nested Cluster Algorithms: Addressing the Sign Problem in Quantum Monte Carlo Simulations

Meron-Cluster and Nested Cluster Algorithms: Addressing the Sign Problem in Quantum Monte Carlo Simulations Meron-Cluster and Nested Cluster Algorithms: Addressing the Sign Problem in Quantum Monte Carlo Simulations Uwe-Jens Wiese Bern University IPAM Workshop QS2009, January 26, 2009 Collaborators: B. B. Beard

More information

S j H o = gµ o H o. j=1

S j H o = gµ o H o. j=1 LECTURE 17 Ferromagnetism (Refs.: Sections 10.6-10.7 of Reif; Book by J. S. Smart, Effective Field Theories of Magnetism) Consider a solid consisting of N identical atoms arranged in a regular lattice.

More information

arxiv: v1 [cond-mat.dis-nn] 25 Apr 2018

arxiv: v1 [cond-mat.dis-nn] 25 Apr 2018 arxiv:1804.09453v1 [cond-mat.dis-nn] 25 Apr 2018 Critical properties of the antiferromagnetic Ising model on rewired square lattices Tasrief Surungan 1, Bansawang BJ 1 and Muhammad Yusuf 2 1 Department

More information

Immigration, integration and ghetto formation

Immigration, integration and ghetto formation Immigration, integration and ghetto formation arxiv:cond-mat/0209242v1 10 Sep 2002 Hildegard Meyer-Ortmanns School of Engineering and Science International University Bremen P.O.Box 750561 D-28725 Bremen,

More information

The phase diagram of polar condensates

The phase diagram of polar condensates The phase diagram of polar condensates Taking the square root of a vortex Austen Lamacraft [with Andrew James] arxiv:1009.0043 University of Virginia September 23, 2010 KITP, UCSB Austen Lamacraft (University

More information

Cluster Algorithms to Reduce Critical Slowing Down

Cluster Algorithms to Reduce Critical Slowing Down Cluster Algorithms to Reduce Critical Slowing Down Monte Carlo simulations close to a phase transition are affected by critical slowing down. In the 2-D Ising system, the correlation length ξ becomes very

More information

3.320: Lecture 19 (4/14/05) Free Energies and physical Coarse-graining. ,T) + < σ > dµ

3.320: Lecture 19 (4/14/05) Free Energies and physical Coarse-graining. ,T) + < σ > dµ 3.320: Lecture 19 (4/14/05) F(µ,T) = F(µ ref,t) + < σ > dµ µ µ ref Free Energies and physical Coarse-graining T S(T) = S(T ref ) + T T ref C V T dt Non-Boltzmann sampling and Umbrella sampling Simple

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics 1 Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 2, 24 March 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Wang-Landau algorithm: A theoretical analysis of the saturation of the error

Wang-Landau algorithm: A theoretical analysis of the saturation of the error THE JOURNAL OF CHEMICAL PHYSICS 127, 184105 2007 Wang-Landau algorithm: A theoretical analysis of the saturation of the error R. E. Belardinelli a and V. D. Pereyra b Departamento de Física, Laboratorio

More information

Static and dynamic simulation in the classical two-dimensional anisotropic Heisenberg model

Static and dynamic simulation in the classical two-dimensional anisotropic Heisenberg model PHYSICAL REVIEW B VOLUME 54, NUMBER 2 1 JULY 1996-II Static and dynamic simulation in the classical two-dimensional anisotropic Heisenberg model J. E. R. Costa and B. V. Costa Departamento de Física, Instituto

More information

Spin Hamiltonian and Order out of Coulomb Phase in Pyrochlore Structure of FeF3

Spin Hamiltonian and Order out of Coulomb Phase in Pyrochlore Structure of FeF3 Spin Hamiltonian and Order out of Coulomb Phase in Pyrochlore Structure of FeF3 Farhad Shahbazi in collaboration with Azam Sadeghi (IUT) Mojtaba Alaei (IUT) Michel J. P. Gingras (UWaterloo) arxiv: 1407.0849

More information

Spontaneous Symmetry Breaking

Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking Second order phase transitions are generally associated with spontaneous symmetry breaking associated with an appropriate order parameter. Identifying symmetry of the order

More information

arxiv: v1 [cond-mat.stat-mech] 13 Mar 2019

arxiv: v1 [cond-mat.stat-mech] 13 Mar 2019 XY model with antinematic interaction Milan Žukovič arxiv:93.5586v [cond-mat.stat-mech] 3 Mar 29 Institute of Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, 4 54 Košice, Slovakia

More information