Top and bottom at threshold

Size: px
Start display at page:

Download "Top and bottom at threshold"

Transcription

1 Top and bottom at threshold Matthias Steinhauser TTP Karlsruhe Vienna, January 27, 2015 KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

2 Outline Introduction a 3 to 3 loops c v to 3 loops Γ(Υ(1S) l + l ) to NNNLO positronium HFS Summary Matthias Steinhauser Top and bottom at threshold 2

3 Physical quantities energy levels and wave function of bound states E q q [NNNLO: Penin,Steinhauser 02; Kiyo,Sumino 03; Beneke,Kiyo,Schuller 05] M Υ(1S) = 2m b + E b b(n = 1) m b E res = 2m t + E t t(n = 1)+δ Γt E res m t Υ sum rules m b [Penin,Pivovarov 98; Hoang 98; Melnikov,Yelkhovsky 98,..., Penin,Zerf 14, Beneke,Maier,Piclum,Rauh 14] Γ(Υ(1S) l + l ), NNNLO σ(e + e t t), NNNLO R NNLL [Pineda,Signer 07; Hoang,Stahlhofen 13,... ] Comparison of pqcd and LQCD s (GeV) [Necco,Sommer 01,Pineda 02,Sumino 05,..., Brambilla,Vairo,Garcia i Tormo,Soto 09, Donnellan,Knechtli,Leder,Sommer 10] Matthias Steinhauser Top and bottom at threshold 3

4 Framework: potential NRQCD scales: mass, m: hard momentum, mv: soft energy, mv 2 : ultrasoft Λ QCD bottom: 5 GeV 2.5 GeV 0.5 GeV top: 175 GeV 30 GeV 5 GeV QCD NRQCD pnrqcd (potential non-relativistic QCD) m mv, mv 2 [Caswell,Lepage 86; integrate out all non-physical degrees of freedom Bodwin,Braaten,Lepage 95] [Beneke,Smirnov 97; Pineda,Soto 98; Brambilla,Pineda,Soto,Vairo 00] [alternative formulation: velocity NRQCD [Luke,Manohar,Rothstein 00; Hoang,Stewart 03]] Matthias Steinhauser Top and bottom at threshold 4

5 Effective Hamiltonian to N 3 LO [Gupta,Radford 81,...,Manohar 97,...,Kniehl,Penin,Smirnov,Steinhauser 02,...,Beneke,Kiyo,Schuller 13] ( p H = (2π) 3 2 δ( q) m p ) 4 + 4m 3 C c (α s )V C ( q )+C 1/m (α s )V 1/m ( q ) [ ] + πc Fα s (µ) m 2 C δ (α s )+C p (α s ) p 2 + p q 2 C s (α s ) S 2 Static potential: V C ( q ) = 4πC Fα s( q ) q 2 C c 3 loops 1/m potential: V 1/m ( q ) = π2 C F α 2 s( q ) m q C 1/m 2 loops Breit potential: 1/m 2 C δ,p,s 1 loop pnrqcd has dynamical degrees of freedom: potential quarks and ultrasoft gluons q = p p q Matthias Steinhauser Top and bottom at threshold 5

6 Static potential Matthias Steinhauser Top and bottom at threshold 6

7 Static potential [ V C (µ = q ) = 4πC Fα s ( q ) q 2 1 [Appelquist,Politzer 75,Susskind 77] Matthias Steinhauser Top and bottom at threshold 7

8 Static potential [ V C (µ = q ) = 4πC Fα s ( q ) 1+ α s( q ) q 2 4π a 1 [Appelquist,Politzer 75,Susskind 77] [Fischler 77;Biloire 80] Matthias Steinhauser Top and bottom at threshold 7

9 Static potential [ V C (µ = q ) = 4πC Fα s ( q ) 1+ α s( q ) q 2 4π a 1 + ( ) αs ( q ) 2 a 2 4π [Appelquist,Politzer 75,Susskind 77] [Fischler 77;Biloire 80] [Peter 96;Schröder 98] Matthias Steinhauser Top and bottom at threshold 7

10 Static potential V C (µ = q ) = 4πC Fα s ( q ) q 2 [ 1+ α s( q ) 4π a 1 + ( ) αs ( q ) 3 + (a 3 + 8π 2 C 4π ( ) αs ( q ) 2 a 2 4π ] ) 3A µ2 ln + q 2 [Appelquist,Politzer 75,Susskind 77] [Fischler 77;Biloire 80] [Peter 96;Schröder 98] [Smirnov,Smirnov,Steinhauser 08; Smirnov,Smirnov,Steinhauser 09; Anzai,Kiyo,Sumino 09] Matthias Steinhauser Top and bottom at threshold 7

11 Static potential [ V C (µ = q ) = 4πC Fα s ( q ) 1+ α s( q ) q 2 4π a 1 + ( ) αs ( q ) 3 ( + 4π a 3 + 8π 2 C 3 A ( ) αs ( q ) 2 a 2 4π ( 1 µ2 + ln 3ǫ q 2 )) ] + IR divergence [Appelquist,Dine,Muzinich 77] (in naive perturbation theory ) pnrqcd: ultra-soft contribution: (us)-gluons and (Q Q) bound states as dynamical degrees of freedom IR finite result [Brambilla,Pineda,Soto,Vairo 99; Kniehl,Penin,Smirnov,Steinhauser 02] Finite physical quantities: V QCD (r) = V pert QCD +δvus QCD static energy ( lattice) energy levels of (q q) system: E q q = n H n +δe US q q H.O. log-contributions to V : [Pineda,Soto 00; Brambilla,Garcia i Tormo,Soto,Vairo 07] Matthias Steinhauser Top and bottom at threshold 7

12 Numerical results V C( q ) = 4πCFαs( q ) [ 1+ αs q 2 π ( nl) ( ) 2 αs ( ) nl n 2 l + π ( αs π ) 3 ( ) (1) nl n 2 l n 3 l + ] n l α (n l) s 1 loop 2 loop 3 loop charm bottom top static potential for other colour configurations: [Kniehl,Penin,Schroder,Smirnov,Steinhauser 05; Anzai,Kiyo,Sumino 10; Collet,Steinhauser 11; Prausa,Steinhauser 13; Anzai,Prausa,Smirnov,Smirnov,Steinhauser 13] Matthias Steinhauser Top and bottom at threshold 8

13 Matthias Steinhauser Top and bottom at threshold 9

14 c v to 3 loops QCD NRQCD j µ v = Qγ µ Q ji = φ σ i χ jv i = c v (µ) ji + dv(µ) φ σ i 6m D 2 χ+... Q 2 Z 2 Γ v = c v Z2 Z 1 v Γ v +... Γ v : Γ v 1 Z2 1 Z 2 : [Melnikov,v.Ritbergen 00] [Marquard,Mihaila,Piclum,Steinhauser 07] Zv = 1+O(αs) 2 [Beneke,Signer,Smirnov 98; Kniehl,Penin,Steinhauser,Smirnov 03; Marquard,Piclum,Seidel,Steinhauser 06; Beneke,Kiyo,Penin 07] (MS scheme) Matthias Steinhauser Top and bottom at threshold 10

15 c v c v = 1+ αs π c(1) v + ( α s ) 2 (2) π c v + ( α s ) 3 (3) π c v +O(αs) 4 c (1) v c (2) v c (3),n l v c (3),n h v c (3) v [Källen, Sarby 55] [Czarnecki,Melnikov 97; Beneke,Signer,Smirnov 97] [Marquard,Piclum,Seidel,Steinhauser 06] [Marquard,Piclum,Seidel,Steinhauser 08] [Marquard,Piclum,Seidel,Steinhauser 14] massive vertices on-shell quarks: q 2 1 = q2 2 = M2 Q (q 1 + q 2 ) 2 = 4M 2 Q Matthias Steinhauser Top and bottom at threshold 11

16 Some technical details... automatic generation of Feynman diagrams, apply projector, reduce scalar products in numerator,... (many) scalar integrals reduction to 100 master integrals with CRUSHER [Marquard,Seidel] compute MIs with FIESTA [Smirnov,Tentyukov 08; Smirnov,Smirnov,Tentyukov 11; Smirnov 13] q1 q2 ( = e3ǫγ E m 4 Q ( ) µ 2 3ǫ m 2 Q (3) ǫ (1) ǫ (2) (4)ǫ+O(ǫ 2 ) simpler integrals also known analytically add uncertainties of individual integrals quadratically multiply final uncertainty by factor 5 ( 5σ ) ) Matthias Steinhauser Top and bottom at threshold 12

17 Checks finiteness n l contribution gauge parameter independence (ξ 1 ) change basis of MIs default basis alternative basis c FFF 36.55(0.11) 36.61(2.93) c FFA (0.17) (2.91) c FAA 97.81(0.08) 97.76(2.05) c (3) v (n l = 4) (0.4) 1621(23) c (3) v (n l = 5) (0.4) 1507(23) Matthias Steinhauser Top and bottom at threshold 13

18 Z v ( ) α (nl) 2 ( s (µ) CFπ Z 2 1 v = 1+ π ǫ 12 CF + 1 ) ( ) α (nl) 3 8 CA s (µ) + C Fπ 2 π { [ ( C F 144ǫ ln 2+ 5 ) ] 1 48 Lµ ǫ [ ( C F C A 864ǫ ) ] 5 1 ln Lµ ǫ [ + C 2 A 1 ( 2 16ǫ ) ] 1 1 ln Lµ ǫ [ ( 1 + Tn l C F 54ǫ 25 ) ( 1 + C 2 A 324ǫ 36ǫ 37 )] 2 432ǫ } 1 + C F Tn h +O(αs) 4 L µ = ln µ2 60ǫ m 2 Q analytic result from [Beneke,Signer,Smirnov 98; Kniehl,Penin,Smirnov,Steinhauser 02; Marquard,Piclum,Seidel,Steinhauser 06; Beneke,Kiyo,Penin 07] (numerical) agreement better than 1% Matthias Steinhauser Top and bottom at threshold 14

19 Results for c v [Marquard,Piclum,Seidel,Steinhauser 14] c v (µ = m Q ) = α s π +[ n l] ( αs ) 2 π + [ ] ( 2091(2) n l 0.82nl 2 α s π + singlet terms ) 3 MS scheme; µ = m Q large corrections singlet terms: small ( 3% of c (2) ) at 2 loops (for axial-vector, scalar, pseudo-scalar current) [Kniehl,Onishchenko,Piclum,Steinhauser 06] Matthias Steinhauser Top and bottom at threshold 15

20 Application: height of σ(e + e t t) 1.4 LO, NLO, NNLO R s (GeV) [Hoang,Beneke,Melnikov,Nagano,Ota,Penin,Pivovarov,Signer,Smirnov,Sumino,Teubner,Yakovlev,Yelkhovsky 00] Matthias Steinhauser Top and bottom at threshold 16

21 Application: Residue Z t ( q 2 g µν + q µ q ν ) Π(q 2 ) = i dx e iqx 0 Tj µ (x)j ν(0) 0 Π(q 2 ) E E 1 = Nc 2mt 2 [ Z 1 E 1 (E+i0) +... Z ( ) ] t = cv 2 E 1 m t c v cv + dv ψ 3 1 (0) 2 Z t (µ)/z t LO(µ S ) NNLO NNNLO NNNLO (ferm.) NLO LO µ (GeV) [Marquard,Piclum,Seidel,Steinhauser 14] Matthias Steinhauser Top and bottom at threshold 17

22 Coulomb corrections to σ(e + e t t) 1.0 R µ = 15 GeV (lower) µ = 30 GeV (middle) µ = 60 GeV (upper) µ = 15 GeV exact s [GeV] [Beneke,Kiyo,Schuller 05] Matthias Steinhauser Top and bottom at threshold 18

23 Γ(Υ(1S) l + l ) Matthias Steinhauser Top and bottom at threshold 19

24 Γ(Υ(1S) l + l ) Υ(1S) meson: simplest heavy quark bound state Γ(Υ(1S) l + l ) exp = 1.340(18) kev Γ(Υ(1S) l + l ) = 4πα2 9m 2 b ( ψ 1 (0) 2 c v [c v E 1 cv m b + dv 3 ) +... ] Matthias Steinhauser Top and bottom at threshold 20

25 Γ(Υ(1S) l + l ) Υ(1S) meson: simplest heavy quark bound state Γ(Υ(1S) l + l ) exp = 1.340(18) kev Γ(Υ(1S) l + l ) = 4πα2 9m 2 b ( ψ 1 (0) 2 c v [c v E 1 cv m b + dv 3 ) +... ] d v : matching constant of sub-leading b b current 1 loop: [Luke,Savage 98] ψ 1 (0) wave function of the (b b) system ψ LO 1 (0) 2 = 8m3 b α3 s 27π M Υ(1S) = 2m b + E 1 E p,lo 1 = (4m b αs)/9 2 Matthias Steinhauser Top and bottom at threshold 20

26 Γ(Υ(1S) l + l ) Υ(1S) meson: simplest heavy quark bound state Γ(Υ(1S) l + l ) exp = 1.340(18) kev Γ(Υ(1S) l + l ) = 4πα2 9m 2 b ( ψ 1 (0) 2 c v [c v E 1 cv m b + dv 3 ) +... ] d v : matching constant of sub-leading b b current 1 loop: [Luke,Savage 98] ψ 1 (0) wave function of the (b b) system ψ LO 1 (0) 2 = 8m3 b α3 s 27π M Υ(1S) = 2m b + E 1 E p,lo 1 = (4m b αs)/9 2 many building blocks necessary; most recent ones: a 3 [Smirnov,Smirnov,Steinhauser 08; Smirnov,Smirnov,Steinhauser 09; Anzai,Kiyo,Sumino 09] c v [Marquard,Piclum,Seidel,Steinhauser 14] ψ 1 (0): ultrasoft contribution [Beneke,Kiyo,Penin 07] ψ 1 (0): single- and double-potential insertions [Beneke,Kiyo,Schuller 08 13] O(ǫ) term of 2-loop 1/(m b r 2 ) pnrqcd potential [Penin,Smirnov,Steinhauser 13] NLL: [Pineda 01]; NNLL-approx: [Pineda,Signer 07];... Matthias Steinhauser Top and bottom at threshold 20

27 Result Γ(Υ(1S) l + l ) pole = 2 5 α 2 α 3 [ s mb ( 1+α s ( L)+ α s lnαs L L 2) +α 3 s ( a b2ǫ cf 134.8(1) cg lnα s ln 2 α s +( lnα s) L L L 3) ] +O(α 4 s) µ=3.5 GeV = 2 5 α 2 α 3 s mb 3 5 [ αs α 2 s +( a b2ǫ cf 134.8(1) cg ) α 3 s +O(α 4 s) ] = 2 5 α 2 α 3 s mpole b 3 5 [ ] = [1.04±0.04(α s) (µ)] kev 2 5 α 2 α 3 s = mps b [ ] 3 5 = [1.08±0.05(α s) (µ)] kev α s = ± µ 10 GeV L = ln[µ/(4m b α s /3)] [Beneke,Kiyo,Marquard,Penin,Piclum,Seidel,Steinhauser 14] Matthias Steinhauser Top and bottom at threshold 21

28 Γ(Υ(1S) l + l ): µ dependence [Beneke,Kiyo,Marquard,Penin,Piclum,Seidel,Steinhauser 14] PS Matthias Steinhauser Top and bottom at threshold 22

29 Γ(Υ(1S) l + l ): µ dependence [Beneke,Kiyo,Marquard,Penin,Piclum,Seidel,Steinhauser 14] PS Matthias Steinhauser Top and bottom at threshold 22

30 Γ(Υ(1S) l + l ): µ dependence [Beneke,Kiyo,Marquard,Penin,Piclum,Seidel,Steinhauser 14] PS Matthias Steinhauser Top and bottom at threshold 22

31 Γ(Υ(1S) l + l ): µ dependence [Beneke,Kiyo,Marquard,Penin,Piclum,Seidel,Steinhauser 14] PS NNNLO NNLO NLO LO Matthias Steinhauser Top and bottom at threshold 22

32 Γ(Υ(1S) l + l ): µ dependence [Beneke,Kiyo,Marquard,Penin,Piclum,Seidel,Steinhauser 14] PS NNNLO NNLO NLO LO Matthias Steinhauser Top and bottom at threshold 22

33 Γ(J/Ψ l + l ): µ dependence 6 5 OS NNNLO NNLO NLO LO Matthias Steinhauser Top and bottom at threshold 23

34 Γ(Υ(1S) l + l ): α s dependence PS [Beneke,Kiyo,Marquard,Penin,Piclum,Seidel,Steinhauser 14] NNLO NNNLO NLO LO Matthias Steinhauser Top and bottom at threshold 24

35 Γ(Υ(1S) l + l ): PS vs. OS [Beneke,Kiyo,Marquard,Penin,Piclum,Seidel,Steinhauser 14] PS OS NNNLO 1 NNNLO NNLO 0.6 NNLO NLO LO NLO LO PS NNLO NNNLO NLO LO OS NNLO NNNLO NLO LO Matthias Steinhauser Top and bottom at threshold 25

36 Result Γ(Υ(1S) l + l ) pole = [1.04±0.04(α s ) (µ)] kev Γ(Υ(1S) l + l ) PS = [1.08±0.05(α s ) (µ)] kev Γ(Υ(1S) l + l ) exp = [1.340±0.018] kev Matthias Steinhauser Top and bottom at threshold 26

37 Result Γ(Υ(1S) l + l ) pole = [1.04±0.04(α s ) Γ(Υ(1S) l + l ) PS = [1.08±0.05(α s ) Γ(Υ(1S) l + l ) exp = [1.340±0.018] kev third-order perturbative result is 30% too low (µ)] kev (µ)] kev Matthias Steinhauser Top and bottom at threshold 26

38 Result Γ(Υ(1S) l + l ) pole = [1.04±0.04(α s ) Γ(Υ(1S) l + l ) PS = [1.08±0.05(α s ) Γ(Υ(1S) l + l ) exp = [1.340±0.018] kev third-order perturbative result is 30% too low (µ)] kev (µ)] kev effects from finite m c? add NLO and NNLO m c terms to Γ(Υ(1S) l + l ) [Hoang 00; Beneke,Maier,Piclum,Rauh 14] decouple charm: α (4) s α (3) s [Pineda] Γ(Υ(1S) l + l ) pole = [1.20±0.06(α s ) (µ)] kev Matthias Steinhauser Top and bottom at threshold 26

39 Result Γ(Υ(1S) l + l ) pole = [1.04±0.04(α s ) Γ(Υ(1S) l + l ) PS = [1.08±0.05(α s ) Γ(Υ(1S) l + l ) exp = [1.340±0.018] kev third-order perturbative result is 30% too low (µ)] kev (µ)] kev effects from finite m c? add NLO and NNLO m c terms to Γ(Υ(1S) l + l ) [Hoang 00; Beneke,Maier,Piclum,Rauh 14] decouple charm: α (4) s α (3) s [Pineda] Γ(Υ(1S) l + l ) pole = [1.20±0.06(α s ) (µ)] kev sizeable non-perturbative contribution? Matthias Steinhauser Top and bottom at threshold 26

40 Result Γ(Υ(1S) l + l ) pole = [1.04±0.04(α s ) Γ(Υ(1S) l + l ) PS = [1.08±0.05(α s ) Γ(Υ(1S) l + l ) exp = [1.340±0.018] kev third-order perturbative result is 30% too low (µ)] kev (µ)] kev effects from finite m c? add NLO and NNLO m c terms to Γ(Υ(1S) l + l ) [Hoang 00; Beneke,Maier,Piclum,Rauh 14] decouple charm: α (4) s α (3) s [Pineda] Γ(Υ(1S) l + l ) pole = [1.20±0.06(α s ) (µ)] kev sizeable non-perturbative contribution? Γ(Υ(1S) l + l ) HPQCD = [1.19±0.11] kev lattice [HPQCD 14] Matthias Steinhauser Top and bottom at threshold 26

41 Result Γ(Υ(1S) l + l ) pole = [1.04±0.04(α s ) Γ(Υ(1S) l + l ) PS = [1.08±0.05(α s ) Γ(Υ(1S) l + l ) exp = [1.340±0.018] kev third-order perturbative result is 30% too low (µ)] kev (µ)] kev effects from finite m c? add NLO and NNLO m c terms to Γ(Υ(1S) l + l ) [Hoang 00; Beneke,Maier,Piclum,Rauh 14] decouple charm: α (4) s α (3) s [Pineda] Γ(Υ(1S) l + l ) pole = [1.20±0.06(α s ) (µ)] kev sizeable non-perturbative contribution? Γ(Υ(1S) l + l ) HPQCD = [1.19±0.11] kev lattice [HPQCD 14] Γ(Υ(1S) l + l ) = [ ] kev [Shen,Wu,Ma,Bi,Wang 15] apply principle of maximum conformality (PMC) to N 3 LO result Γ(Υ(1S) l + l ) r 1 αs(q 3 1 )+r 2 αs(q 4 2 )+r 3 αs(q 5 3 )+r 4 αs(q 6 4 ) with Q GeV, Q GeV, Q 3 = Q GeV Matthias Steinhauser Top and bottom at threshold 26

42 Non-perturbative contribution 1. δ np ψ 1 (0) 2 = ψ LO 1 (0) π 2 K [Leutwyler 81,Voloshin 82] K = αs π G2 m 4 b (αscf)6 αs π G2 = GeV 4 δ np Γ ll (Υ(1S)) = 1.67 pole /2.20 PS kev [α s (3.5 GeV) 0.24]? value of αs π G2? scale of α s? dimension-6 condensate contribution [Pineda 97] Γ(Υ(1S) l + l ) Γ(Υ(1S) l + l ) 0.3 kev exp pert.n 3 LO Matthias Steinhauser Top and bottom at threshold 27

43 Non-perturbative contribution 1. δ np ψ 1 (0) 2 = ψ LO 1 (0) π 2 K [Leutwyler 81,Voloshin 82] K = αs π G2 m 4 b (αscf)6 2. M Υ(1S) = 2m b + E p π2 425 m b(α s C F ) 2 K use PS scheme perturbation theory converges [Beneke,Kiyo,Schuller 05] δ np Γ ll (Υ(1S)) = 4α2 α s δm np Υ(1S) [ (α s)±0.42(m b ) (µ)±0.12(m c)] kev? m MS b (charm effects [Hoang 00]) = GeV GeV δ np Γ ll (Υ(1S)) 0.3 kev α s = ±0.001, m b = 4.163±0.016 GeV, 3 µ 10 GeV [PDG] [Chetyrkin et al. 09] Matthias Steinhauser Top and bottom at threshold 27

44 Non-perturbative contribution 1. δ np ψ 1 (0) 2 = ψ LO 1 (0) π 2 K [Leutwyler 81,Voloshin 82] K = αs π G2 m 4 b (αscf)6 2. M Υ(1S) = 2m b + E p π2 425 m b(α s C F ) 2 K use PS scheme perturbation theory converges [Beneke,Kiyo,Schuller 05] δ np Γ ll (Υ(1S)) = 4α2 α s δm np Υ(1S) [ (α s)±0.42(m b ) (µ)±0.12(m c)] kev? m MS b (charm effects [Hoang 00]) = GeV GeV δ np Γ ll (Υ(1S)) 0.3 kev Summary: perturbation theory: solid prediction non-perturbative contribution: unclear Matthias Steinhauser Top and bottom at threshold 27

45 Matthias Steinhauser Top and bottom at threshold 28

46 Positronium hyperfine splitting ν = E (e + e ) E (e + e ) precise test of QED Experiment: (1 6) GHz [Mills et al ] (74) GHz [Ritter et al. 84] 2.7σ (16) stat. (13) syst. GHz [Ishida et al. 13] ( ) Zeeman HFS 1+4q2 1 q B material effects? non-uniform B field?... Matthias Steinhauser Top and bottom at threshold 29

47 Comparison experiment theory Matthias Steinhauser Top and bottom at threshold 30

48 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders { ν = ν LO 1 α ( 32 π ln 2 ( ) α 2 [ π ] 56 ζ(3) 3 2 ( ) α 3 } + D π ( π2 + α 3 π ln2 α+ ) 5 14 α2 lnα π2 ) ( ln 2 ln 2 ) α 3 π lnα Matthias Steinhauser Top and bottom at threshold 31

49 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α π2 ) ( ln 2 ln 2 ) α 3 π lnα [Pirenne 47] Matthias Steinhauser Top and bottom at threshold 31

50 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α π2 ) ( ln 2 ln 2 ) α 3 π lnα [Brodsky,Erickson 66;... ; Hoang,Labelle,Zebarjad 97; Czanecki,Melnikov,Yelkhovsky 99] Matthias Steinhauser Top and bottom at threshold 31

51 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α π2 ) ( ln 2 ln 2 ) α 3 π lnα [Karshenboim 93] Matthias Steinhauser Top and bottom at threshold 31

52 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α π2 ) ( ln 2 ln 2 ) α 3 π lnα [Kniehl,Penin 00; Hill 01; Melnikov,Yelkhovsky 01] Matthias Steinhauser Top and bottom at threshold 31

53 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π ( ) α 2 [ 1367 π ] ( ) 7 ln α2 lnα ( π ) 84 π2 ln ζ(3) 3 ( α 3 2 π ln2 α ) α 3 7 ln 2 π lnα ( ) α 3 } ( ) α 3 + D = (41) GHz+ ν LO D π π error estimate: D from muonium atom [Nio,Kinoshita 97] Matthias Steinhauser Top and bottom at threshold 31

54 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders { ν = ν LO 1 α ( 32 π ln 2 ( ) α 2 [ π ] 56 ζ(3) 3 2 ( ) α 3 } + D π ( π2 + α 3 π ln2 α+ ) 5 14 α2 lnα π2 ) ( ln 2 ln 2 ) α 3 π lnα [Adkins,Fell 14] light-by-light 2γ exchange contribution to D: tiny Matthias Steinhauser Top and bottom at threshold 31

55 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π m 2 e ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α+ aim: 1-γ annihilation contribution to D at O(α 6 m e ): 1-γ annihilation contribution 32% non-annihilation 47% π2 ) ( ln 2 ln 2 ) α 3 π lnα Matthias Steinhauser Top and bottom at threshold 31

56 D 1 γ ann : 1-γ annihilation contribution [Baker,Marquard,Penin,Piclum,Steinhauser 14] pnrqed dimensional regularization QED part of c v Π γγ (q 2 = 4m 2 e) computed up to 3 loops Matthias Steinhauser Top and bottom at threshold 32

57 D 1 γ ann : result D 1 γ ann = 84.8 ± 0.5 [Baker,Marquard,Penin,Piclum,Steinhauser 14] ν th = GHz = (22) GHz error estimate: size of the evaluated 1-γ annihilation contribution moves closer to [Ishida et al. 13] ν exp = (16) stat. (13) syst. GHz Matthias Steinhauser Top and bottom at threshold 33

58 D 1 γ ann : result D 1 γ ann = 84.8 ± 0.5 [Baker,Marquard,Penin,Piclum,Steinhauser 14] ν th = GHz = (22) GHz error estimate: size of the evaluated 1-γ annihilation contribution moves closer to [Ishida et al. 13] ν exp = (16) stat. (13) syst. GHz 95% from ultra-soft contribution: D 1 γ,us ann 3π2 7 δus o Assumption: also nonannihilation correction is dominated by ultra-soft contribution: D 1 γ,us sct 4π2 7 δus o 106 D tot 191 ν th = GHz agreement within 1σ with [Ishida et al. 13] Matthias Steinhauser Top and bottom at threshold 33

59 Conclusions a 3, c v to 3 loops Γ(Υ(1S) l + l ) to NNNLO first NNNLO calculation to physical quantity in quarkonium physics positronium HFS: 1-γ annihilation too(α 7 m e ) Coming soon: e + e t t at NNNLO Matthias Steinhauser Top and bottom at threshold 34

High order corrections in theory of heavy quarkonium

High order corrections in theory of heavy quarkonium High order corrections in theory of heavy quarkonium Alexander Penin TTP Karlsruhe & INR Moscow ECT Workshop in Heavy Quarkonium Trento, Italy, August 17-31, 2006 A. Penin, TTP Karlsruhe & INR Moscow ECT

More information

A pnrqcd approach to t t near threshold

A pnrqcd approach to t t near threshold LoopFest V, SLAC, 20. June 2006 A pnrqcd approach to t t near threshold Adrian Signer IPPP, Durham University BASED ON WORK DONE IN COLLABORATION WITH A. PINEDA AND M. BENEKE, V. SMIRNOV LoopFest V p.

More information

Heavy quark masses from Loop Calculations

Heavy quark masses from Loop Calculations Heavy quark masses from Loop Calculations Peter Marquard Institute for Theoretical Particle Physics Karlsruhe Institute of Technology in collaboration with K. Chetyrkin, D. Seidel, Y. Kiyo, J.H. Kühn,

More information

High-Order QED Calculations in Physics of Positronium

High-Order QED Calculations in Physics of Positronium current status and future perspectives of High-Order QED Calculations in Physics of Positronium Alexander A. Penin II. Institut für Theoretische Physik, Universität Hamburg, Germany and Institute for Nuclear

More information

Effective Field Theories for Quarkonium

Effective Field Theories for Quarkonium Effective Field Theories for Quarkonium recent progress Antonio Vairo Technische Universität München Outline 1. Scales and EFTs for quarkonium at zero and finite temperature 2.1 Static energy at zero temperature

More information

Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum

Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum Nikolai Zerf in collaboration with M. Baker, A. Penin, D. Seidel Department of Physics University of Alberta Radcor-Loopfest,

More information

strong coupling Antonio Vairo INFN and University of Milano

strong coupling Antonio Vairo INFN and University of Milano potential Non-Relativistic QCD strong coupling Antonio Vairo INFN and University of Milano For most of the quarkonium states: 1/r mv Λ QCD (0) V (r) (GeV) 2 1 Υ Υ Υ Υ η ψ c χ ψ ψ 2 0 1 2 r(fm) -1 weak

More information

Corrections of Order β 3 0α 3 s to the Energy Levels and Wave Function

Corrections of Order β 3 0α 3 s to the Energy Levels and Wave Function 005 International Linear Collider Workshop - Stanford U.S.A. Corrections of Order β 0α s to the Energy Levels and Wave Function M. Steinhauser Institut für Theoretische Teilchenphysik Universität Karlsruhe

More information

Top Quarks, Unstable Particles... and NRQCD

Top Quarks, Unstable Particles... and NRQCD Top Quarks, Unstable Particles... and NRQCD André H. Hoang Max-Planck-Institute for Physics Munich (Thanks to A. Manohar, I. Stewart, T. Teubner, C. Farrell, C. Reisser, M. Stahlhofen ) INT Workshop, May

More information

Lectures on NRQCD Factorization for Quarkonium Production and Decay

Lectures on NRQCD Factorization for Quarkonium Production and Decay Lectures on NRQCD Factorization for Quarkonium Production and Decay Eric Braaten Ohio State University I. Nonrelativistic QCD II. Annihilation decays III. Inclusive hard production 1 NRQCD Factorization

More information

Radiative transitions and the quarkonium magnetic moment

Radiative transitions and the quarkonium magnetic moment Radiative transitions and the quarkonium magnetic moment Antonio Vairo based on Nora Brambilla, Yu Jia and Antonio Vairo Model-independent study of magnetic dipole transitions in quarkonium PRD 73 054005

More information

Heavy Quark Masses. Matthias Steinhauser TTP, University of Karlsruhe. May 2008, CAQCD08, University of Minnesota

Heavy Quark Masses. Matthias Steinhauser TTP, University of Karlsruhe. May 2008, CAQCD08, University of Minnesota Heavy Quark Masses Matthias Steihauser TTP, Uiversity of Karlsruhe May 2008, CAQCD08, Uiversity of Miesota i collaboratio with Kostja Chetyrki, Has Küh, Christia Sturm ad (i part with) the HPQCD Collaboratio:

More information

Bottom Quark Mass from Υ Mesons

Bottom Quark Mass from Υ Mesons UCSD/PTH 98-0 hep-ph/9803454 March 1998 Bottom Quark Mass from Υ Mesons A.H. Hoang Department of Physics, University of California, San Diego, La Jolla, CA 9093 0319, USA Abstract The bottom quark pole

More information

arxiv: v1 [hep-ph] 21 Sep 2007

arxiv: v1 [hep-ph] 21 Sep 2007 The QCD potential Antonio Vairo arxiv:0709.3341v1 [hep-ph] 1 Sep 007 Dipartimento di Fisica dell Università di Milano and INFN, via Celoria 16, 0133 Milano, Italy IFIC, Universitat de València-CSIC, Apt.

More information

Recent Results in NRQCD

Recent Results in NRQCD Max-Planck-Institute für Physik (Werner-Heisenberg-Institut) Recent Results in NRQCD Pedro D. Ruiz-Femenía Continuous Advances in QCD 2006 Continuous Advances in QCD 2006 May 11-14, University of Minnesota

More information

arxiv: v1 [hep-ph] 4 Feb 2014

arxiv: v1 [hep-ph] 4 Feb 2014 ALBERTA-THY-03-14, DESY-14-011, LPN14-045, SFB/CPP-14-08, TTK-14-06, TTP14-005, TUM-HEP-930/14 Hyperfine splitting in positronium to Oα 7 m e : one-photon annihilation contribution M. Baker, 1 P. Marquard,

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Determination of α s from the QCD static energy

Determination of α s from the QCD static energy Determination of α s from the QCD static energy Antonio Vairo Technische Universität München Bibliography (1) A. Bazakov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination

More information

Top Antitop Pair Production Close to Threshold Synopsis of Recent NNLO Results

Top Antitop Pair Production Close to Threshold Synopsis of Recent NNLO Results EPJdirect C3, 1 22 (2000) DOI 10.1007/s1010500c0003 EPJdirect electronic only c Springer-Verlag 2000 Top Antitop Pair Production Close to Threshold Synopsis of Recent NNLO Results A.H. Hoang 1, M. Beneke

More information

Applications of QCD Sum Rules to Heavy Quark Physics

Applications of QCD Sum Rules to Heavy Quark Physics Applications of QCD Sum Rules to Heavy Quark Physics Alexander Khodjamirian UNIVERSITÄT SIEGEN Theoretische Physik 1 RESEARCH UNIT q et f 3 lectures at Helmholtz International School "Physics of Heavy

More information

Thermal width and quarkonium dissociation in an EFT framework

Thermal width and quarkonium dissociation in an EFT framework Thermal width and quarkonium dissociation in an EFT framework Antonio Vairo Technische Universität München in collaboration with N. Brambilla, M. A. Escobedo and J. Ghiglieri based on arxiv:1303.6097 and

More information

Heavy quarkonium in a weaky-coupled plasma in an EFT approach

Heavy quarkonium in a weaky-coupled plasma in an EFT approach Heavy quarkonium in a weaky-coupled plasma in an EFT approach Jacopo Ghiglieri TU München & Excellence Cluster Universe in collaboration with N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo 474th WE

More information

Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD)

Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD) Top@LHC LHC TTbar-Threshold Threshold@ILC/LHC Green Functions Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD) Yuichiro Kiyo TTP, Universität Karlsruhe Collaboration with: J. H. Kühn(KA),

More information

Determination of α s from the QCD static energy

Determination of α s from the QCD static energy Determination of α s from the QCD static energy Antonio Vairo Technische Universität München Bibliography (1) A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination

More information

Charm Mass Determination from QCD Sum Rules at O(α )

Charm Mass Determination from QCD Sum Rules at O(α ) Charm Mass Determination from QCD Sum Rules at O(α ) 3 s Vicent Mateu MIT - CTP Cambridge - USA PANIC 11 - MIT 25-07 - 2011 Taskforce: A. H. Hoang MPI & U. Vienna V. Mateu MIT & IFIC S.M. Zebarjad & B.

More information

Precision Measurements in Electron-Positron Annihilation: Theory and Experiment

Precision Measurements in Electron-Positron Annihilation: Theory and Experiment Precision Measurements in Electron-Positron Annihilation: Theory and Experiment Konstantin Chetyrkin and Institut für Theoretische Teilchenphysik, KIT, 76131 Karlsruhe E-mail: Johann.Kuehn@KIT.edu Theory

More information

Running electromagnetic coupling constant: low energy normalization and the value at M Z

Running electromagnetic coupling constant: low energy normalization and the value at M Z MZ-TH/00-51 November 2000 Running electromagnetic coupling constant: low energy normalization and the value at M Z A.A. Pivovarov Institut für Physik, Johannes-Gutenberg-Universität, Staudinger Weg 7,

More information

Questions in Quarkonium Spectroscopy

Questions in Quarkonium Spectroscopy Questions in Quarkonium Spectroscopy International Workshop on Heavy Quarkonium Steve Godfrey Carleton University/DESY godfrey@physics.carleton.ca A very brief introduction to potential models Questions

More information

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge)

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge) Inclusive B decay Spectra by Dressed Gluon Exponentiation Plan of the talk Einan Gardi (Cambridge) Inclusive Decay Spectra Why do we need to compute decay spectra? Kinematics, the endpoint region and the

More information

All order pole mass and potential

All order pole mass and potential All order pole mass and potential Taekoon Lee Seoul National University, Korea QWG3, Beijing, China, Oct. 12--15, 2004 Defining pole mass and potential through Borel summation How to perform the Borel

More information

Colour octet potential to three loops

Colour octet potential to three loops SFB/CPP-13-54 TTP13-8 Colour octet potential to three loops Chihaya Anzai a), Mario Prausa a), Alexander V. Smirnov b), Vladimir A. Smirnov c), Matthias Steinhauser a) a) Institut für Theoretische Teilchenphysik,

More information

Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov XIV Conference Moscow (2009/08/24)

Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov XIV Conference Moscow (2009/08/24) Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov XIV Conference Moscow (2009/08/24) Outline Brief overview: BaBar Data Bottomonium Spectra Report on selected BaBar analyses

More information

arxiv: v3 [hep-ph] 24 Nov 2014

arxiv: v3 [hep-ph] 24 Nov 2014 Improved determination of heavy quarkonium magnetic dipole transitions in pnrqcd Antonio Pineda (1) and J. Segovia (2) (1) Grup de Física Teòrica, Universitat Autònoma de Barcelona, arxiv:1302.3528v3 [hep-ph]

More information

Higgs-charm Couplings

Higgs-charm Couplings Higgs-charm Couplings Wai Kin Lai TUM December 21, 2017 MLL Colloquium, TUM OUTLINE Higgs physics at the LHC OUTLINE Higgs physics at the LHC H J/ψ + γ as a key channel to measure Hc c coupling CHRISTMAS

More information

Multiloop QCD: 33 years of continuous development

Multiloop QCD: 33 years of continuous development B 1 / 35 Multiloop QCD: 33 years of continuous development (on example of R(s) and inclusive Z decay hadrons) Konstantin Chetyrkin KIT, Karlsruhe & INR, Moscow SFB TR9 Computational Theoretical Particle

More information

Phenomenology with Lattice NRQCD b Quarks

Phenomenology with Lattice NRQCD b Quarks HPQCD Collaboration 16 July 2015 Our approaches to b quarks In Glasgow, we take two complementary approaches to b quarks: Nonrelativistic QCD and heavy HISQ. Here I will focus exclusively on NRQCD (for

More information

QCD threshold corrections for gluino pair production at NNLL

QCD threshold corrections for gluino pair production at NNLL Introduction: Gluino pair production at fixed order QCD threshold corrections for gluino pair production at NNLL in collaboration with Ulrich Langenfeld and Sven-Olaf Moch, based on arxiv:1208.4281 Munich,

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

Bound-state effects in ttbar production at the LHC

Bound-state effects in ttbar production at the LHC 1 Bound-state effects in ttbar production at the LHC Hiroshi YOKOYA (National Taiwan University) based on works in collaboration with K.Hagiwara(KEK) and Y.Sumino(Tohoku U) GGI workshop, Firenze, 2011.09.28

More information

String calculation of the long range Q Q potential

String calculation of the long range Q Q potential String calculation of the long range Q Q potential Héctor Martínez in collaboration with N. Brambilla, M. Groher (ETH) and A. Vairo April 4, 13 Outline 1 Motivation The String Hypothesis 3 O(1/m ) corrections

More information

pnrqcd determination of E1 radiative transitions

pnrqcd determination of E1 radiative transitions pnrqcd determination of E radiative transitions Sebastian Steinbeißer Group T3f Department of Physics Technical University Munich IMPRS talk 3.3.7 In collaboration with: Nora Brambilla, Antonio Vairo and

More information

Double-charmed Baryons

Double-charmed Baryons Double-charmed Baryons The only experimental information about DCB gives SELEX collaboration: There are several questions to SELEX results: 1) Lifetime 2) Cross sections Theoretical information about DCB:

More information

Matching at one loop for the four-quark operators in NRQCD

Matching at one loop for the four-quark operators in NRQCD Matching at one loop for the four-quark operators in NRQCD A. Pineda and J. Soto Departament d Estructura i Constituents de la Matèria and Institut de Física d Altes Energies. Universitat de Barcelona,

More information

Loop integrals, integration-by-parts and MATAD

Loop integrals, integration-by-parts and MATAD Loop integrals, integration-by-parts and MATAD Matthias Steinhauser TTP, University of Karlsruhe CAPP 009, March/April 009, DESY, Zeuthen Matthias Steinhauser p. Outline I. Integration-by-parts II. MATAD

More information

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) 7618 Karlsruhe, Germany E-mail: joshua.davies@kit.edu Matthias Steinhauser Institut für Theoretische Teilchenphysik, Karlsruhe

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 5, 007 1 Infrared

More information

Positronium molecule

Positronium molecule Positronium molecule e + e - e - (0γ) 2γ (4γ) (1γ) 3γ (5γ) e + PSAS 2008 University of Windsor, July 26, 2008 Andrzej Czarnecki University of Alberta Outline Positronium, its ion, and the molecule 1951

More information

Cornell University, Department of Physics

Cornell University, Department of Physics Cornell University, Department of Physics May 2, 207 PHYS 4444, Particle physics, HW # 9, due: 4/3/207, :40 AM Question : Making invariant Consider a theory where the symmetry is SU(3) SU(2) U() and we

More information

arxiv: v1 [hep-ph] 5 Aug 2018

arxiv: v1 [hep-ph] 5 Aug 2018 KYUSHU HET 186, KEK CP 367, TU-1069 Determination of α s from static QCD potential with renormalon subtraction H. Takaura a, T. Kaneko b, Y. Kiyo c and Y. Sumino d a Department of Physics, Kyushu University,

More information

Inclusive B decay Spectra by Dressed Gluon Exponentiation

Inclusive B decay Spectra by Dressed Gluon Exponentiation Inclusive B decay Spectra by Dressed Gluon Exponentiation Plan of the tal Einan Gardi (Cambridge) Inclusive B decay spectra motivation Strategy of the theoretical study Very short introduction to Sudaov

More information

arxiv:hep-ph/ v1 5 Sep 2006

arxiv:hep-ph/ v1 5 Sep 2006 Masses of the η c (ns) and η b (ns) mesons arxiv:hep-ph/0609044v1 5 Sep 2006 A.M.Badalian 1, B.L.G.Bakker 2 1 Institute of Theoretical and Experimental Physics, Moscow, Russia 2 Department of Physics and

More information

Heating up QGP: towards charm quark chemical equilibration

Heating up QGP: towards charm quark chemical equilibration Heating up QGP: towards charm quark chemical equilibration Mikko Laine (University of Bern, Switzerland) 1 What is it? 2 Melting / recombination: Leptonic annihilation: q q l + l Chemical equilibration:

More information

Light Stop Bound State Production at the LHC. Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim at Yonsei U.

Light Stop Bound State Production at the LHC. Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim at Yonsei U. Light Stop Bound State Production at the LHC Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim 0. 6. 8 at Yonsei U. Outline About stop Motivation for light stop Phenomenology Formalism Summary

More information

Squark and top quark pair production at the LHC and Tevatron

Squark and top quark pair production at the LHC and Tevatron Squark and top quark pair production at the LHC and Tevatron M. Beneke (RWTH Aachen) 10th Hellenic School and Workshop on Elementary Particle Physics and Gravity Corfu, Greece, August 31, 2010 Outline

More information

Summary of precision QCD issues at FCC-ee

Summary of precision QCD issues at FCC-ee Summary of precision QCD issues at FCC-ee th 11 FCC-ee workshop: Theory & Experiments th CERN, 11 Jan. 2019 David d'enterria CERN 1/25 Precision QCD & FCC-ee physics FCC-ee uniquely small EXP uncertainties

More information

Nicola Fabiano Perugia University and INFN, via Pascoli I-06100, Perugia, Italy. Abstract

Nicola Fabiano Perugia University and INFN, via Pascoli I-06100, Perugia, Italy. Abstract η b Decay into Two Photons Nicola Fabiano Perugia University and INFN, via Pascoli I-06100, Perugia, Italy Abstract We discuss the theoretical predictions for the two photon decay width of the pseudoscalar

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

News from Top/QCD. André H. Hoang. Max-Planck-Institute Munich. ECFA Durham 2004 André Hoang p.1

News from Top/QCD. André H. Hoang. Max-Planck-Institute Munich. ECFA Durham 2004 André Hoang p.1 News from Top/QCD André H. Hoang Max-Planck-Institute Munich Top/QCD @ ECFA Durham 2004 André Hoang p.1 Program Top/QCD Session C. Schwinn: Top couling to Higgs and gauge bosons: 6 and 8 fermion final

More information

NNLL threshold resummation for the total top-pair production cross section

NNLL threshold resummation for the total top-pair production cross section NNLL threshold resummation for the total top-pair production cross section Christian Schwinn Univ. Freiburg 16.03.2012 (Based on M.Beneke, P.Falgari, S. Klein, CS, arxiv:1109.1536 [hep-ph] ) Introduction

More information

Introduction to Operator Product Expansion

Introduction to Operator Product Expansion Introduction to Operator Product Expansion (Effective Hamiltonians, Wilson coefficients and all that... ) Thorsten Feldmann Neckarzimmern, March 2008 Th. Feldmann (Uni Siegen) Introduction to OPE March

More information

Heavy quarkonia at finite temperature: The EFT approach

Heavy quarkonia at finite temperature: The EFT approach Heavy quarkonia at finite temperature: he EF approach Jacopo Ghiglieri - echnische Universität München 5th Vienna Central European Seminar on QF 28 November 2008 Outline Motivation Introduction to Effective

More information

2nd Hadron Spanish Network Days. Universidad Complutense de Madrid (Spain) September 8-9, Rubén Oncala. In collaboration with Prof.

2nd Hadron Spanish Network Days. Universidad Complutense de Madrid (Spain) September 8-9, Rubén Oncala. In collaboration with Prof. 2nd Hadron Spanish Network Days Universidad Complutense de Madrid (Spain) September 8-9, 20016 Rubén Oncala In collaboration with Prof. Joan Soto Heavy Quarkonium is a heavy quark-antiquark pair in a colour

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

Precise quark masses and strong coupling constant from heavy quark current correlators

Precise quark masses and strong coupling constant from heavy quark current correlators Precise quark masses ad strog couplig costat from heavy quark curret correlators Christia Sturm Physics Departmet Brookhave Natioal Laboratory High Eergy Theory Group Upto, New York I. Itroductio & Motivatio

More information

Charming Nuclear Physics

Charming Nuclear Physics Charming Nuclear Physics Masaoki Kusunoki Univ. of Arizona (with Sean Fleming, Tom Mehen, Bira van Kolck) Outline Charming Nuclear Physics Introduction (Nuclear EFT) X(3872) as shallow DD* bound state

More information

Production and Decays of Heavy Flavours in ATLAS

Production and Decays of Heavy Flavours in ATLAS Production and Decays of Heavy Flavours in ATLAS Vincenzo Canale Università di Napoli Federico II and INFN Alessandro Cerri University of Sussex Xth Rencontres du Vietnam - Flavour Physics Conference ICISE,

More information

arxiv:hep-ph/ v1 25 Sep 2002

arxiv:hep-ph/ v1 25 Sep 2002 hep-ph/0209302 Direct Higgs production at hadron colliders arxiv:hep-ph/0209302v1 25 Sep 2002 Massimiliano Grazzini (a,b) (a) Dipartimento di Fisica, Università di Firenze, I-50019 Sesto Fiorentino, Florence,

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Pion FF in QCD Sum Rules with NLCs

Pion FF in QCD Sum Rules with NLCs Pion FF in QCD Sum Rules with NLCs A. Bakulev, A. Pimikov & N. Stefanis Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia) Pion FF in QCD Sum Rules with NLCs p.1 Content: Definition of pion form factor

More information

Jürgen R. Reuter, DESY. J.R.Reuter QCD NLO/Top Threshold in WHIZARD Radcor/Loopfest 2015, UCLA,

Jürgen R. Reuter, DESY. J.R.Reuter QCD NLO/Top Threshold in WHIZARD Radcor/Loopfest 2015, UCLA, QCD NLO with Powheg Matching and Top Threshold Matching in WHIZARD Jürgen R. Reuter, DESY in collaboration with F. Bach, B. Chokoufé, A. Hoang, W. Kilian, M. Stahlhofen, C. Weiss Outline of the talk 1)

More information

NLO event generator for LHC

NLO event generator for LHC NLO event generator for LHC Y. Kurihara (KEK) GRACE Group Physics Simulation for LHC 05/Apr./2004 @ KEK Motivation LHC Experimental requirement New Particle Search/Precision Measurement LO-QCD Event generator+k-factor

More information

! s. and QCD tests at hadron colliders. world summary of! s newest results (selection)! s from hadron colliders remarks

! s. and QCD tests at hadron colliders. world summary of! s newest results (selection)! s from hadron colliders remarks ! s and QCD tests at hadron colliders world summary of! s newest results (selection)! s from hadron colliders remarks S. Bethke MPI für Physik, Munich S. Bethke: a s and QCD tests at hadron colliders Collider

More information

Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings

Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings Matthias Ko nig Johannes Gutenberg-University Mainz 25th International Workshop on Weak Interactions and Neutrinos Heidelberg,

More information

Reorganizing the QCD pressure at intermediate coupling

Reorganizing the QCD pressure at intermediate coupling Reorganizing the QCD pressure at intermediate coupling Michael Strickland Gettysburg College and Frankfurt Institute for Advanced Studies (FIAS) Collaborators: Nan Su (FIAS) and Jens Andersen (NTNU) Reference:

More information

Universal Parton Distri. Fn s (non-pert.; QCD evolved)

Universal Parton Distri. Fn s (non-pert.; QCD evolved) Charm Production at HERA and Theory of Heavy Quark Production Why is Heavy Quark Production a non-trivial problem in PQCD? it is a Multi-large-scale Problem Conventional approaches: one-scale problem approximate

More information

Precision theoretical predictions for hadron colliders

Precision theoretical predictions for hadron colliders Precision theoretical predictions for hadron colliders giuseppe bozzi Università degli Studi di Milano and INFN, Sezione di Milano IPN Lyon 25.02.2010 giuseppe bozzi (Uni Milano) Precision theoretical

More information

Charmonium Transitions

Charmonium Transitions Hans Kuipers & Maikel de Vries Student Seminar on Subatomic Physics October 14, 2009 Outline n 2S+1 L J J PC Aspects of charmonium Charmonium is a mesonic bound state of c c. Charmonium produced in e e

More information

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1 Two-loop QCD Corrections to the Heavy Quark Form Factors Thomas Gehrmann Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII Snowmass Linear Collider Worksho005 Two-loop QCD Corrections to the Heavy

More information

Future of CP violation in. a sl. Matthew Kirk. Toward the Ultimate Precision in Flavour Physics Warwick 17 April 2018

Future of CP violation in. a sl. Matthew Kirk. Toward the Ultimate Precision in Flavour Physics Warwick 17 April 2018 Future of CP violation in Matthew Kirk Toward the Ultimate Precision in Flavour Physics Warwick 17 April 2018 1 Im ( Γ 12 ) M 12 Ratio is nice for calculation major uncertainty in both ( f B ) cancels

More information

arxiv: v1 [hep-ph] 8 Nov 2018

arxiv: v1 [hep-ph] 8 Nov 2018 Exclusive Top Threshold Matching at Lepton Colliders DESY, Hamburg, Germany E-mail: juergen.reuter@desy.de arxiv:1811.03950v1 [hep-ph] 8 Nov 2018 Bijan Chokoufé Nejad DESY, Hamburg, Germany E-mail: bijan.chokoufe@desy.de

More information

Soft Collinear Effective Theory: An Overview

Soft Collinear Effective Theory: An Overview Soft Collinear Effective Theory: An Overview Sean Fleming, University of Arizona EFT09, February 1-6, 2009, Valencia Spain Background Before SCET there was QCD Factorization Factorization: separation of

More information

QCD, top and LHC Lecture II: QCD, asymptotic freedom and infrared safety

QCD, top and LHC Lecture II: QCD, asymptotic freedom and infrared safety QCD, top and LHC Lecture II: QCD, asymptotic freedom and infrared safety ICTP Summer School on Particle Physics, June 2013 Keith Ellis ellis@fnal.gov Slides available from Fermilab, http://theory.fnal.gov/people/ellis/talks/

More information

Vector meson dominance, axial anomaly and mixing

Vector meson dominance, axial anomaly and mixing Vector meson dominance, axial anomaly and mixing Yaroslav Klopot 1, Armen Oganesian 1,2 and Oleg Teryaev 1 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

More information

Heavy Quarkonium in a Quark-Gluon Plasma

Heavy Quarkonium in a Quark-Gluon Plasma Heavy Quarkonium in a Quark-Gluon Plasma Joan Soto Departament d Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos Universitat de Barcelona Charmonium Eichten, Godfrey, Mahlke,

More information

Introduction to perturbative QCD and factorization

Introduction to perturbative QCD and factorization Introduction to perturbative QCD and factorization Part 1 M. Diehl Deutsches Elektronen-Synchroton DESY Ecole Joliot Curie 2018 DESY Plan of lectures 0. Brief introduction 1. Renormalisation, running coupling,

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

Relativistic correction to the static potential at O(1/m)

Relativistic correction to the static potential at O(1/m) Relativistic correction to the static potential at O(1/m) Miho Koma (Inst. f. Kernphysik, Mainz Univ.) Yoshiaki Koma, Hartmut Wittig Lattice 2007, Regensburg, 30 July 2007 We investigate the relativistic

More information

Lattice calculation of static quark correlators at finite temperature

Lattice calculation of static quark correlators at finite temperature Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information

J/Ψ-Production in γγ-collisions at NLO. Michael Klasen LPSC Grenoble April 19, 2005

J/Ψ-Production in γγ-collisions at NLO. Michael Klasen LPSC Grenoble April 19, 2005 J/Ψ-Production in γγ-collisions at NLO Michael Klasen LPSC Grenoble April 19, 2005 CERN / Fréjus LPSC ILL ESRF April 19, 2005 Michael Klasen, LPSC Grenoble 2 Research at LPSC Grenoble Astroparticles: Particles:

More information

Charmonium Physics. Zhengguo Zhao. University of Science and Technology of China (USTC) PIC2010 Karlsruhe, Zhengguo Zhao

Charmonium Physics. Zhengguo Zhao. University of Science and Technology of China (USTC) PIC2010 Karlsruhe, Zhengguo Zhao Charmonium Physics Zhengguo Zhao University of Science and Technology of China (USTC) PIC2010 Karlsruhe, Zhengguo Zhao 1 Outline Introduction to charm quark and charmonia Recent results - New resonances,

More information

QCD Results from HERA

QCD Results from HERA QCD Results from HERA Daniel Britzger for the H1 and ZEUS Collaborations La Thuile, Italy 30.03.2017 1 Deep-inelastic ep scattering Neutral current scattering (NC) ep e'x Covered topics in this talk e'(k')

More information

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism & s Using s Pion Electromagnetic Form Factor in Distribution Formalism A. Old Dominion University and Jefferson Lab QCD 215 Workshop Jefferson Labs, May 26, 215 Pion Distribution Amplitude & s ϕ π (x):

More information

Summary and Outlook. Davison E. Soper University of Oregon. LoopFest V, June 2006

Summary and Outlook. Davison E. Soper University of Oregon. LoopFest V, June 2006 Summary and Outlook Davison E. Soper University of Oregon LoopFest V, June 2006 Parton Showers & jet matching R. Erbacher emphasized how important this issue is for CDF analyses. CDF has been using a somewhat

More information

V cb : experimental and theoretical highlights. Marina Artuso Syracuse University

V cb : experimental and theoretical highlights. Marina Artuso Syracuse University V cb : experimental and theoretical highlights Marina Artuso Syracuse University 1 The method b q W - e, µ, ν c or u q τ Ultimate goal: a precise determination of V cb The challenge: precise evaluation

More information

Soft-Collinear Effective Theory and B-Meson Decays

Soft-Collinear Effective Theory and B-Meson Decays Soft-Collinear Effective Theory and B-Meson Decays Thorsten Feldmann (TU München) presented at 6th VIENNA CENTRAL EUROPEAN SEMINAR on Particle Physics and Quantum Field Theory, November 27-29, 2009 Th.

More information

Discovery of Pions and Kaons in Cosmic Rays in 1947

Discovery of Pions and Kaons in Cosmic Rays in 1947 Discovery of Pions and Kaons in Cosmic Rays in 947 π + µ + e + (cosmic rays) Points to note: de/dx Bragg Peak Low de/dx for fast e + Constant range (~600µm) (i.e. -body decay) small angle scattering Strange

More information

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory E-mail: vziegler@slac.stanford.edu Selected studies in bottomonium physics carried out by the BaBar experiment at the SLAC PEP-II e + e collider are presented. They

More information