The IDA-PBC Methodology Applied to a Gantry Crane

Size: px
Start display at page:

Download "The IDA-PBC Methodology Applied to a Gantry Crane"

Transcription

1 Outline Methodology Applied to a Gantry Crane Ravi Banavar 1 Faruk Kazi 1 Romeo Ortega 2 N. S. Manjarekar 1 1 Systems and Control Engineering IIT Bombay 2 Supelec Gif-sur-Yvette, France MTNS, Kyoto, 2006

2 Outline Outline 1 Dynamic Model of an Overhead-Gantry Crane The Crane Mechanism 2 Stabilization of the Gantry Crane using IDA-PBC Methodology 3 Simulations 4

3 Outline Outline 1 Dynamic Model of an Overhead-Gantry Crane The Crane Mechanism 2 Stabilization of the Gantry Crane using IDA-PBC Methodology 3 Simulations 4

4 Outline Outline 1 Dynamic Model of an Overhead-Gantry Crane The Crane Mechanism 2 Stabilization of the Gantry Crane using IDA-PBC Methodology 3 Simulations 4

5 Outline Outline 1 Dynamic Model of an Overhead-Gantry Crane The Crane Mechanism 2 Stabilization of the Gantry Crane using IDA-PBC Methodology 3 Simulations 4

6 Outline Model Crane Mechanism 1 Dynamic Model of an Overhead-Gantry Crane The Crane Mechanism 2 Stabilization of the Gantry Crane using IDA-PBC Methodology 3 Simulations 4

7 Model The Crane Mechanism Crane Mechanism x ments F x F M m l The control objective is: To move the payload from any positionq T i i x i i l i to the desired position specified asq D 0 x D l D T Figure: Overhead gantry crane

8 Model The Dynamic model Crane Mechanism ements F r l Assumptions The cable is massless and inelastic. Dissipative forces on the cart and at the winch are negligible Figure: Pulley and cable schematic m No slipping occurs at the point of contact between the winch and the cable

9 Outline Model Crane Mechanism 1 Dynamic Model of an Overhead-Gantry Crane The Crane Mechanism 2 Stabilization of the Gantry Crane using IDA-PBC Methodology 3 Simulations 4

10 Model The Lagrangian of the System Crane Mechanism The Lagrangian of the system is where M q V q mgl cos q q 1 2 qt M q q V q ml 2 ml cos 0 0 ml cos M m 0 m sin 0 0 I p 0 0 m sin 0 m

11 Model Crane Mechanism Holonomic Constraint The no-slip constraint at the pulley implies r is the radius of the pulley l where r The constraint at the velocity level can be written as 0 0 r 1 q 0 The codistribution 0 0 r 1 is expressed as h q where h q l r This implies the integrable nature of the constraint and reduces the dimension of the configuration manifold to 3

12 Model Crane Mechanism The Lagrangian in the new coordinates We perform a linear transformation of coordinates as q Aq where q x l T and q x l r T Here A The Lagrangian in the new coordinates: r 1 q 1 1 q A q T M A 1q 1 A q V A 1q 2

13 Model Crane Mechanism The Lower Dimensional Manifold q r x T Inertia matrix M r q ml 2 0 ml 0 cos 0 ml 0 cos m M mr sin 0 m sin r mr 2 I p Potential energy V r q mgl 0 cos The Hamiltonian H H r q r p r 1 2 pt 1 r M r q p r V r q r (1) The desired equibrium - q D 0 x D l D l 0 r T

14 Outline Model 1 Dynamic Model of an Overhead-Gantry Crane The Crane Mechanism 2 Stabilization of the Gantry Crane using IDA-PBC Methodology 3 Simulations 4

15 Model Port-Hamiltonian systems A major generalization of the class of Hamiltonian systems: x J x y g T x H x H x x g x u x x y IR m The system (2) with J satisfying condition J x J T x, is called as a port-hamiltonian system with structure matrix J x (2)

16 Model Mechanical systems Hamiltonian system representation: q q p H p H q p q p B q u u IR m y B T q q p B T q q y IR m H p Here, the Hamiltonian H q p 1 2 pt M 1 q p P q is the total energy of the system. In the port-hamiltonian form q p The matrix G 0 I n I n 0 qh ph 0 G q (3) u (4) IR n m is invertible in the case the system is

17 Model Methodology Basic Steps in IDA-PBC Energy shaping: Modify the total energy function of the system to assign the desired equilibrium Damping injection: To achieve asymptotic stability Synthesize the control input as: u u es q p u di q p

18 Outline Model 1 Dynamic Model of an Overhead-Gantry Crane The Crane Mechanism 2 Stabilization of the Gantry Crane using IDA-PBC Methodology 3 Simulations 4

19 Model The Obtaining the energy shaping term: q p 0 I n I n 0 qh ph 0 G q u es 0 M 1 M d M d M 1 J 2 q p qh d ph d The first row is clearly satisfied For underactuated case second row gives: u es G T G 1 G T qh M d M 1 qh d J 2 M d 1 p

20 Outline Model 1 Dynamic Model of an Overhead-Gantry Crane The Crane Mechanism 2 Stabilization of the Gantry Crane using IDA-PBC Methodology 3 Simulations 4

21 Model The Matching Equation gives rise to two PDES - Kinetic Energy (KE) and Potential Energy (PE) : 1 G q p T M 1 1 p M d M G q p T M d 1 p J 2 M d 1 p 0 qv M d M 1 qv d 0 2 Since the desired equilibrium position is already stable, we propose to shape potential energy only leaving kinetic energy unchanged. This makes M d M and J Using the original kinetic energy makes one matching condition trivially satisfied and simplifies the remaining one considerably

22 Model Solving the Potential Energy PDE Potential Energy (PE) PDE is given as: G qv M d M 1 qv d 0 Solving PE PDE gives: V d mgl 0 cos Choosing x x to be a quadratic function yields V d q mgl 0 cos K p 2 D 2 K px 2 x x D 2

23 Outline Model Simulations 1 Dynamic Model of an Overhead-Gantry Crane The Crane Mechanism 2 Stabilization of the Gantry Crane using IDA-PBC Methodology 3 Simulations 4

24 Model Simulations Simulation 1:m 1 Kg, M 6 Kg θ(t)(deg) F x x(t)(m) Time(sec) Time(sec) Time(sec) θ (rad per sec) l(m) F α θ (rad) Time(sec.) Time(sec) Initial ( 10, 0 8 m, 0 Initial:1.5 m Desired:0.5 m 5m) Desired Initial:30 deg Desired:0 deg configuration- configuration- ( 0, 0 5 m, 0 7m)

25 Model Simulations Simulation 2 :m 1 Kg, M 6 Kg θ(t)(deg) F x x(t)(m) Time(sec) Time(sec) Time(sec) F α θ (rad per sec) l(m) θ (rad) Time(sec.) Time(sec) Initial configuration - (30, 1 5 m, 0 9m) Desired configuration - ( 0, 0 5 m, 0 7m)

26 Model Simulations Simulation 3 :m 2 Kg, M 15 Kg θ(t)(deg) x(t)(m) F x (N) Time(sec) Time(sec) Time(sec) θ (rad per sec) l(m) F alpha (Nm) θ (rad) Time(sec.) Time(sec) Initial Initial:30 deg Desired:0 deg configuration - (30, 1 5 m, 0 9m) Desired Initial:1.5 m Desired:0.5 m configuration - ( 0, 0 5 m, 0 7m)

27 Model Presented a controller design procedure for an overhead crane that minimizes the swing of the payload using IDA-PBC methodology Introduced a no-slip constraint as a holonomic constraint Employed coordinate transformation to reduce the configuration space for design

28 Model Future Work Investigating the effect of cable elasticity and friction Introducing the constraint for positive cable tension Incorporating kinetic energy shaping for transient performance

Minimizing Cable Swing in a Gantry Crane Using the IDA-PBC Methodology

Minimizing Cable Swing in a Gantry Crane Using the IDA-PBC Methodology 3 th National Conference on Mechanisms and Machines (NaCoMM7), IISc, Bangalore, India. December -3, 7 NaCoMM-7-65 Minimizing Cable Swing in a Gantry Crane Using the IDA-PBC Methodology Faruk Kazi, Ravi

More information

Exam 3--PHYS 101--F15

Exam 3--PHYS 101--F15 Name: Exam 3--PHYS 0--F5 Multiple Choice Identify the choice that best completes the statement or answers the question.. It takes 00 m to stop a car initially moving at 25.0 m/s. The distance required

More information

Your Name: PHYSICS 101 MIDTERM. Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon

Your Name: PHYSICS 101 MIDTERM. Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon 1 Your Name: PHYSICS 101 MIDTERM October 26, 2006 2 hours Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon Problem Score 1 /13 2 /20 3 /20 4

More information

Mechatronics. MANE 4490 Fall 2002 Assignment # 1

Mechatronics. MANE 4490 Fall 2002 Assignment # 1 Mechatronics MANE 4490 Fall 2002 Assignment # 1 1. For each of the physical models shown in Figure 1, derive the mathematical model (equation of motion). All displacements are measured from the static

More information

KINETIC ENERGY SHAPING IN THE INVERTED PENDULUM

KINETIC ENERGY SHAPING IN THE INVERTED PENDULUM KINETIC ENERGY SHAPING IN THE INVERTED PENDULUM J. Aracil J.A. Acosta F. Gordillo Escuela Superior de Ingenieros Universidad de Sevilla Camino de los Descubrimientos s/n 49 - Sevilla, Spain email:{aracil,

More information

Conservation of Momentum and Energy

Conservation of Momentum and Energy ASU University Physics Labs - Mechanics Lab 5 p. 1 Conservation of Momentum and Energy As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet.

More information

A Normal Form for Energy Shaping: Application to the Furuta Pendulum

A Normal Form for Energy Shaping: Application to the Furuta Pendulum Proc 4st IEEE Conf Decision and Control, A Normal Form for Energy Shaping: Application to the Furuta Pendulum Sujit Nair and Naomi Ehrich Leonard Department of Mechanical and Aerospace Engineering Princeton

More information

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2 MCE 366 System Dynamics, Spring 2012 Problem Set 2 Reading: Chapter 2, Sections 2.3 and 2.4, Chapter 3, Sections 3.1 and 3.2 Problems: 2.22, 2.24, 2.26, 2.31, 3.4(a, b, d), 3.5 Solutions to Set 2 2.22

More information

7.6 Journal Bearings

7.6 Journal Bearings 7.6 Journal Bearings 7.6 Journal Bearings Procedures and Strategies, page 1 of 2 Procedures and Strategies for Solving Problems Involving Frictional Forces on Journal Bearings For problems involving a

More information

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the

More information

A Simplified IDA-PBC Design for Underactuated Mechanical Systems with Applications

A Simplified IDA-PBC Design for Underactuated Mechanical Systems with Applications A Simplified IDA-PBC Design for Underactuated Mechanical Systems with Applications Mutaz Ryalat a,dina Shona Laila a a School of Engineering Sciences, University of Southampton, Highfield, Southampton

More information

EE Homework 3 Due Date: 03 / 30 / Spring 2015

EE Homework 3 Due Date: 03 / 30 / Spring 2015 EE 476 - Homework 3 Due Date: 03 / 30 / 2015 Spring 2015 Exercise 1 (10 points). Consider the problem of two pulleys and a mass discussed in class. We solved a version of the problem where the mass was

More information

Stability of Nonlinear Systems An Introduction

Stability of Nonlinear Systems An Introduction Stability of Nonlinear Systems An Introduction Michael Baldea Department of Chemical Engineering The University of Texas at Austin April 3, 2012 The Concept of Stability Consider the generic nonlinear

More information

Lab 4 Numerical simulation of a crane

Lab 4 Numerical simulation of a crane Lab 4 Numerical simulation of a crane Agenda Time 10 min Item Review agenda Introduce the crane problem 95 min Lab activity I ll try to give you a 5- minute warning before the end of the lab period to

More information

CHAPTER 8 TEST REVIEW MARKSCHEME

CHAPTER 8 TEST REVIEW MARKSCHEME AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

More information

Control of the Inertia Wheel Pendulum by Bounded Torques

Control of the Inertia Wheel Pendulum by Bounded Torques Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 5 Seville, Spain, December -5, 5 ThC6.5 Control of the Inertia Wheel Pendulum by Bounded Torques Victor

More information

第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel

More information

Physics 218: FINAL EXAM April 29 th, 2016

Physics 218: FINAL EXAM April 29 th, 2016 Physics 218: FINAL EXAM April 29 th, 2016 Please read the instructions below, Do not open the exam until told to do so. Rules of the Exam: 1. You have 120 minutes to complete the exam. 2. Formulae are

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid

More information

Chap. 10: Rotational Motion

Chap. 10: Rotational Motion Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics - Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N

More information

I pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2

I pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2 Fall 008 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

CONTROL OF THE NONHOLONOMIC INTEGRATOR

CONTROL OF THE NONHOLONOMIC INTEGRATOR June 6, 25 CONTROL OF THE NONHOLONOMIC INTEGRATOR R. N. Banavar (Work done with V. Sankaranarayanan) Systems & Control Engg. Indian Institute of Technology, Bombay Mumbai -INDIA. banavar@iitb.ac.in Outline

More information

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope

More information

Chapter 10. Rotation

Chapter 10. Rotation Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGraw-PHY 45 Chap_10Ha-Rotation-Revised

More information

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as 2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

University Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1

University Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1 University Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1 Name: Date: 1. For a wheel spinning on an axis through its center, the ratio of the radial acceleration of a point on

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

Torque/Rotational Energy Mock Exam. Instructions: (105 points) Answer the following questions. SHOW ALL OF YOUR WORK.

Torque/Rotational Energy Mock Exam. Instructions: (105 points) Answer the following questions. SHOW ALL OF YOUR WORK. AP Physics C Spring, 2017 Torque/Rotational Energy Mock Exam Name: Answer Key Mr. Leonard Instructions: (105 points) Answer the following questions. SHOW ALL OF YOUR WORK. (22 pts ) 1. Two masses are attached

More information

I pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2

I pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2 Fall 008 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved: 8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,

More information

Your Name: PHYSICS 101 MIDTERM. Please Circle your section 1 9 am Galbiati 2 10 am Wang 3 11 am Hasan 4 12:30 am Hasan 5 12:30 pm Olsen

Your Name: PHYSICS 101 MIDTERM. Please Circle your section 1 9 am Galbiati 2 10 am Wang 3 11 am Hasan 4 12:30 am Hasan 5 12:30 pm Olsen 1 Your Name: PHYSICS 101 MIDTERM October 27, 2005 2 hours Please Circle your section 1 9 am Galbiati 2 10 am Wang 3 11 am Hasan 4 12:30 am Hasan 5 12:30 pm Olsen Problem Score 1 /16 2 /16 3 /16 4 /18 5

More information

PHYSICS 221 SPRING 2015

PHYSICS 221 SPRING 2015 PHYSICS 221 SPRING 2015 EXAM 2: April 2, 2015 8:15-10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

Chapter 8. Rotational Motion

Chapter 8. Rotational Motion Chapter 8 Rotational Motion The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of

More information

Final Exam April 30, 2013

Final Exam April 30, 2013 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as:

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the

More information

Rotational Dynamics continued

Rotational Dynamics continued Chapter 9 Rotational Dynamics continued 9.4 Newton s Second Law for Rotational Motion About a Fixed Axis ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS I = ( mr 2

More information

Physics. TOPIC : Rotational motion. 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with:

Physics. TOPIC : Rotational motion. 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with: TOPIC : Rotational motion Date : Marks : 120 mks Time : ½ hr 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with: a) zero velocity b) constantt velocity c)

More information

Phys 2210 S18 Practice Exam 3: Ch 8 10

Phys 2210 S18 Practice Exam 3: Ch 8 10 1. As a 1.0-kg object moves from point A to point B, it is acted upon by a single conservative force which does 40 J of work during this motion. At point A the speed of the particle is 6.0 m/s and the

More information

Solution to Problem. Part A. x m. x o = 0, y o = 0, t = 0. Part B m m. range

Solution to Problem. Part A. x m. x o = 0, y o = 0, t = 0. Part B m m. range PRACTICE PROBLEMS: Final Exam, December 4 Monday, GYM, 6 to 9 PM Problem A Physics Professor did a daredevil stunt in his spare time. In the figure below he tries to cross a river from a 53 ramp at an

More information

State Space Representation

State Space Representation ME Homework #6 State Space Representation Last Updated September 6 6. From the homework problems on the following pages 5. 5. 5.6 5.7. 5.6 Chapter 5 Homework Problems 5.6. Simulation of Linear and Nonlinear

More information

. d. v A v B. e. none of these.

. d. v A v B. e. none of these. General Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibrium Oct. 28, 2009 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show the formulas you use, the essential

More information

Adaptive Hierarchical Decoupling Sliding-Mode Control of a Electric Unicycle. T. C. Kuo 1/30

Adaptive Hierarchical Decoupling Sliding-Mode Control of a Electric Unicycle. T. C. Kuo 1/30 Adaptive Hierarchical Decoupling Sliding-Mode Control of a Electric Unicycle T. C. Kuo 1/30 Outline Introduction System Modeling Adaptive Hierarchical Decoupling Sliding-Mode Control Simulation Results

More information

Chapter 2 Crane Mathematic Model

Chapter 2 Crane Mathematic Model Chapter Crane Mathematic Model Abstract This chapter examines the dynamics of overhead cranes. Concerning single-pendulum-type overhead cranes, their equations of motion are first presented by means of

More information

Physics 12 January 2000 Provincial Examination

Physics 12 January 2000 Provincial Examination Physics 12 January 2000 Provincial Examination ANSWER KEY / SCORING GUIDE Organizers CURRICULUM: Sub-Organizers 1. Vector Kinematics in Two Dimensions A, B and Dynamics and Vector Dynamics C, D 2. Work,

More information

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations:

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations: TOPIC E: OSCILLATIONS EXAMPLES SPRING 2019 Mathematics of Oscillating Systems Q1. Find general solutions for the following differential equations: Undamped Free Vibration Q2. A 4 g mass is suspended by

More information

Physics 4A Solutions to Chapter 10 Homework

Physics 4A Solutions to Chapter 10 Homework Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 0-4 (a) positive (b) zero (c) negative (d) negative Q 0-6

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

Cooperative Control and Mobile Sensor Networks

Cooperative Control and Mobile Sensor Networks Cooperative Control and Mobile Sensor Networks Cooperative Control, Part I, D-F Naomi Ehrich Leonard Mechanical and Aerospace Engineering Princeton University and Electrical Systems and Automation University

More information

1.053J/2.003J Dynamics and Control I Fall Final Exam 18 th December, 2007

1.053J/2.003J Dynamics and Control I Fall Final Exam 18 th December, 2007 1.053J/2.003J Dynamics and Control I Fall 2007 Final Exam 18 th December, 2007 Important Notes: 1. You are allowed to use three letter-size sheets (two-sides each) of notes. 2. There are five (5) problems

More information

Exam 2 Solutions. PHY2048 Spring 2017

Exam 2 Solutions. PHY2048 Spring 2017 Exam Solutions. The figure shows an overhead view of three horizontal forces acting on a cargo canister that was initially stationary but that now moves across a frictionless floor. The force magnitudes

More information

PHYSICS 107 FINAL EXAMINATION

PHYSICS 107 FINAL EXAMINATION PRINTED NAME: Problem Score 1 /20 2 /20 3 /20 4 /20 5 /20 6 /20 Total /120 PHYSICS 107 FINAL EXAMINATION January 24, 2001 8:30 11:30 am When you are told to begin, check that this examination booklet contains

More information

Vibrations Qualifying Exam Study Material

Vibrations Qualifying Exam Study Material Vibrations Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering vibrations topics. These topics are listed below for clarification. Not all instructors

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

2.003 Quiz #1 Review

2.003 Quiz #1 Review 2.003J Spring 2011: Dynamics and Control I Quiz #1 Review Massachusetts Institute of Technology March 5th, 2011 Department of Mechanical Engineering March 6th, 2011 1 Reference Frames 2.003 Quiz #1 Review

More information

( ) Physics 201, Final Exam, Fall 2006 PRACTICE EXAMINATION Answer Key. The next three problems refer to the following situation:

( ) Physics 201, Final Exam, Fall 2006 PRACTICE EXAMINATION Answer Key. The next three problems refer to the following situation: Physics 201, Final Exam, Fall 2006 PRACTICE EXAMINATION Answer Key The next three problems refer to the following situation: Two masses, m 1 and m 2, m 1 > m 2, are suspended by a massless rope over a

More information

Classical Mechanics Comprehensive Exam Solution

Classical Mechanics Comprehensive Exam Solution Classical Mechanics Comprehensive Exam Solution January 31, 011, 1:00 pm 5:pm Solve the following six problems. In the following problems, e x, e y, and e z are unit vectors in the x, y, and z directions,

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Profs. D. Reitze, H. Chan PHYSICS DEPARTMENT PHY 2053 Exam 2 April 2, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2. Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

More information

External disturbance rejection in IDA-PBC controller for underactuated mechanical systems : from theory to real time experiments

External disturbance rejection in IDA-PBC controller for underactuated mechanical systems : from theory to real time experiments External disturbance rejection in IDA-PBC controller for underactuated mechanical systems : from theory to real time experiments N.Khraief Haddad, A.Chemori 2 and S.Belghith 3 Abstract Proving the robustness,

More information

Rotational motion problems

Rotational motion problems Rotational motion problems. (Massive pulley) Masses m and m 2 are connected by a string that runs over a pulley of radius R and moment of inertia I. Find the acceleration of the two masses, as well as

More information

Rotation review packet. Name:

Rotation review packet. Name: Rotation review packet. Name:. A pulley of mass m 1 =M and radius R is mounted on frictionless bearings about a fixed axis through O. A block of equal mass m =M, suspended by a cord wrapped around the

More information

Q1. Which of the following is the correct combination of dimensions for energy?

Q1. Which of the following is the correct combination of dimensions for energy? Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers

More information

DO NOT separate the pages of the exam containing the problems. B01: Chow B02: Fenrich B03: Schiavone. B04: Lavoie B05: Wheelock B06: Tang

DO NOT separate the pages of the exam containing the problems. B01: Chow B02: Fenrich B03: Schiavone. B04: Lavoie B05: Wheelock B06: Tang Faculty of Engineering and Department of Physics ENPH 131 Final Examination Saturday, April 21, 2012; 2:00 pm 4:30 pm Universiade Pavilion Section EB01: Rows 1, 3, 5 (seats 1-16) Section EB02: Rows 5 (seats

More information

Deriving 1 DOF Equations of Motion Worked-Out Examples. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 3 Fall 2017

Deriving 1 DOF Equations of Motion Worked-Out Examples. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 3 Fall 2017 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 3 Fall 2017 Masses with Rectilinear Motion Follow Palm, p.63, 67-72 and Sect.2.6. Refine your skill in drawing correct free

More information

Impulse and Momentum continued

Impulse and Momentum continued Chapter 7 Impulse and Momentum continued 7.2 The Principle of Conservation of Linear Momentum External forces Forces exerted on the objects by agents external to the system. Net force changes the velocity

More information

Lagrange s Equations of Motion and the Generalized Inertia

Lagrange s Equations of Motion and the Generalized Inertia Lagrange s Equations of Motion and the Generalized Inertia The Generalized Inertia Consider the kinetic energy for a n degree of freedom mechanical system with coordinates q, q 2,... q n. If the system

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system

More information

Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn.

Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn. Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page

More information

Quiz #7. T f k m A gsinθ = m A a N m A gcosθ = 0 f k = µ k N m B g T = m B a

Quiz #7. T f k m A gsinθ = m A a N m A gcosθ = 0 f k = µ k N m B g T = m B a Quiz #7 Vector The method used in 2 Dimensions is exactly the same in 3D; just keep one more components (Pythagorean theorem also still holds in higher dimensions as long as the space is Euclidean). 1)

More information

Global Stabilisation of Underactuated Mechanical Systems via PID Passivity-Based Control

Global Stabilisation of Underactuated Mechanical Systems via PID Passivity-Based Control Global Stabilisation of Underactuated Mechanical Systems via PID Passivity-Based Control arxiv:161.6999v1 math.ds 22 Oct 216 Jose Guadalupe Romero, Alejandro Donaire and Romeo Ortega Abstract In this note

More information

Chapter 9- Static Equilibrium

Chapter 9- Static Equilibrium Chapter 9- Static Equilibrium Changes in Office-hours The following changes will take place until the end of the semester Office-hours: - Monday, 12:00-13:00h - Wednesday, 14:00-15:00h - Friday, 13:00-14:00h

More information

PHYS 1114, Lecture 33, April 10 Contents:

PHYS 1114, Lecture 33, April 10 Contents: PHYS 1114, Lecture 33, April 10 Contents: 1 This class is o cially cancelled, and has been replaced by the common exam Tuesday, April 11, 5:30 PM. A review and Q&A session is scheduled instead during class

More information

Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow)

Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Name (printed) Lab Section(+2 pts) Name (signed as on ID) Multiple choice Section. Circle the correct answer. No work need be shown and no partial

More information

Physics 351, Spring 2017, Homework #3. Due at start of class, Friday, February 3, 2017

Physics 351, Spring 2017, Homework #3. Due at start of class, Friday, February 3, 2017 Physics 351, Spring 2017, Homework #3. Due at start of class, Friday, February 3, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page at

More information

Rigid Body Kinetics :: Virtual Work

Rigid Body Kinetics :: Virtual Work Rigid Body Kinetics :: Virtual Work Work-energy relation for an infinitesimal displacement: du = dt + dv (du :: total work done by all active forces) For interconnected systems, differential change in

More information

PHY218 SPRING 2016 Review for Exam#3: Week 12 Review: Linear Momentum, Collisions, Rotational Motion, and Equilibrium

PHY218 SPRING 2016 Review for Exam#3: Week 12 Review: Linear Momentum, Collisions, Rotational Motion, and Equilibrium PHY218 SPRING 2016 Review for Exam#3: Week 12 Review: Linear Momentum, Collisions, Rotational Motion, and Equilibrium These are selected problems that you are to solve independently or in a team of 2-3

More information

Free-body diagrams. a. Find the acceleration of mass 2. b. Determine the magnitude of the tension in the string.

Free-body diagrams. a. Find the acceleration of mass 2. b. Determine the magnitude of the tension in the string. Free-body diagrams 1. wo blocks of masses m1 = 5.0 kg and m =.0 kg hang on both sides of an incline, connected through an ideal, massless string that goes through an ideal, massless pulley, as shown below.

More information

Kinematics, Dynamics, and Vibrations FE Review Session. Dr. David Herrin March 27, 2012

Kinematics, Dynamics, and Vibrations FE Review Session. Dr. David Herrin March 27, 2012 Kinematics, Dynamics, and Vibrations FE Review Session Dr. David Herrin March 7, 0 Example A 0 g ball is released vertically from a height of 0 m. The ball strikes a horizontal surface and bounces back.

More information

Simple Harmonic Motion Test Tuesday 11/7

Simple Harmonic Motion Test Tuesday 11/7 Simple Harmonic Motion Test Tuesday 11/7 Chapter 11 Vibrations and Waves 1 If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

Towards Power-Based Control Strategies for a Class of Nonlinear Mechanical Systems Rinaldis, Alessandro de; Scherpen, Jacquelien M.A.

Towards Power-Based Control Strategies for a Class of Nonlinear Mechanical Systems Rinaldis, Alessandro de; Scherpen, Jacquelien M.A. University of Groningen Towards Power-Based Control Strategies for a Class of Nonlinear Mechanical Systems Rinaldis, Alessandro de; Scherpen, Jacquelien M.A.; Ortega, Romeo Published in: 3rd IFAC Workshop

More information

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions.

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions. Robotics II March 7, 018 Exercise 1 An automated crane can be seen as a mechanical system with two degrees of freedom that moves along a horizontal rail subject to the actuation force F, and that transports

More information

Fall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Fall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton Fall 007 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity, and Acceleration Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity,

More information

OSCILLATIONS ABOUT EQUILIBRIUM

OSCILLATIONS ABOUT EQUILIBRIUM OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

Interconnection and Damping Assignment Approach for Reliable PM Synchronous Motor Control

Interconnection and Damping Assignment Approach for Reliable PM Synchronous Motor Control Interconnection and Damping Assignment Approach for Reliable PM Synchronous Motor Control Ahmad Akrad, Mickaël Hilairet, Romeo Ortega, Demba Diallo LGEP/SPEE Labs ; CNRS UMR857 ; Supelec ; Univ Pierre

More information

Swinging-Up and Stabilization Control Based on Natural Frequency for Pendulum Systems

Swinging-Up and Stabilization Control Based on Natural Frequency for Pendulum Systems 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -, 9 FrC. Swinging-Up and Stabilization Control Based on Natural Frequency for Pendulum Systems Noriko Matsuda, Masaki Izutsu,

More information

Design of Fuzzy PD-Controlled Overhead Crane System with Anti-Swing Compensation

Design of Fuzzy PD-Controlled Overhead Crane System with Anti-Swing Compensation Engineering, 2011, 3, 755-762 doi:10.4236/eng.2011.37091 Published Online July 2011 (http://www.scirp.org/journal/eng) Design of Fuzzy PD-Controlled Overhead Crane System with Anti-Swing Compensation Abstract

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization)

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization) Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization) Anton Shiriaev 1,2, Leonid Freidovich 1, Sergey Gusev 3 1 Department

More information

Bipedal Walking Gait with Variable Stiffness Knees

Bipedal Walking Gait with Variable Stiffness Knees 24 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) August 2-5, 24. São Paulo, Brazil Bipedal Walking Gait with Variable Stiffness Knees Wesley Roozing and

More information

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is

More information

King Fahd University of Petroleum and Minerals Department of Physics. Final Exam 041. Answer key - First choice is the correct answer

King Fahd University of Petroleum and Minerals Department of Physics. Final Exam 041. Answer key - First choice is the correct answer King Fahd University of Petroleum and Minerals Department of Physics MSK Final Exam 041 Answer key - First choice is the correct answer Q1 A 20 kg uniform ladder is leaning against a frictionless wall

More information

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 TEAL Fall Term 004 In-Class Problems 30-3: Moment of Inertia, Torque, and Pendulum: Solutions Problem 30 Moment of Inertia of a

More information

Name (please print): UW ID# score last first

Name (please print): UW ID# score last first Name (please print): UW ID# score last first Question I. (20 pts) Projectile motion A ball of mass 0.3 kg is thrown at an angle of 30 o above the horizontal. Ignore air resistance. It hits the ground 100

More information

PHYSICS 107 FINAL EXAMINATION

PHYSICS 107 FINAL EXAMINATION PRINTED NAME: SOLUTIONS Problem Score 1 /20 2 /20 3 /20 4 /20 5 /20 6 /20 Total /120 PHYSICS 107 FINAL EXAMINATION January 24, 2001 8:30 11:30 am When you are told to begin, check that this examination

More information