Physics 218: FINAL EXAM April 29 th, 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Physics 218: FINAL EXAM April 29 th, 2016"

Transcription

1 Physics 218: FINAL EXAM April 29 th, 2016 Please read the instructions below, Do not open the exam until told to do so. Rules of the Exam: 1. You have 120 minutes to complete the exam. 2. Formulae are provided on a separate colored sheet. You may NOT use any other formula sheet. 3. You may use SAT approved handheld calculator. However, you MUST show your work. If you do not show HOW you integrated or HOW you took the derivative or HOW you solved a quadratic or system of equations, etc you will NOT get credit. 4. Cell phone and any other internet connected device use during the exam is strictly prohibited. 5. Be sure to put a box around your final answers and clearly indicate your work. 6. Partial credit can be given ONLY if your work is clearly explained and labeled. No credit will be given unless we can determine which answer you are choosing, or which answer you wish us to consider. If the answer marked does not follow from the work shown, even if the answer is correct, you will not get credit for the answer. 7. You do not need to show work for the multiple choice questions. 8. Have your TAMU ID ready when submitting your exam to the proctor. 9. Check to see that there are a total of 9 problems (5 multiple choice questions count as one). 10. If you need extra space, use the reverse side of the last page of the exam. Make sure to indicate on the main page of the problem that you are continuing on the last page. You may ask for extra space (scratch paper). 11. DO NOT REMOVE ANY PAGES FROM THIS BOOKLET. Sign below to indicate your understanding of the above rules. Name (in CAPS) : Section Number: UIN: Instructor s Name: Your Signature: 1 of 12

2 Short Problems (40) Problem 2 (20) Problem 3 (20) Problem 4 (20) Problem 5 (20) Problem 6 (20) Problem 7 (20) Problem 8 (20) Problem 9 (20) Total Score (200) Short Problems (Circle the correct option) [NO Partial Credit] [40 Points] A) [8 points] A point-like particle is moving in one dimension along the x-axis. Its position is shown in the figure below as a function of time. What is the correct sign for the acceleration and velocity of the point particle at time t=to? (the arrows on the axes indicate the positive direction) i) a>0, v<0 ii) a<0, v>0 iii) a>0, v>0 iv) a<0, v<0 v) a=0,v>0 vi) a=0,v<0 vii) a>0, v=0 viii) a<0, v=0 2 of 12

3 B) [8 points] A simple pendulum consists of a point mass suspended by a massless, unstretchable string. If the mass is doubled while the length of the string remains the same, the period of the pendulum i) becomes 4 times greater ii) becomes twice as great iii) remains unchanged iv) becomes greater by a factor of 2 v) becomes 4 times smaller vi) becomes twice smaller vii) becomes smaller by a factor of 2 C) [8 points] A planet is orbiting a star. The planet s orbit is elliptical, such that the aphelion is twice as far away from the center of the star than the perihelion. The planet s speed is 40,000 m/s at the perihelion. What is its speed at the aphelion? i) 40,000 m/s ii) 20,000 m/s iii) 80,000 m/s iv) the answer depends on the planet s mass v) the answer depends on the planet-star distance at perihelion D) [8 points] An elevator is being lowered at a constant speed by a steel cable attached to an electric motor. Which statement is correct? i) The cable does positive work on the elevator and the force of gravity does positive work on the elevator. ii) The cable does negative work on the elevator and the force of gravity does negative work on the elevator. iii) The cable does negative work on the elevator and the force of gravity does positive work on the elevator. iv) The cable does positive work on the elevator and the gravity does negative work on the elevator. E) [8 points] A block of mass m slides to the right on a frictionless horizontal floor with speed V and collides inelastically head-on with a block of mass M, which is initially at rest. After the collision the two blocks move together with speed V/4. How does M compare to m? i) m = 2M ii) 2m = M iii) m =M iv) m=4m v) 4m = M vi) 3m = M vii) m = 3M 3 of 12

4 Problem 2 (20 points) An archer successfully hits a small target 50.0 m away (horizontal distance) at a height of 3.0 m above the ground. The arrow leaves the bow at a height of 1.7 m above the ground. The arrow s initial velocity makes 15 o angle with the ground. There is no wind and air resistance is negligible. a) What is the initial speed of the arrow? b) Now assume that the arrow is released from the ground (zero height). What is the maximum distance this arrow can cover in the horizontal direction before it hits the ground if it is released from the bow with the same initial speed as in part (a) and at an angle that provides for the longest (in horizontal direction) shot? 4 of 12

5 Problem 3 (20 points) A wrecking ball of mass M=500.0 kg is hung from a crane by a massless, unstretchable cord of length L=4.50 m. The ball is initially brought back such that the cord makes an angle θ=20 o with respect to the vertical and released from rest (see the figure below). a) What is the speed of the wrecking ball at the lowest point of its motion? b) What is the tension in the cord at this point? 5 of 12

6 Problem 4 (20 points) Two blocks on a frictionless horizontal surface with masses m1 and m2 are connected by a massless unstretchable string. The string can withstand a maximum tension force of Tmax. a) What is the maximum force F that can be exerted at an angle θ with respect to the horizontal on the block m1 without breaking the string? (Express your answer in terms of the known values θ, m1, m2, g, Tmax. Not all may be necessary.) b) Assume now that the force F is variable and is given as a function of time by the equation F(t) = A t, where A is a known constant. At t=0 s the blocks are at rest. What is the displacement of the block m2 at the time τ? (Express your answer in terms of the known values θ, m1, m2, g, Tmax, A, τ. Not all may be necessary. F(τ) < Tmax) 6 of 12

7 Problem 5 (20 points) A body of mass m slides at constant speed down an inclined plane that makes an angle θ with the horizontal. a) What is the coefficient of kinetic friction between the surface of the inclined plane and the body? (Express your answer in terms of the known values m, θ, g. Not all may be necessary.) b) The angle between the inclined plane and the horizontal is now increased to β (β>θ). What is the speed of the mass m at the bottom of the inclined plane after it slides down from height h starting from rest? The coefficient of kinetic friction between the surface of the inclined plane and the body is still the same as in part (a). (Express your answer in terms of the known values m, θ, β, h, g. Not all may be necessary.) 7 of 12

8 Problem 6 (20 points) The nucleus of an oxygen atom spontaneously decays from rest into two particles: an alpha particle (Mα = 6.64x10-27 kg) and the nucleus of a carbon atom (MC = 1.99x10-26 kg). The total kinetic energy of the system after the decay is 6.40x10-14 J. a) What is the speed of the center of mass of the system after the decay? b) What is the speed of the alpha particle after the decay? 8 of 12

9 Problem 7 (20 points) A massless, perfectly elastic, horizontal spring with a spring constant of 14,000 N/m is attached to the wall as shown. The other end of the spring is attached to a glider of mass 3.00 kg that is placed on top of a frictionless and horizontal air track. The system is initially at rest. At t=0s the glider is kicked so that it gains an instantaneous velocity Vo = 5.00 m/s in the -x direction. a) What is the maximum displacement of the glider from the equilibrium point? b) What is the displacement of the glider with respect to the equilibrium as a function of time? (Make sure to explicitly calculate amplitude, angular frequency and the phase angle.) 9 of 12

10 Problem 8 (20 points) A planet with radius 12,000 km makes one revolution on its axis in 20 hours. Objects located at the equator on the surface of this planet are in a state of apparent weightlessness (this means that they are orbiting the planet at 0 height without experiencing any normal force from the surface and remain motionless with respect to the planet s surface). a) What is the speed of these objects? b) What is the mass of this planet? 10 of 12

11 Problem 9 (20 points) A thin-walled hollow cylinder of radius R1 = 0.15 m and mass m1 = 0.35 kg is rotating with an angular velocity ω=2.00 rad/s. It comes into a contact with a solid cylinder of radius R2=0.25 m and mass of m2 = 0.45 kg that is resting on a frictionless surface. The first cylinder is dropped onto the second with their symmetry axes aligned (see the figure). Due to the force of friction between the cylinders they eventually rotate together without slipping. a) What is the final angular velocity of the two-cylinder system? b) What energy was released as heat? 11 of 12

12 Extra Space make sure you indicate on the main page of the problem that you are continuing here 12 of 12

Physics 218 Exam II. Spring 2017 (all sections) March 20 th, 2017

Physics 218 Exam II. Spring 2017 (all sections) March 20 th, 2017 Physics 218 Exam II Spring 2017 (all sections) March 20 th, 2017 Rules of the exam: Please fill out the information and read the instructions below, but do not open the exam until told to do so. 1. You

More information

Physics 218 Exam II. Fall 2017 (all sections) October 25 th, 2017

Physics 218 Exam II. Fall 2017 (all sections) October 25 th, 2017 Physics 218 Exam II Fall 2017 (all sections) October 25 th, 2017 Please fill out the information and read the instructions below, but do not open the exam until told to do so. Rules of the exam: 1. You

More information

Physics 218 Exam III

Physics 218 Exam III Physics 218 Exam III Fall 2017 (all sections) November 15 th, 2017 Please fill out the information and read the instructions below, but do not open the exam until told to do so. Rules of the exam: 1. You

More information

Phys 270 Final Exam. Figure 1: Question 1

Phys 270 Final Exam. Figure 1: Question 1 Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2008

AAPT UNITED STATES PHYSICS TEAM AIP 2008 8 F = ma Exam AAPT UNITED STATES PHYSICS TEAM AIP 8 8 F = ma Contest 5 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = N/kg throughout this contest. You may

More information

PES Physics 1 Practice Questions Exam 2. Name: Score: /...

PES Physics 1 Practice Questions Exam 2. Name: Score: /... Practice Questions Exam /page PES 0 003 - Physics Practice Questions Exam Name: Score: /... Instructions Time allowed for this is exam is hour 5 minutes... multiple choice (... points)... written problems

More information

Physics 218: Midterm#1

Physics 218: Midterm#1 Physics 218: Midterm#1 February 25 th, 2015 Please read the instructions below, but do not open the exam until told to do so. Rules of the Exam: 1. You have 75 minutes to complete the exam. 2. Formulae

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2012

AAPT UNITED STATES PHYSICS TEAM AIP 2012 2012 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2012 2012 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 10 N/kg throughout this

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 4.8-kg block attached to a spring executes simple harmonic motion on a frictionless

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 3, 120 minutes December 12, 2009

Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 3, 120 minutes December 12, 2009 77777 77777 Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 3, 120 minutes December 12, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized

More information

P211 Spring 2004 Form A

P211 Spring 2004 Form A 1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2011

AAPT UNITED STATES PHYSICS TEAM AIP 2011 2011 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2011 2011 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 10 N/kg throughout this

More information

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

UNIVERSITY OF MANITOBA. All questions are of equal value. No marks are subtracted for wrong answers.

UNIVERSITY OF MANITOBA. All questions are of equal value. No marks are subtracted for wrong answers. (3:30 pm 6:30 pm) PAGE NO.: 1 of 7 All questions are of equal value. No marks are subtracted for wrong answers. Record all answers on the computer score sheet provided. USE PENCIL ONLY! Black pen will

More information

PHYSICS 218 FINAL EXAM Friday, December 11, 2009

PHYSICS 218 FINAL EXAM Friday, December 11, 2009 PHYSICS 218 FINAL EXAM Friday, December 11, 2009 NAME: SECTION: 525 526 527 528 Note: 525 Recitation Wed 9:10-10:00 526 Recitation Wed 11:30-12:20 527 Recitation Wed 1:50-2:40 528 Recitation Mon 11:30-12:20

More information

INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM

INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM Please take a few minutes to read through all problems before starting the exam. Ask the proctor if you are uncertain about the meaning of any

More information

PHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 1-11, 13-14

PHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 1-11, 13-14 Final Review: Chapters 1-11, 13-14 These are selected problems that you are to solve independently or in a team of 2-3 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This

More information

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?

More information

Concept Question: Normal Force

Concept Question: Normal Force Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k Name: Class: Date: Exam 2--PHYS 101-F08 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. You put your book on the seat next to you. When the bus stops,

More information

Page 1. Chapters 2, 3 (linear) 9 (rotational) Final Exam: Wednesday, May 11, 10:05 am - 12:05 pm, BASCOM 272

Page 1. Chapters 2, 3 (linear) 9 (rotational) Final Exam: Wednesday, May 11, 10:05 am - 12:05 pm, BASCOM 272 Final Exam: Wednesday, May 11, 10:05 am - 12:05 pm, BASCOM 272 The exam will cover chapters 1 14 The exam will have about 30 multiple choice questions Consultations hours the same as before. Another review

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is

More information

= y(x, t) =A cos (!t + kx)

= y(x, t) =A cos (!t + kx) A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8

More information

TO GET CREDIT IN PROBLEMS 2 5 YOU MUST SHOW GOOD WORK.

TO GET CREDIT IN PROBLEMS 2 5 YOU MUST SHOW GOOD WORK. Signature: I.D. number: Name: 1 You must do the first problem which consists of five multiple choice questions. Then you must do three of the four long problems numbered 2-5. Clearly cross out the page

More information

Physics 106 Common Exam 2: March 5, 2004

Physics 106 Common Exam 2: March 5, 2004 Physics 106 Common Exam 2: March 5, 2004 Signature Name (Print): 4 Digit ID: Section: Instructions: nswer all questions. Questions 1 through 10 are multiple choice questions worth 5 points each. You may

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 30-35,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor

More information

CHAPTER # 2 VECTORS THEORETICAL QUESTIONS PAST PAPERS

CHAPTER # 2 VECTORS THEORETICAL QUESTIONS PAST PAPERS CHAPTER # 2 VECTORS THEORETICAL QUESTIONS PAST PAPERS 1. What are vectors and scalar quantities? Give one example of each. (1993, 2012) 2. What are the different methods of adding two vectors? (1988) 3.

More information

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved: 8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

1 of 6 10/21/2009 6:33 PM

1 of 6 10/21/2009 6:33 PM 1 of 6 10/21/2009 6:33 PM Chapter 10 Homework Due: 9:00am on Thursday, October 22, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment

More information

4) Vector = and vector = What is vector = +? A) B) C) D) E)

4) Vector = and vector = What is vector = +? A) B) C) D) E) 1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): N. Sullivan PHYSICS DEPARTMENT PHY 2004 Final Exam December 13, 2010 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III 1. A solid metal ball and a hollow plastic ball of the same external radius are released from rest in a large vacuum chamber. When each has fallen 1m, they both have the same (A) inertia (B) speed (C)

More information

Equilibrium & Elasticity

Equilibrium & Elasticity PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Write your seat number on the answer sheet

Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Write your seat number on the answer sheet Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Write your seat number on the answer sheet Instructions Turn off your cell phone and put it away. Calculators may not be shared.

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT CIRCULAR MOTION MULTIPLE CHOICE / 30 OPEN ENDED / 65 TOTAL / 95 NAME: 1. An object travels along a path at constant speed. There is a constant

More information

Quiz Number 4 PHYSICS April 17, 2009

Quiz Number 4 PHYSICS April 17, 2009 Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given

More information

Hint 1. The direction of acceleration can be determined from Newton's second law

Hint 1. The direction of acceleration can be determined from Newton's second law Chapter 5 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 5 Due: 11:59pm on Sunday, October 2, 2016 To understand how points are awarded, read the Grading Policy for this

More information

Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities

Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities 1. The tires on a new compact car have a diameter of 2.0 ft and are warranted for 60 000 miles. (a) Determine the

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2016

AAPT UNITED STATES PHYSICS TEAM AIP 2016 216 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 216 216 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 1 N/kg throughout this contest.

More information

First Name: Last Name: Section: 22 December, :25 2:25 PM Physics 207 FINAL EXAM

First Name: Last Name: Section: 22 December, :25 2:25 PM Physics 207 FINAL EXAM 1 First Name: Last Name: Section: 22 December, 2009 12:25 2:25 PM Physics 207 FINAL EXAM Please print your name and section number (or TA s name) clearly on the first page. Show all your work in the space

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

Tutorial 1. Phys 201 Examples

Tutorial 1. Phys 201 Examples Tutorial 1 Phys 201 Examples 0 TUTORIAL 1. PHYS 201 EXAMPLES 1 Examples PHYS 201 - General Physics Eastern Oregon University TUTORIAL 1. PHYS 201 EXAMPLES 2 Chapter 1 Systems of Measurement Example 1.0:

More information

Healy/DiMurro. Vibrations 2016

Healy/DiMurro. Vibrations 2016 Name Vibrations 2016 Healy/DiMurro 1. In the diagram below, an ideal pendulum released from point A swings freely through point B. 4. As the pendulum swings freely from A to B as shown in the diagram to

More information

Name: AP Physics C: Kinematics Exam Date:

Name: AP Physics C: Kinematics Exam Date: Name: AP Physics C: Kinematics Exam Date: 1. An object slides off a roof 10 meters above the ground with an initial horizontal speed of 5 meters per second as shown above. The time between the object's

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

DEVIL CHAPTER 6 TEST REVIEW

DEVIL CHAPTER 6 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 51 DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 6 TEST REVIEW 1. A cyclist rides around a circular track at a uniform speed. Which of the following correctly gives

More information

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the

More information

Physics 211 Week 10. Statics: Walking the Plank (Solution)

Physics 211 Week 10. Statics: Walking the Plank (Solution) Statics: Walking the Plank (Solution) A uniform horizontal beam 8 m long is attached by a frictionless pivot to a wall. A cable making an angle of 37 o, attached to the beam 5 m from the pivot point, supports

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.0T Fall Term 2004 Problem Set 3: Newton's Laws of Motion, Motion: Force, Mass, and Acceleration, Vectors in Physics Solutions Problem

More information

University of Houston Mathematics Contest: Physics Exam 2017

University of Houston Mathematics Contest: Physics Exam 2017 Unless otherwise specified, please use g as the acceleration due to gravity at the surface of the earth. Vectors x, y, and z are unit vectors along x, y, and z, respectively. Let G be the universal gravitational

More information

Physics x141 Practice Final Exam

Physics x141 Practice Final Exam Physics x141 Practice Final Exam Name: Partial credit will be awarded. However, you must show/explain your work. A correct answer without explanatory material will not receive full credit. Clearly indicate

More information

Physics 1401V October 28, 2016 Prof. James Kakalios Quiz No. 2

Physics 1401V October 28, 2016 Prof. James Kakalios Quiz No. 2 This is a closed book, closed notes, quiz. Only simple (non-programmable, nongraphing) calculators are permitted. Define all symbols and justify all mathematical expressions used. Make sure to state all

More information

Exam 2: Equation Summary

Exam 2: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term 2012 Exam 2: Equation Summary Newton s Second Law: Force, Mass, Acceleration: Newton s Third Law: Center of Mass: Velocity

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Solution Derivations for Capa #12

Solution Derivations for Capa #12 Solution Derivations for Capa #12 1) A hoop of radius 0.200 m and mass 0.460 kg, is suspended by a point on it s perimeter as shown in the figure. If the hoop is allowed to oscillate side to side as a

More information

Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2

Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2 Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2 1. The 50-kg crate is projected along the floor with an initial

More information

Good Vibes: Introduction to Oscillations

Good Vibes: Introduction to Oscillations Chapter 14 Solutions Good Vibes: Introduction to Oscillations Description: Several conceptual and qualitative questions related to main characteristics of simple harmonic motion: amplitude, displacement,

More information

W = 750 m. PHYS 101 SP17 Exam 1 BASE (A) PHYS 101 Exams. The next two questions pertain to the situation described below.

W = 750 m. PHYS 101 SP17 Exam 1 BASE (A) PHYS 101 Exams. The next two questions pertain to the situation described below. PHYS 101 Exams PHYS 101 SP17 Exa BASE (A) The next two questions pertain to the situation described below. A boat is crossing a river with a speed to the water. The river is flowing at a speed W = 750

More information

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box?

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box? Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone

More information

Translational Motion Rotational Motion Equations Sheet

Translational Motion Rotational Motion Equations Sheet PHYSICS 01 Translational Motion Rotational Motion Equations Sheet LINEAR ANGULAR Time t t Displacement x; (x = rθ) θ Velocity v = Δx/Δt; (v = rω) ω = Δθ/Δt Acceleration a = Δv/Δt; (a = rα) α = Δω/Δt (

More information

Study Guide Solutions

Study Guide Solutions Study Guide Solutions Table of Contents Chapter 1 A Physics Toolkit... 3 Vocabulary Review... 3 Section 1.1: Mathematics and Physics... 3 Section 1.2: Measurement... 3 Section 1.3: Graphing Data... 4 Chapter

More information

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N

More information

TO GET CREDIT IN PROBLEMS 2 5 YOU MUST SHOW GOOD WORK.

TO GET CREDIT IN PROBLEMS 2 5 YOU MUST SHOW GOOD WORK. Signature: I.D. number: Name: 1 You must do the first problem which consists of five multiple choice questions. Then you must do three of the four long problems numbered 2-5. Clearly cross out the page

More information

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

Multiple Choice -- TEST III

Multiple Choice -- TEST III Multiple Choice Test III--Classical Mechanics Multiple Choice -- TEST III 1) n atomic particle whose mass is 210 atomic mass units collides with a stationary atomic particle B whose mass is 12 atomic mass

More information

Physics Attitudes, Skills, & Knowledge Survey (PASKS) Form 3

Physics Attitudes, Skills, & Knowledge Survey (PASKS) Form 3 Physics Attitudes, Skills, & Knowledge Survey (PASKS) Form 3 Directions to Students: Do not open this booklet until you are told to do so. Please respond to the following items by marking the best answer

More information

Use the following to answer question 1:

Use the following to answer question 1: Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to

More information

THE TWENTY-SECOND ANNUAL SLAPT PHYSICS CONTEST SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE APRIL 21, 2007 MECHANICS TEST. g = 9.

THE TWENTY-SECOND ANNUAL SLAPT PHYSICS CONTEST SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE APRIL 21, 2007 MECHANICS TEST. g = 9. THE TWENTY-SECOND ANNUAL SLAPT PHYSICS CONTEST SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE APRIL 21, 27 MECHANICS TEST g = 9.8 m/s/s Please answer the following questions on the supplied answer sheet. You

More information

SECOND MIDTERM -- REVIEW PROBLEMS

SECOND MIDTERM -- REVIEW PROBLEMS Physics 10 Spring 009 George A. WIllaims SECOND MIDTERM -- REVIEW PROBLEMS A solution set is available on the course web page in pdf format. A data sheet is provided. No solutions for the following problems:

More information

Friction is always opposite to the direction of motion.

Friction is always opposite to the direction of motion. 6. Forces and Motion-II Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

Mechanics M1 Advanced Subsidiary

Mechanics M1 Advanced Subsidiary Paper Reference(s) 6677 Edexcel GCE Mechanics M1 Advanced Subsidiary Tuesday 6 June 2006 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Lilac or Green) Items

More information

DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS FINAL EXAMINATION June General Instructions

DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS FINAL EXAMINATION June General Instructions Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS 2204 FINAL EXAMINATION June 2012 Value: 80 marks General Instructions This examination consists of

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc.

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc. Q13.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

Written Homework problems. Spring (taken from Giancoli, 4 th edition)

Written Homework problems. Spring (taken from Giancoli, 4 th edition) Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m

More information

A 2.42 kg ball is attached to an unknown spring and allowed to oscillate. The figure shows a graph of the ball's position x as a function of time t.

A 2.42 kg ball is attached to an unknown spring and allowed to oscillate. The figure shows a graph of the ball's position x as a function of time t. Ch 14 Supplemental [ Edit ] Overview Summary View Diagnostics View Print View with Answers Ch 14 Supplemental Due: 6:59pm on Friday, April 28, 2017 To understand how points are awarded, read the Grading

More information

A-level PHYSICS (7408/1)

A-level PHYSICS (7408/1) SPECIMEN MATERIAL A-level PHYSICS (7408/1) Paper 1 Specimen 2014 Morning Time allowed: 2 hours Materials For this paper you must have: a pencil a ruler a calculator a data and formulae booklet. Instructions

More information

Version 001 circular and gravitation holland (2383) 1

Version 001 circular and gravitation holland (2383) 1 Version 00 circular and gravitation holland (383) This print-out should have 9 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. AP B 993 MC

More information

6-1. Conservation law of mechanical energy

6-1. Conservation law of mechanical energy 6-1. Conservation law of mechanical energy 1. Purpose Investigate the mechanical energy conservation law and energy loss, by studying the kinetic and rotational energy of a marble wheel that is moving

More information

Edexcel GCE Mechanics M3 Advanced/Advanced Subsidiary

Edexcel GCE Mechanics M3 Advanced/Advanced Subsidiary Centre No. Candidate No. Paper Reference 6 6 7 9 0 1 Paper Reference(s) 6679/01 Edexcel GCE Mechanics M3 Advanced/Advanced Subsidiary Friday 27 January 2012 Morning Time: 1 hour 30 minutes Surname Signature

More information

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20

More information

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Homeworks VIII and IX both center on Lagrangian mechanics and involve many of the same skills. Therefore,

More information

Practice Problems for Exam 2 Solutions

Practice Problems for Exam 2 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 008 Practice Problems for Exam Solutions Part I Concept Questions: Circle your answer. 1) A spring-loaded toy dart gun

More information

Lecture 18. Newton s Laws

Lecture 18. Newton s Laws Agenda: Review for exam Lecture 18 Assignment: For Tuesday, Read chapter 14 Physics 207: Lecture 18, Pg 1 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of

More information

AP PHYSICS B SUMMER REVIEW PACKET

AP PHYSICS B SUMMER REVIEW PACKET AP PHYSICS B SUMMER REVIEW PACKET 2011-2012 1 Table of Contents Page(s) Table of Contents 1 Objectives and instructions 2 Content Outline 3-4 A. KINEMATICS 5-11 1) STUDENT OBJECTIVES 5 2) CONCEPT DEVELOPMENT

More information