Loop integrals, integration-by-parts and MATAD

Size: px
Start display at page:

Download "Loop integrals, integration-by-parts and MATAD"

Transcription

1 Loop integrals, integration-by-parts and MATAD Matthias Steinhauser TTP, University of Karlsruhe CAPP 009, March/April 009, DESY, Zeuthen Matthias Steinhauser p.

2 Outline I. Integration-by-parts II. MATAD III. Examples Matthias Steinhauser p.

3 I. Integration-by- Parts (IBP) [Many thanks to Robert Harlander for the possibility to recycle some of his transparencies.] Matthias Steinhauser p.3

4 A. Notation F(n,...,n N ) = d d k d d k l ( p + m )n ( p N + m N )n N N number of propagators n i indices l number of loops p i linear combinations of loop momenta k i and external momenta q i Dimensional Regularization d = 4 ǫ scaleless integrals = 0 Matthias Steinhauser p.4

5 B. Example: -loop self energy k + q q = F(n,n ) = d d k ( p + m )n ( p + m )n k p = k, p = k + q special case: m = m = 0: [n = a, n = b] I q (a,b) = iπ d/ ( q ) d/ a b Î(a,b) Î(a,b) = Γ(a + b d/) Γ(d/ a) Γ(d/ b) Γ(a) Γ(b) Γ(d a b) Matthias Steinhauser p.5

6 Example: -loop self energy Î(a,b) = Γ(a + b d/) Γ(d/ a) Γ(d/ b) Γ(a) Γ(b) Γ(d a b) remarks: valid for (almost) all a, b, d expansion in ǫ through zγ(z) = Γ( + z) and Γ( + ǫ) = ǫγ E + ǫ ) E π (γ + 6 (γ E is cancelled by our normalization) +... Matthias Steinhauser p.6

7 Example: -loop self energy k + q q = F(n,n ) = d d k ( p + m )n ( p + m )n k p = k, p = k + q special case: n = 0 [equivalently: q = 0, m = m ] k = F(n)= d d k ( k + m ) n = iπ d/ (m ) d/ nγ(n d/) Γ(n) Matthias Steinhauser p.7

8 Example: -loop self energy k = F(n)= d d k ( k + m ) n = iπ d/ (m ) d/ nγ(n d/) Γ(n) note: massless tadpoles = 0 (scaleless integrals) e.g. = 0 in massless case Matthias Steinhauser p.8

9 C. Products and convolutions of -loop factorization = a=n +n 3 +n +n 5 d/ d d l (l ) n +n 3[(l q) ] n 4 Î(n, n 5 ) d d k (k ) n 5 [(k + l) ] n }{{} (l ) d/ n 5 n Î(n,n 5 ) d d l (l ) a [(l q) ] n 4 (q ) d P ni Î(n + n 3 + n + n 5 d/, n 4 ) Î(n, n 5 ) [Euclidian momenta] Matthias Steinhauser p.9

10 Products and convolutions of -loop () analogously: (for m = 0) convolutions of -loop self-energy diagrams however: genuine -loop: T topology Matthias Steinhauser p.0

11 Products and convolutions of -loop () analogously: (for m = 0) convolutions of -loop self-energy diagrams however: genuine -loop: T topology but: shrinking any line convolution of -loop! Matthias Steinhauser p.0

12 D. IBP relations Dimensional regularization: Integrals are finite Surface terms vanish d d k k µ p µ f(k,p,...) = 0 p µ : loop or external momentum Example: F(n) = d d k ( k +m ) n Consider: 0 = d d k k µ k µ ( k + m ) n Matthias Steinhauser p.

13 D. IBP relations Example: F(n) = d d k ( k +m ) n 0 = d d k k µ k µ ( k + m ) n = d d d k ( k + m ) n + k µ( n)( k µ ) ( k + m ) (n+) = = Matthias Steinhauser p.

14 D. IBP relations Example: F(n) = d d k ( k +m ) n 0 = d d k k µ k µ ( k + m ) n = d d d k ( k + m ) n + k µ( n)( k µ ) ( k + m ) (n+) = d d d n k ( k + m ) n + nm ( k + m ) (n+) = Matthias Steinhauser p.

15 D. IBP relations Example: F(n) = d d k ( k +m ) n 0 = d d k k µ k µ ( k + m ) n = d d d k ( k + m ) n + k µ( n)( k µ ) ( k + m ) (n+) = d d d n k ( k + m ) n + nm ( k + m ) (n+) = (d n)f(n) + nm F(n + ) F(n) = d n + (n )mf(n ) Any F(n),n > can be expressed by F() F(n) = 0 if n 0 F() = master integral Matthias Steinhauser p.

16 D. IBP relations Example: F(n) = d d k ( k +m ) n F(n) = d n + (n )mf(n ) Raising and lowering indices: Define operators ±, ±,...: I ± F(n,...,n I,...) = F(n,...,n I ±,...) F(n) = d n + (n )m F(n) Matthias Steinhauser p.

17 E. Topology T (massless) == act on integrand with d d l d d k [l ] n [k ] n [(k q) ] n 3 [(l q) ] n 4 [(l k) ] n 5 l µ l µ, l µ k µ, l µ q µ, k µ k µ, k µ l µ, k µ q µ, example: l µ l µ = d + l µ l µ l µ l µ [l ] n = n [l ] n Matthias Steinhauser p.

18 Topology T (massless) == d d l d d k [l ] n [k ] n [(k q) ] n 3 [(l q) ] n 4 [(l k) ] n 5 l µ l µ l µ l µ [l ] n = n [l ] n l µ [(l q) ] n = n 4 4 l µ [(l q) ] n = n 4 4 { } [(l q) ] n l l q 4+ [(l q) ] n 4+ { l + [ (l q) l q ] } Matthias Steinhauser p.3

19 Topology T (massless) == d d l d d k [l ] n [k ] n [(k q) ] n 3 [(l q) ] n 4 [(l k) ] n 5 l µ l µ l µ l µ [l ] n = n [l ] n l µ [(l q) ] n = n 4 4 l µ [(l q) ] n = n 4 4 { [(l q) ] n l + 4+ [(l q) ] n 4+ { l + [ (l q) l q ] } [ (l q) l q ] } Matthias Steinhauser p.3

20 Topology T (massless) == d d l d d k [l ] n [k ] n [(k q) ] n 3 [(l q) ] n 4 [(l k) ] n 5 l µ l µ l µ [l ] n = n [l ] n l µ [(l q) ] n = n 4 4 { [(l q) ] n 4+ }{{} 4 + l }{{} + [ (l q) }{{} ]} }{{} l q 4 [ d n n 4 n 5 + n 4 (q )4 + + n 5 ( )5 +] T = 0 Matthias Steinhauser p.4

21 IBP identities for T [ ] d n n 4 n }{{} 5 + n 4(q }{{} )4 + }{{} +n 5( )5 + T = 0 task: combine all IBP identities such that T (n,n,n 3,n 4,n 5 ) simpler integrals, i.e. convolutions of -loop low values of n i Matthias Steinhauser p.5

22 IBP identities for T [ ] d n n 4 n }{{} 5 + n 4(q }{{} )4 + }{{} +n 5( )5 + T = 0 task: combine all IBP identities such that T (n,n,n 3,n 4,n 5 ) simpler integrals, i.e. convolutions of -loop low values of n i Exercise: compute IBP with l µ k µ Matthias Steinhauser p.5

23 IBP identities for T d n + n 4 ( + ( q ) 4 + ) + n 5 ( + ( + )5 + ) = 0 n ( + ( q + 4 ) + ) + n 4 ( + (q )4 + ) + ( ) n = 0 n ( + ( + 5 ) + ) + ( q ) n n 5 ( + ( + )5 + ) = 0 n ( + ( + 5 ) + ) + (q ) n n 5 ( + ( )5 + ) = 0 n ( + ( q + 3 ) + ) + n 3 ( + (q )3 + ) + ( ) n = 0 d n + n 3 ( + (q )3 + ) + n 5 ( + ( )5 + ) = 0 () (3): [ d n 5 n n 4 }{{} n (5 ) + n 4 (5 3 )4 + }{{} ] T = 0 Matthias Steinhauser p.6

24 F. Triangle rule T(n,n,n 3,n 4,n 5 ) = d n 5 n n 4 ] [n (5 ) + + n 4 (5 3 )4 + T (n,n,n 3,n 4,n 5 ) recurrence relation example: n = n = n 3 = n 4 = n 5 = T (,,,, ) = [ T (,,,, 0) T (, 0,,, ) d 4 ] + T (,,,, 0) T (,, 0,, ) = ǫ [ ] 6ζ(3) Matthias Steinhauser p.7

25 Triangle rule indices > apply rec.-rel. repeatedly T (,3,,,) T (,3,,,0) T (,,,,) T (3,,,,0) T (,3,,,0) T (3,,,,) T (4,,,,0) T (,3, 0,,) T (,,,,0) T (4,0,,,) generates many terms needs computer algebra! T (,,0,,) T (3,,,,0) T (3,, 0,,) [n (5 ) + + n 4 (5 3 )4 + ] Matthias Steinhauser p.8

26 Triangle rule observation: sub-loop! e.g. 3-loop: this rec.-relation applies to any triangular d n 5 n n 4 = n (5 ) + + n 4 (5 3 )4 + = ǫ [ ] = ǫ [ ] Matthias Steinhauser p.9

27 Triangle rule exercise Which convolutions of - and -loop integrals does the following integral reduce to? Matthias Steinhauser p.0

28 G. Reduction to MIs modern : Laporta-, Gröbner-, Baikov-,... algorithm old-fashioned (but much more effective): look ( by hand ) for combinations of IBP relations which systematically reduce complicated integrals to simpler ones MINCER: massless -point function;,, 3 loops Grinder: HQET integrals;,, 3 loops MATAD: vaccum bubbles;,, 3 loops [Larin,Tkachov,Vermaseren] [Grozin] [Steinhauser] Matthias Steinhauser p.

29 II. MATAD (MAssive TADpoles) [MATAD3 for FORM3] Matthias Steinhauser p.

30 MATAD: MAssive TADpoles written in FORM (MATAD3 FORM3) vaccum bubbles up to 3 loops propagators: mass M or massless zero external momentum final result up to (incl.) O(ǫ 3 l ) Matthias Steinhauser p.3

31 MATAD: applications moments of Π γ (q ) m c,m b ρ parameter: 3-loop corrections decoupling of α s and m q matching coefficient of eff. Lagrangian (gg H, B X s γ) Γ(H γγ)... Matthias Steinhauser p.4

32 A. Flowchart read FD translate notation traces expansion Wick rotation... reduction MIs simple integrals expansion in ǫ print and save result FD projectors FRs... Input files:.dia file: FORM fold/diagram GLOBAL: overall settings, for interaction, projectors,... TREAT -files declare file for user-defined variables Matthias Steinhauser p.5

33 A. Flowchart read FD translate notation traces *--#[ expansion GLOBAL : Wick rotation... *--#] GLOBAL : *--#[ reduction TREAT : MIs simple integrals.sort *--#] TREAT : expansion in ǫ print and save result FD projectors FRs #define LOWLIMM "-"... #define GAUGE "xi" multiply, deno(3,-)*( Input -d files: (mu,mu) + q(mu)*q(mu)/q.q.dia file: ); FORM fold/diagram GLOBAL: overall settings, for interaction, projectors,... TREAT -files declare file for user-defined variables Matthias Steinhauser p.5

34 B. Notation/Topologies Æ Å Æ Æ½ ƾ Æ Å Å½ ž Matthias Steinhauser p.6

35 masses: M,M,... ( ) em = µ ǫ, M... B. Notation loop momenta: p,p,... external momenta: q,q,... massless scalar denominators: /p.p,/p.p,... massive scalar denominators: sm,sm,...; sm M p internal indices: nu,nu,... external indices: mu,mu,... deno(a,b) = a+bǫ scalar denominator: Den(L,#, momenta,masses,exp, momenta,masses ),#,L) Matthias Steinhauser p.7

36 B. Notation scalar denominator: Den(L,#, momenta,masses,exp, momenta,masses ),#,L) example: Den(L,8,+p5,pM,8,L) p 5 Den(L,8,-p7,pM,M,pM,8,L) M p 7 Den(L,3,-p6,pM,M,pM,exp,+q,pQ,3,L) M ( p 6+q expand in q ) pm,pq: powercount variables; needed for expansion spinor lines: FT, FT,... FT(L,3,+p5,pM,M,pM,3,L) M γ ν p ν 5 FT(L,6,-p3,pM,M,pM,exp,+q,pQ,6,L) M γ ν ( p 3 +q ) ν FT(mu) γ µ Matthias Steinhauser p.7

37 B. Notation gluon propagator: Dg(nu3,nu4,L,6,+p,pM,6,L) gν 3 ν 4 GAUGE p ν 3 p ν 4 p Vgh: ghost-gluon vertex V3g: 3-gluon vertex Vggs, Dsig: implementation of 4-gluon vertex other vertices: use TREAT0 Matthias Steinhauser p.7

38 B. Notation colour diagram: fqcd... fundamental, external: i,i,... fundamental, internal: j,j,... adjoint, external: a(),a(),... adjoint, internal: b(),b(),... d (i,i) δ i,i GM(a(),i,i) λ a i,i prop(a(),a())) δ a,a Matthias Steinhauser p.7

39 More notation/convention imaginary unit i: M p W.R. M +p all vertices: i (...) all propagators: i (...) don t care about i of internal lines note: i ( i d d ) l=,,3 W.R. k j i ( d d ) l=,,3 k j,e overall i (independent of l) is omitted γ E multiply with (e γ Eǫ ) l γ E disappears from final result normalization of the integrals: dk k e.g.: iπ d/ = e γeǫ em (M ( n) Γ(n d/) ) Γ(n) Matthias Steinhauser p.8

40 ms/software.html. download matad3.tar.gz. mkdir matad3; cd matad3 3. gunzip matad3.tar.gz 4. tar -xvf matad3.tar 5. adapt path to form3 in startform3 Matthias Steinhauser p.9

41 C. Examples -loop tadpole *--#[ dl : sm ; #define INT "tadl" #define MASS "M" *--#] dl : *--#[ expdl : multiply, em*pmˆ4; #call denoexp{m} #include matad.info # time *--#] expdl : Matthias Steinhauser p.30

42 C. Examples -loop tadpole > cd calc3 > startform3 -S form.set -d CLASS=c misc -d PROBLEM=test -d LOOPS= -d DIAFILE=test.dia -d RESDIR=results -d DIAGRAM=dl generic/maindia.frm Matthias Steinhauser p.30

43 C. Examples -loop tadpole dl = + epˆ- * ( - Mˆ*eM ) + ep * ( - /*Mˆ*eM*z - Mˆ*eM ) > cd calc3 + epˆ * ( - /*Mˆ*eM*z + /3*Mˆ*eM*z3 - Mˆ*eM ) > startform3 -S form.set -d CLASS=c misc -d PROBLEM=test - Mˆ*eM; -d LOOPS= -d DIAFILE=test.dia -d RESDIR=results -d DIAGRAM=dl generic/maindia.frm Matthias Steinhauser p.30

44 C. Examples () -loop expanded in external momentum *--#[ dl : Den(L,,p,pM,M,pM,,L) * Den(L,,p,pM,M,pM,exp,q,pQ,,L) ; q #define INT "tadl" #define MASS "M" *--#] dl : Matthias Steinhauser p.3

45 C. Examples () -loop expanded in external momentum q > cd calc3 > startform3 -S form.set -d CLASS=c misc -d PROBLEM=test -d LOOPS= -d DIAFILE=test.dia -d RESDIR=results -d DIAGRAM=dl generic/maindia.frm Matthias Steinhauser p.3

46 C. Examples () -loop expanded in external momentum q Q: Euclid. momentum dl > = cd calc3 + epˆ- * ( em ) > startform3 -S form.set -d CLASS=c misc -d PROBLEM=test + ep -d * ( LOOPS= /*em*z -d+ /60*Q.Qˆ*Mˆ-4*eM DIAFILE=test.dia ) -d RESDIR=results -d DIAGRAM=dl generic/maindia.frm + epˆ * ( - /3*eM*z3 - /*Q.Q*Mˆ-*eM*z + /0*Q.Qˆ* Mˆ-4*eM*z ) - /6*Q.Q*Mˆ-*eM + /60*Q.Qˆ*Mˆ-4*eM; Matthias Steinhauser p.3

47 D. (MIs) Symbols in MATAD D6 = 6ζ 3 7ζ 4 4ζ ln + 3 ln 4 «+ 6Li 4 4» π «Cl 3 D5 = 6ζ ζ » π «X Cl 6 3 m>n>0 D4 = 6ζ 3 77» π «ζ 4 6 Cl 3 D3 = 6ζ 3 5» π «ζ 4 6 Cl 4 3 DM = 6ζ 3» π «ζ 4 4 Cl 3 DN = 6ζ 3 4ζ ln + ln 4 «ζ 4 + 6Li 4 3 B4 = 4ζ ln + ln 4 3 «ζ 4 + 6Li 4 3 E3 = 39 S = 4 3 OepS = 763 Tep = Cl π 3 3 π 3 ln 3 «8 9π 3 ln 3 6 π 3 ln 3 8 7π3 3 7 ( ) m cos(πn/3) m 3 n ζ + ζ π 3Cl «6 3Im 4Li 3 e iπ/ π ζ 5 ζ ζ π «Cl 7 3Im e iπ/6 3 A π ζ + ζ π 3Cl 3 «6 3Im 4Li 3 e iπ/6 3 3 A5 3 A5 Matthias Steinhauser p.3

48 Literature M. Steinhauser, MATAD: A program package for the computation of massive tadpoles, Comput. Phys. Commun. 34 (00) 335 [arxiv:hep-ph/000909]. ms/software.html V. A. Smirnov, Feynman integral calculus, Berlin, Germany: Springer (006) 83 p S. A. Larin, F. V. Tkachov and J. A. M. Vermaseren, The Form Version Of Mincer, S. G. Gorishnii, S. A. Larin, L. R. Surguladze and F. V. Tkachov, MINCER: Program for Multiloop Calculations in Quantum Field Theory for the Schoonschip System, Comput. Phys. Commun. 55 (989) 38. K. G. Chetyrkin and F. V. Tkachov, Integration By Parts: The Algorithm To Calculate Beta Functions In 4 Loops, Nucl. Phys. B 9 (98) 59. D. J. Broadhurst, Three Loop On-Shell Charge Renormalization Without Integration: Lambda-Ms (QED) To Four Loops, Z. Phys. C 54, 599 (99). L. V. Avdeev, Recurrence Relations for Three-Loop Prototypes of Bubble Diagrams with a Mass, Comput. Phys. Commun. 98 (996) 5 [arxiv:hep-ph/9544]. Matthias Steinhauser p.33

49 III. Examples Matthias Steinhauser p.34

50 A. Scalar 3-loop integral see: problems/c misc/test Matthias Steinhauser p.35

51 B. Photon polarization fucntion ( q ) g µν + q µ q ν Π(q ) = i dxe iqx 0 Tj µ (x)j ν(0) 0 = Π (0) (q ) + α s 4π Π() (q ) + = +... ( αs ) Π () (q ) 4π Projector: q Π(q ) = d ( g µν + q µq ν q ) Π µν (q ) see: problems/c pi/pi Matthias Steinhauser p.36

52 Exercises I. Compute the ǫ expansion for the one-loop tadpole with index n =,,3, 4,... using (a) the explicit analytic result, (b) the recurrence relation.. Derive the triangle rule for the two-loop integral of type T where each line has a different mass. 3. (a) Derive the recurrence relations for the massless two-loop integral of type T. (b) Program the triangle rule in order to compute the ǫ expansion of the integral T for arbitrary indices up to (including) terms of order ǫ. 4. (a) Derive the recurrence relations for the two-loop tadpole with massive and massless lines. (b) Compare with explicit analytic result. Matthias Steinhauser p.37

53 Exercises II. Compute (a) one-loop tadpole, (b) two-loop tadpole with massive and massless line (c) three-loop tadpole with 4 lines where each of them connects vertex with vertex ; massive and massless lines, with MATAD for various choices of the indices. Compare with the analytic results.. Compute three-loop vacuum integrals (with six lines, tad3l ) with various massive/massless combinations. Which constant appears in the final result? For which choice of indices is the result finite? 3. Check that the sum of the (two) singlet diagrams contributing to Π(q ) at three loops is zero. Why? 4. Compute Π(q ) for arbitrary gauge parameter ξ and check that ξ drops out in the sum of the bare diagrams. 5. Renormalize Π(q ) and compare with the result in the literature. 6. Compute the axial-vector, scalar and pseudo-scalar correlator. Matthias Steinhauser p.38

arxiv:hep-ph/ v1 18 Nov 1996

arxiv:hep-ph/ v1 18 Nov 1996 TTP96-55 1 MPI/PhT/96-122 hep-ph/9611354 November 1996 arxiv:hep-ph/9611354v1 18 Nov 1996 AUTOMATIC COMPUTATION OF THREE-LOOP TWO-POINT FUNCTIONS IN LARGE MOMENTUM EXPANSION K.G. Chetyrkin a,b, R. Harlander

More information

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) 7618 Karlsruhe, Germany E-mail: joshua.davies@kit.edu Matthias Steinhauser Institut für Theoretische Teilchenphysik, Karlsruhe

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

Forcer: a FORM program for 4-loop massless propagators

Forcer: a FORM program for 4-loop massless propagators Forcer: a FORM program for 4-loop massless propagators, a B. Ruijl ab and J.A.M. Vermaseren a a Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands b Leiden Centre of Data Science,

More information

arxiv: v2 [hep-ph] 18 Nov 2009

arxiv: v2 [hep-ph] 18 Nov 2009 Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D. arxiv:0911.05v [hep-ph] 18 Nov 009 R.N. Lee

More information

Computing of Charged Current DIS at three loops

Computing of Charged Current DIS at three loops Computing of Charged Current DIS at three loops Mikhail Rogal Mikhail.Rogal@desy.de DESY, Zeuthen, Germany ACAT 2007, Amsterdam, Netherlands, April 23-28, 2007 Computing of Charged CurrentDIS at three

More information

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses arxiv:hep-ph/9708423v 2 Aug 997 V.A. Smirnov Nuclear Physics Institute of Moscow State University Moscow 9899, Russia

More information

Top and bottom at threshold

Top and bottom at threshold Top and bottom at threshold Matthias Steinhauser TTP Karlsruhe Vienna, January 27, 2015 KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

More information

6.1 Quadratic Casimir Invariants

6.1 Quadratic Casimir Invariants 7 Version of May 6, 5 CHAPTER 6. QUANTUM CHROMODYNAMICS Mesons, then are described by a wavefunction and baryons by Φ = q a q a, (6.3) Ψ = ǫ abc q a q b q c. (6.4) This resolves the old paradox that ground

More information

The 4-loop quark mass anomalous dimension and the invariant quark mass.

The 4-loop quark mass anomalous dimension and the invariant quark mass. arxiv:hep-ph/9703284v1 10 Mar 1997 UM-TH-97-03 NIKHEF-97-012 The 4-loop quark mass anomalous dimension and the invariant quark mass. J.A.M. Vermaseren a, S.A. Larin b, T. van Ritbergen c a NIKHEF, P.O.

More information

Vacuum Energy and Effective Potentials

Vacuum Energy and Effective Potentials Vacuum Energy and Effective Potentials Quantum field theories have badly divergent vacuum energies. In perturbation theory, the leading term is the net zero-point energy E zeropoint = particle species

More information

Multiloop QCD & Crewther identities

Multiloop QCD & Crewther identities Multiloop QCD & Crewther identities B AC KA SFB TR9 Computational Theoretical Particle Physics based on works of Karlsruhe-Moscow group (2001 2014 -...) Pavel Baikov (MSU), Johannes Kühn (KIT) Konstantin

More information

Multiloop QCD: 33 years of continuous development

Multiloop QCD: 33 years of continuous development B 1 / 35 Multiloop QCD: 33 years of continuous development (on example of R(s) and inclusive Z decay hadrons) Konstantin Chetyrkin KIT, Karlsruhe & INR, Moscow SFB TR9 Computational Theoretical Particle

More information

FIRE4, LiteRed and accompanying tools to solve integration by parts relations

FIRE4, LiteRed and accompanying tools to solve integration by parts relations Prepared for submission to JHEP HU-EP-13/04 HU-Mathematik:05-2013 FIRE4, LiteRed and accompanying tools to solve integration by parts relations Alexander V. Smirnov a Vladimir A. Smirnov b,c a Scientific

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

TVID: Three-loop Vacuum Integrals from Dispersion relations

TVID: Three-loop Vacuum Integrals from Dispersion relations TVID: Three-loop Vacuum Integrals from Dispersion relations Stefan Bauberger, Ayres Freitas Hochschule für Philosophie, Philosophische Fakultät S.J., Kaulbachstr. 3, 80539 München, Germany Pittsburgh Particle-physics

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

Colour octet potential to three loops

Colour octet potential to three loops SFB/CPP-13-54 TTP13-8 Colour octet potential to three loops Chihaya Anzai a), Mario Prausa a), Alexander V. Smirnov b), Vladimir A. Smirnov c), Matthias Steinhauser a) a) Institut für Theoretische Teilchenphysik,

More information

arxiv:hep-ph/ v3 16 Jan 2008

arxiv:hep-ph/ v3 16 Jan 2008 Alberta Thy 11-06 Large mass expansion in two-loop QCD corrections of paracharmonium decay K. Hasegawa and Alexey Pak Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada (Dated:

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

L = 1 2 µφ µ φ m2 2 φ2 λ 0

L = 1 2 µφ µ φ m2 2 φ2 λ 0 Physics 6 Homework solutions Renormalization Consider scalar φ 4 theory, with one real scalar field and Lagrangian L = µφ µ φ m φ λ 4 φ4. () We have seen many times that the lowest-order matrix element

More information

Functional equations for Feynman integrals

Functional equations for Feynman integrals Functional equations for Feynman integrals O.V. Tarasov JINR, Dubna, Russia October 9, 016, Hayama, Japan O.V. Tarasov (JINR) Functional equations for Feynman integrals 1 / 34 Contents 1 Functional equations

More information

arxiv:hep-ph/ v1 21 Jan 1998

arxiv:hep-ph/ v1 21 Jan 1998 TARCER - A Mathematica program for the reduction of two-loop propagator integrals R. Mertig arxiv:hep-ph/980383v Jan 998 Abstract Mertig Research & Consulting, Kruislaan 49, NL-098 VA Amsterdam, The Netherlands

More information

Single mass scale diagrams: construction of a basis for the ε-expansion.

Single mass scale diagrams: construction of a basis for the ε-expansion. BI-TP 99/4 Single mass scale diagrams: construction of a basis for the ε-expansion. J. Fleischer a 1, M. Yu. Kalmykov a,b 2 a b Fakultät für Physik, Universität Bielefeld, D-615 Bielefeld, Germany BLTP,

More information

PHY 396 L. Solutions for homework set #20.

PHY 396 L. Solutions for homework set #20. PHY 396 L. Solutions for homework set #. Problem 1 problem 1d) from the previous set): At the end of solution for part b) we saw that un-renormalized gauge invariance of the bare Lagrangian requires Z

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

arxiv:hep-lat/ v1 30 Sep 2005

arxiv:hep-lat/ v1 30 Sep 2005 September 2005 Applying Gröbner Bases to Solve Reduction Problems for Feynman Integrals arxiv:hep-lat/0509187v1 30 Sep 2005 A.V. Smirnov 1 Mechanical and Mathematical Department and Scientific Research

More information

Scalar One-Loop Integrals using the Negative-Dimension Approach

Scalar One-Loop Integrals using the Negative-Dimension Approach DTP/99/80 hep-ph/9907494 Scalar One-Loop Integrals using the Negative-Dimension Approach arxiv:hep-ph/9907494v 6 Jul 999 C. Anastasiou, E. W. N. Glover and C. Oleari Department of Physics, University of

More information

Heavy quark masses from Loop Calculations

Heavy quark masses from Loop Calculations Heavy quark masses from Loop Calculations Peter Marquard Institute for Theoretical Particle Physics Karlsruhe Institute of Technology in collaboration with K. Chetyrkin, D. Seidel, Y. Kiyo, J.H. Kühn,

More information

A General Expression for Symmetry Factors of Feynman Diagrams. Abstract

A General Expression for Symmetry Factors of Feynman Diagrams. Abstract A General Expression for Symmetry Factors of Feynman Diagrams C.D. Palmer a and M.E. Carrington b,c a Department of Mathematics, Brandon University, Brandon, Manitoba, R7A 6A9 Canada b Department of Physics,

More information

gg! hh in the high energy limit

gg! hh in the high energy limit gg! hh in the high energy limit Go Mishima Karlsruhe Institute of Technology (KIT), TTP in collaboration with Matthias Steinhauser, Joshua Davies, David Wellmann work in progress gg! hh : previous works

More information

arxiv:hep-ph/ v2 2 Feb 1998

arxiv:hep-ph/ v2 2 Feb 1998 BI-TP 97/53, hep-ph/9711487 to appear in 15 March 1998 issue of Phys. Rev. D (Rapid Comm.) Improvement of the method of diagonal Padé approximants for perturbative series in gauge theories arxiv:hep-ph/9711487v2

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field

More information

Five-loop massive tadpoles

Five-loop massive tadpoles Five-loop massive tadpoles York Schröder (Univ del Bío-Bío, Chillán, Chile) recent work with Thomas Luthe and earlier work with: J. Möller, C. Studerus Radcor, UCLA, Jun 0 Motivation pressure of hot QCD

More information

10 Cut Construction. We shall outline the calculation of the colour ordered 1-loop MHV amplitude in N = 4 SUSY using the method of cut construction.

10 Cut Construction. We shall outline the calculation of the colour ordered 1-loop MHV amplitude in N = 4 SUSY using the method of cut construction. 10 Cut Construction We shall outline the calculation of the colour ordered 1-loop MHV amplitude in N = 4 SUSY using the method of cut construction All 1-loop N = 4 SUSY amplitudes can be expressed in terms

More information

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Regularization Physics 230A, Spring 2007, Hitoshi Murayama Regularization Physics 3A, Spring 7, Hitoshi Murayama Introduction In quantum field theories, we encounter many apparent divergences. Of course all physical quantities are finite, and therefore divergences

More information

1 Running and matching of the QED coupling constant

1 Running and matching of the QED coupling constant Quantum Field Theory-II UZH and ETH, FS-6 Assistants: A. Greljo, D. Marzocca, J. Shapiro http://www.physik.uzh.ch/lectures/qft/ Problem Set n. 8 Prof. G. Isidori Due: -5-6 Running and matching of the QED

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

PUZZLING b QUARK DECAYS: HOW TO ACCOUNT FOR THE CHARM MASS

PUZZLING b QUARK DECAYS: HOW TO ACCOUNT FOR THE CHARM MASS Vol. 36 005 ACTA PHYSICA POLONICA B No 11 PUZZLING b QUARK DECAYS: HOW TO ACCOUNT FOR THE CHARM MASS Andrzej Czarnecki, Alexey Pak, Maciej Ślusarczyk Department of Physics, University of Alberta Edmonton,

More information

arxiv: v1 [hep-ph] 22 Sep 2016

arxiv: v1 [hep-ph] 22 Sep 2016 TTP16-037 arxiv:1609.06786v1 [hep-ph] 22 Sep 2016 Five-loop massive tadpoles Thomas Luthe Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, Karlsruhe, Germany E-mail: thomas.luthe@kit.edu

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z J. Blümlein, a ab and W. van Neerven c a DESY, Zeuthen, Platanenalle 6, D-173 Zeuthen, Germany. b Departamento

More information

The Quantum Theory of Finite-Temperature Fields: An Introduction. Florian Divotgey. Johann Wolfgang Goethe Universität Frankfurt am Main

The Quantum Theory of Finite-Temperature Fields: An Introduction. Florian Divotgey. Johann Wolfgang Goethe Universität Frankfurt am Main he Quantum heory of Finite-emperature Fields: An Introduction Florian Divotgey Johann Wolfgang Goethe Universität Franfurt am Main Fachbereich Physi Institut für heoretische Physi 1..16 Outline 1 he Free

More information

arxiv:hep-th/ v1 21 May 1996

arxiv:hep-th/ v1 21 May 1996 ITP-SB-96-24 BRX-TH-395 USITP-96-07 hep-th/xxyyzzz arxiv:hep-th/960549v 2 May 996 Effective Kähler Potentials M.T. Grisaru Physics Department Brandeis University Waltham, MA 02254, USA M. Roče and R. von

More information

REVIEW REVIEW. Quantum Field Theory II

REVIEW REVIEW. Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Automatic Integral Reduction for Higher Order Perturbative Calculations

Automatic Integral Reduction for Higher Order Perturbative Calculations SLAC-PUB-10428 eprint hep-ph/0404258 Automatic Integral Reduction for Higher Order Perturbative Calculations Charalampos Anastasiou a, Achilleas Lazopoulos b a Theory Group, MS81, SLAC, 2575 Sand Hill

More information

arxiv: v2 [hep-ph] 20 Jul 2014

arxiv: v2 [hep-ph] 20 Jul 2014 arxiv:407.67v [hep-ph] 0 Jul 04 Mass-corrections to double-higgs production & TopoID Jonathan Grigo and Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) E-mail: jonathan.grigo@kit.edu,

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E PHY 396 L. Solutions for homework set #19. Problem 1a): Let us start with the superficial degree of divergence. Scalar QED is a purely bosonic theory where all propagators behave as 1/q at large momenta.

More information

REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS

REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS O.V.Tarasov DESY Zeuthen, Platanenallee 6, D 5738 Zeuthen, Germany E-mail: tarasov@ifh.de (Received December 7, 998) An algorithm

More information

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5)

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5) Chapter 7 A Synopsis of QED We will here sketch the outlines of quantum electrodynamics, the theory of electrons and photons, and indicate how a calculation of an important physical quantity can be carried

More information

Loop Corrections: Radiative Corrections, Renormalization and All

Loop Corrections: Radiative Corrections, Renormalization and All Loop Corrections: Radiative Corrections, Renormalization and All That Michael Dine Department of Physics University of California, Santa Cruz Nov 2012 Loop Corrections in φ 4 Theory At tree level, we had

More information

arxiv:hep-ph/ v3 8 Apr 2003

arxiv:hep-ph/ v3 8 Apr 2003 Freiburg-THEP 03/0 hep-ph/03070 arxiv:hep-ph/03070v3 8 Apr 003 Vertex diagrams for the QED form factors at the -loop level R. Bonciani, Facultät für Mathematik und Physik, Albert-Ludwigs-Universität Freiburg,

More information

INP MSU 96-34/441 hep-ph/ October 1996 Some techniques for calculating two-loop diagrams 1 Andrei I. Davydychev Institute for Nuclear Physics,

INP MSU 96-34/441 hep-ph/ October 1996 Some techniques for calculating two-loop diagrams 1 Andrei I. Davydychev Institute for Nuclear Physics, INP MSU 96-34/441 hep-ph/9610510 October 1996 Some techniques for calculating two-loop diagrams 1 Andrei I. Davydychev Institute for Nuclear Physics, Moscow State University, 119899 Moscow, Russia Abstract

More information

Espansione a grandi N per la gravità e 'softening' ultravioletto

Espansione a grandi N per la gravità e 'softening' ultravioletto Espansione a grandi N per la gravità e 'softening' ultravioletto Fabrizio Canfora CECS Valdivia, Cile Departimento di fisica E.R. Caianiello NFN, gruppo V, CG Salerno http://www.sa.infn.it/cqg , Outline

More information

The path integral for photons

The path integral for photons The path integral for photons based on S-57 We will discuss the path integral for photons and the photon propagator more carefully using the Lorentz gauge: as in the case of scalar field we Fourier-transform

More information

Discontinuities of Feynman Integrals

Discontinuities of Feynman Integrals CEA Saclay Brown University, Twelfth Workshop on Non-Perturbative Quantum Chromodynamics June 10, 2013 Outline Landau and Cutkosky Classic unitarity cuts I I I Dispersion relations Modern unitarity method,

More information

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein]

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein] Oα 3 1 s Heavy Flavor Wilson Coefficients in DIS @ Q m Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein Introduction Theory Status The Method Asymptotic Loop Results all N Asymptotic

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Review of scalar field theory. Srednicki 5, 9, 10

Review of scalar field theory. Srednicki 5, 9, 10 Review of scalar field theory Srednicki 5, 9, 10 2 The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 Masses for Vectors: the Higgs mechanism April 6, 2012 The momentum-space propagator

More information

arxiv:hep-ph/ v1 29 Aug 2006

arxiv:hep-ph/ v1 29 Aug 2006 IPPP/6/59 August 26 arxiv:hep-ph/6837v1 29 Aug 26 Third-order QCD results on form factors and coefficient functions A. Vogt a, S. Moch b and J.A.M. Vermaseren c a IPPP, Physics Department, Durham University,

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Ultraviolet Divergences

Ultraviolet Divergences Ultraviolet Divergences In higher-order perturbation theory we encounter Feynman graphs with closed loops, associated with unconstrained momenta. For every such momentum k µ, we have to integrate over

More information

arxiv: v2 [hep-th] 22 Feb 2016

arxiv: v2 [hep-th] 22 Feb 2016 The method of uniqueness and the optical conductivity of graphene: new application of a powerful technique for multi-loop calculations S. Teber 1,2 and A. V. Kotikov 3 1 Sorbonne Universités, UPMC Univ

More information

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama Renormalization of the Yukawa Theory Physics 23A (Spring 27), Hitoshi Murayama We solve Problem.2 in Peskin Schroeder. The Lagrangian density is L 2 ( µφ) 2 2 m2 φ 2 + ψ(i M)ψ ig ψγ 5 ψφ. () The action

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

Lecture 24 Seiberg Witten Theory III

Lecture 24 Seiberg Witten Theory III Lecture 24 Seiberg Witten Theory III Outline This is the third of three lectures on the exact Seiberg-Witten solution of N = 2 SUSY theory. The third lecture: The Seiberg-Witten Curve: the elliptic curve

More information

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons;

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons; Chapter 9 : Radiative Corrections 9.1 Second order corrections of QED 9. Photon self energy 9.3 Electron self energy 9.4 External line renormalization 9.5 Vertex modification 9.6 Applications 9.7 Infrared

More information

Chiral Anomaly. Kathryn Polejaeva. Seminar on Theoretical Particle Physics. Springterm 2006 Bonn University

Chiral Anomaly. Kathryn Polejaeva. Seminar on Theoretical Particle Physics. Springterm 2006 Bonn University Chiral Anomaly Kathryn Polejaeva Seminar on Theoretical Particle Physics Springterm 2006 Bonn University Outline of the Talk Introduction: What do they mean by anomaly? Main Part: QM formulation of current

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

Concistency of Massive Gravity LAVINIA HEISENBERG

Concistency of Massive Gravity LAVINIA HEISENBERG Universite de Gene ve, Gene ve Case Western Reserve University, Cleveland September 28th, University of Chicago in collaboration with C.de Rham, G.Gabadadze, D.Pirtskhalava What is Dark Energy? 3 options?

More information

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x On higher-order flavour-singlet splitting functions and coefficient functions at large x Department of Mathematical Sciences, University of Liverpool, UK E-mail: G.N.Soar@liv.ac.uk A. Vogt Department of

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

SUSY QCD. Consider a SUSY SU(N) with F flavors of quarks and squarks

SUSY QCD. Consider a SUSY SU(N) with F flavors of quarks and squarks SUSY gauge theories SUSY QCD Consider a SUSY SU(N) with F flavors of quarks and squarks Q i = (φ i, Q i, F i ), i = 1,..., F, where φ is the squark and Q is the quark. Q i = (φ i, Q i, F i ), in the antifundamental

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

Physics 444: Quantum Field Theory 2. Homework 2.

Physics 444: Quantum Field Theory 2. Homework 2. Physics 444: Quantum Field Theory Homework. 1. Compute the differential cross section, dσ/d cos θ, for unpolarized Bhabha scattering e + e e + e. Express your results in s, t and u variables. Compute the

More information

arxiv:hep-ph/ v1 27 Mar 1998

arxiv:hep-ph/ v1 27 Mar 1998 EHU-FT/9803 The speed of cool soft pions J. M. Martínez Resco, M. A. Valle Basagoiti arxiv:hep-ph/9803472v 27 Mar 998 Departamento de Física Teórica, Universidad del País Vasco, Apartado 644, E-48080 Bilbao,

More information

On the renormalization-scheme dependence in quantum field theory.

On the renormalization-scheme dependence in quantum field theory. On the renormalization-scheme dependence in quantum field theory. arxiv:hep-ph/972477v 22 Dec 997 Anton V. Konychev Institute for High Energy Physics, Protvino* Abstract Using quantum electrodynamics as

More information

High order corrections in theory of heavy quarkonium

High order corrections in theory of heavy quarkonium High order corrections in theory of heavy quarkonium Alexander Penin TTP Karlsruhe & INR Moscow ECT Workshop in Heavy Quarkonium Trento, Italy, August 17-31, 2006 A. Penin, TTP Karlsruhe & INR Moscow ECT

More information

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO SFB/CPP-12-93 TTP12-45 LPN12-127 Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO Maik Höschele, Jens Hoff, Aleey Pak,

More information

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS 1/30 TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS Alexander Hasselhuhn RISC (LHCPhenonet) 26.9.2013 in collaboration with: J.

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

arxiv: v1 [hep-ph] 19 Apr 2007

arxiv: v1 [hep-ph] 19 Apr 2007 DESY 07-037 HEPTOOLS 07-009 SFB/CPP-07-14 arxiv:0704.2423v1 [hep-ph] 19 Apr 2007 AMBRE a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals Abstract J. Gluza,

More information

LSZ reduction for spin-1/2 particles

LSZ reduction for spin-1/2 particles LSZ reduction for spin-1/2 particles based on S-41 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free

More information

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory:

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory: LSZ reduction for spin-1/2 particles based on S-41 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free

More information

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1 Two-loop QCD Corrections to the Heavy Quark Form Factors Thomas Gehrmann Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII Snowmass Linear Collider Worksho005 Two-loop QCD Corrections to the Heavy

More information

Physics 217 FINAL EXAM SOLUTIONS Fall u(p,λ) by any method of your choosing.

Physics 217 FINAL EXAM SOLUTIONS Fall u(p,λ) by any method of your choosing. Physics 27 FINAL EXAM SOLUTIONS Fall 206. The helicity spinor u(p, λ satisfies u(p,λu(p,λ = 2m. ( In parts (a and (b, you may assume that m 0. (a Evaluate u(p,λ by any method of your choosing. Using the

More information