Heavy quark masses from Loop Calculations

Size: px
Start display at page:

Download "Heavy quark masses from Loop Calculations"

Transcription

1 Heavy quark masses from Loop Calculations Peter Marquard Institute for Theoretical Particle Physics Karlsruhe Institute of Technology in collaboration with K. Chetyrkin, D. Seidel, Y. Kiyo, J.H. Kühn, A. Maier, P. Maierhöfer, J. Piclum, A.V. Smirnov, M. Steinhauser, C. Sturm KA SFB TR9 Computational Theoretical Particle Physics B AC , Dresden

2 Outline 1 Introduction 2 Low-energy moments 3 Padé approximation 4 Heavy quark masses Charm-Quark Mass Bottom-Quark Mass Masses from Lattice Calculations 5 t threshold 6 Conclusion

3 Introduction charm, bottom and top quark masses are important input parameters of the Standard Model Γ(B X u lν) m 5 b V ub 2 Γ(B X c lν) m 5 b f(m2 c /m2 b ) V cb 2 Higgs ILC: Γ(H b b) m 2 b, known up to α4 s

4 Introduction charm, bottom and top quark masses are important input parameters of the Standard Model Γ(B X u lν) m 5 b V ub 2 Γ(B X c lν) m 5 b f(m2 c /m2 b ) V cb 2 Higgs ILC: Γ(H b b) m 2 b, known up to α4 s charm and bottom quark masses can be obtained from an analysis based on low-energy moments of Π(q 2 ) and experimental data for R(s) top-quark mass can be obtained from a measurement of the total cross section for t t pair production at threshold at the ILC

5 Techniques I Which hard processes can be done at more than two loops? no-scale three point three loops single-scale two point three loops no-scale two point four loops

6 Techniques I Which hard processes can be done at more than two loops? no-scale three point three loops single-scale two point three loops no-scale two point four loops first step: perform (asymptotic) expansion in suitable parameters: external momenta masses or mass ratios threshold second step: perform reduction to master integrals third step: calculate needed master integrals

7 Techniques II after generation of diagrams and expansion typically O(10 4 ) O(10 6 ) scalar integrals have to be calculated direct calculation not possible, but integrals related by Integration-By-Parts identities d n {k µ i, q µ i } k j k µ = 0 D 1 D m using IBP identities all needed integrals J i can be reduced to a small set of master integrals {M 1,..., M N } J i = j=1,n C ij (d, x)m j many checks possible on the level of master integrals

8 Techniques III How to use the IBP identities? Method 1: Recursion relations Manually solve the IBP identities allows for fast implementations, e.g. MATAD,MINCER not always possible!?!

9 Techniques III How to use the IBP identities? Method 1: Recursion relations Manually solve the IBP identities allows for fast implementations, e.g. MATAD,MINCER not always possible!?! Method 2: Laporta s algorithm Generate linear system of equations using IBP relations and solve it. very successful, multi-purpose method but inefficient, brute force approach

10 Techniques III How to use the IBP identities? Method 1: Recursion relations Manually solve the IBP identities allows for fast implementations, e.g. MATAD,MINCER not always possible!?! Method 2: Laporta s algorithm Generate linear system of equations using IBP relations and solve it. very successful, multi-purpose method but inefficient, brute force approach Method 3: Baikov s method use expansion in n to construct reduction

11 Techniques IV Many techniques/tools exist for the calculation of the master integrals direct calculation using Feynman/Alpha parametrization Mellin-Barnes representation sector decomposition difference equations differential equations dimensional recursion relation Caveat: if numerical integration error estimate problematic

12 Mass determination: Outline of the method Experiment R(s) BES (2001) J/ψ ψ, MD pqcd CLEO BES (2006) s (GeV) Define experimental moments M exp R(s) n = ds sn+1 Theory Π(q 2 ) = 1 12π 2 R(s) s q 2 ds Taylor expand Π(q 2 ) around q 2 = 0: ( ) Π(q 2 ) = 3 n q 2 Cn 16π 2 4m 2 Q theoretical moments C n ( ) 1 m Q Mn 2n C n

13 vacuum polarization function Π µν (q 2 ) = ( q 2 g µν + q µ q ν )Π(q 2 ) + q µ q ν Π L (q 2 ) = i dx e iqx 0 Tj µ (x)j ν (0) 0, j µ = ψγ µ ψ, ψγ µ χ related to R(s) = σ(e + e hadrons)/σ(e + e µ + µ ) through R(s) = 12πImΠ(q 2 + iǫ) low-energy expansion Π(q 2 ) = 3 16π 2 C n z n, n>0 C n = j=0 ( αs ) j (j) C n 4π z = q2 4m 2 Q

14 What do we know about Π(q 2 ) at one and two loops known analytically [Kallen, Sabry 55] Π (0) (z) = 3 ( 20 16π ) 4(1 z)(1 + 2z) G(z), 3z 3z Π (1) (z) = 3 [ 5 16π z (1 z)3 G(z) 6z z + (1 z) 1 16z G(z) z ( 1 + 2z(1 z) d ) ] I(z) 6z 6z dz z G(z) = 1 log (u) 2z 1 1 z, u = 1 1 z 1 1 1z + 1. I(z) =6 ( ζ 3 + 4Li 3 ( u) + 2Li 3 (u) ) 8 ( 2Li 2 ( u) + Li 2 (u) ) log(u) 2 ( 2 log(1 + u) + log (1 u) ) log(u) 2

15 Π(q 2 three loops not known fully analytical two options for calculation of low-energy expansion expand propagators to obtain vacuum diagrams reduce to master integrals : first eight terms

16 Π(q 2 three loops not known fully analytical two options for calculation of low-energy expansion expand propagators to obtain vacuum diagrams reduce to master integrals : first eight terms reduce propagator diagrams to master integrals calculate expansion of master integrals : many terms

17 Π(q 2 three loops not known fully analytical two options for calculation of low-energy expansion expand propagators to obtain vacuum diagrams reduce to master integrals : first eight terms reduce propagator diagrams to master integrals calculate expansion of master integrals : many terms some terms in threshold expansion many terms in high energy expansion

18 Π(q 2 three loops not known fully analytical two options for calculation of low-energy expansion expand propagators to obtain vacuum diagrams reduce to master integrals : first eight terms reduce propagator diagrams to master integrals calculate expansion of master integrals : many terms some terms in threshold expansion many terms in high energy expansion full q 2 dependence reconstructed using Padé approximation [Chetyrkin, Kühn, Steinhauser]

19 Π(q 2 three loops Example: 1-loop ( ) 4(ǫ 1) Π(z = q 2 /(4m 2 )) = 2ǫ 3 8 z(2ǫ 3) 8(ǫ 1) z(2ǫ 3) 3-loop calculation leads to a similar expression. The master integrals can not be calculated analytically calculate expansion needed input: 3-loop vacuum integrals

20 Calculation of three-loop propagator master integrals Differential equation obtained from scaling relation ( q 2 q 2 + m2 m 2 1 ) 2 D(J) J(q 2, m 2, d) = 0 D(J) mass dimension of J make ansatz for master integrals J i (q 2, m 2, d) = m D(J i) n ( ) q 2 n K in m 2 solve resulting system of linear equations for K in boundary condition: known tadpole diagrams

21 Calculation of three-loop propagator master integrals Differential equation obtained from scaling relation ( q 2 q 2 + m2 m 2 1 ) 2 D(J) J(q 2, m 2, d) = 0 D(J) mass dimension of J make ansatz for master integrals ( J i (z, d) = m D(J i) n K in z n + K ǫ in ( q 2 m 2 ) ǫ + K 2ǫ in solve resulting system of linear equations for K in K ǫ boundary condition: known tadpole diagrams ( ) q 2 2ǫ ) ( q 2 m 2 in K in 2ǫ m 2 ) n

22 diagonal vector current j µ = ψγ µ ψ, ψ massive Π (2),v (z) = 3 16π 2 `( nl )z + ( n l )z 2 + ( n l )z 3 + ( n l )z 4 + ( n l )z 5 + ( n l )z 6 + ( n l )z 7 + ( n l )z 8 + ( n l )z 9 + ( n l )z 10 + ( n l )z 11 + ( n l )z 12 + ( n l )z 13 + ( n l )z 14 + ( n l )z 15 + ( n l )z 16 + ( n l )z 17 + ( n l )z 18 + ( n l )z 19 + ( n l )z 20 + ( n l )z 21 + ( n l )z 22 + ( n l )z 23 + ( n l )z 24 + ( n l )z 25 + ( n l )z 26 + ( n l )z 27 + ( n l )z 28 + ( n l )z 29 + ( n l )z 30 [Boughezal, Czakon, Schutzmaier] [Maier, Maierhöfer, PM]

23 non-diagonal vector current j µ = ψγ µ χ, ψ massive, χ massless Π (2),v (z) = 3 16π 2 `( nl )z + ( n l )z 2 + ( n l )z 3 + ( n l )z 4 + ( n l )z 5 + ( n l )z 6 + ( n l )z 7 + ( n l )z 8 + ( n l )z 9 + ( n l )z 10 + ( n l )z 11 + ( n l )z 12 + ( n l )z 13 + ( n l )z 14 + ( n l )z 15 + ( n l )z 16 + ( n l )z 17 + ( n l )z 18 + ( n l )z 19 + ( n l )z 20 + ( n l )z 21 + ( n l )z 22 + ( n l )z 23 + ( n l )z 24 + ( n l )z 25 + ( n l )z 26 + ( n l )z 27 + ( n l )z 28 + ( n l )z 29 + ( n l )z 30 [ Maier, PM]

24 Π(q 2 four loops reduction of single-scale propagator-type diagrams not (yet) four loops only direct expansion of diagrams and reduction to master integrals possible only very limited number of moments calculable third moment first moment also calculated by [Chetyrkin et al; Boughezal et al] more information available for cases with two closed fermion loops many terms of nf 2 contributions known [Czakon, Schutzmaier] n n 1 l α n s known to all orders in α s [Grozin, Sturm] some information about threshold and high-energy behavior

25 Calculation of third NNNLO 700 four-loop Feynman diagrams of the form q 2 q 2 q 2 expansion around q 2 = 0 ( ) q 2 = + q2 + q 2 2 4m 2 4m 2 results in four-loop vacuum integrals which have to be calculated

26 Calculation cont d direct calculation of all these integrals not feasible perform reduction to master integrals using Laporta s algorithm needed: , calculated: , naive: in this case there are only 13 four-loop master integrals, all are known analytically [Chetyrkin et al; Laporta; Kniehl et al; Schröder et al] Tools: qgraf[nogueira], (T)FORM[Vermaseren], Crusher[PM, Seidel] Optimization: Integrate out self energies reduce number of loops

27 Third moment Result C (3) n ll,3 lh,3 = C F T 2 F n2 l C(3) ll,n + C F T 2 F n2 h C(3) hh,n + C F T 2 F n l n h C (3) lh,n + C(3) n f 0 + C,n F T F n l C A C (3) lna,n + C F C (3) la,n + C F T F n h C A C (3) hna,n + C F C (3), µ = m ha,n q, c 4 = 24a 4 + log 4 (2) 6ζ 2 log 2 (2), a k = Li k (1/2) = ζ 3, hh,3 = ζ 3, = c ζ ζ 3, lna,3 = c ζ ζ 3, la,3 = c ζ ζ 3, hna,3 = c ζ ζ ζ 3, ha,3 = c ζ ζ n f 0 = , c ζ ζ log(2) ζ a log(2)ζ log 3 (2)ζ

28 Π(q 2 ) at four loops Collect information of behavior in low-energy, threshold and high-energy region (example for vector current and n l = 3) low-energy: Π 3 (z) = z z z 3 + O(z 4 )

29 Π(q 2 ) at four loops Collect information of behavior in low-energy, threshold and high-energy region (example for vector current and n l = 3) low-energy: Π 3 (z) = + O(z 4 ) threshold: Π 3 (z) = /(1 z) + ( log(1 z))/ 1 z log(1 z) log 2 (1 z) log 3 (1 z) + K 0 + O( 1 z)

30 Π(q 2 ) at four loops Collect information of behavior in low-energy, threshold and high-energy region (example for vector current and n l = 3) low-energy: Π 3 (z) = + O(z 4 ) threshold: Π 3 (z) = + K 0 + O( 1 z) high-energy: Π 3 (z) = log( 4z) log 2 ( 4z) log 3 ( 4z) + 1/z( log( 4z) log 2 ( 4z) log 3 ( 4z)) + 1/z 2 (D log( 4z) log 2 ( 4z) log 3 ( 4z) log 4 ( 4z)) + O(1/z 3 )

31 Π(q 2 ) at four loops Collect information of behavior in low-energy, threshold and high-energy region (example for vector current and n l = 3) low-energy: Π 3 (z) = + O(z 4 ) threshold: Π 3 (z) = + K 0 + O( 1 z) high-energy: Π 3 (z) = + 1/z 2 D 2 + O(1/z 3 )

32 Π(q 2 ) at four loops Collect information of behavior in low-energy, threshold and high-energy region (example for vector current and n l = 3) low-energy: Π 3 (z) = + O(z 4 ) threshold: Π 3 (z) = + K 0 + O( 1 z) high-energy: Π 3 (z) = + 1/z 2 D 2 + O(1/z 3 ) (1-z)Π v,(3) v R 3,v z v

33 Π(q 2 ) at four loops Collect information of behavior in low-energy, threshold and high-energy region (example for vector current and n l = 3) low-energy: Π 3 (z) = + O(z 4 ) threshold: Π 3 (z) = + K 0 + O( 1 z) high-energy: Π 3 (z) = + 1/z 2 D 2 + O(1/z 3 ) (1-z)Π v,(3) v R 3,v z v Find approximating function and determine further terms in low-energy expansion and the missing constants K 0 and D 2.

34 Padé approximation Approximation by a rational function of the form p nm (z) = n i=0 a iz i 1 + m i=1 b iz i with n + m + 1 degrees of freedom n + m + 1 different Padés for a given set of boundary condition faster convergence than normal Taylor series better behaved near cuts

35 Padé approximation I Next Step: Construct the Padé approximation But: Π(z) logarithmically divergent for z 1 and z, can not be approximated by rational function split Π(z) in two parts Π(z) = Π reg (z) + Π log (z), where Π log (z) contains all logarithmic contributions

36 Padé approximation II Π log (z) How to construct Π log (z)? Use one- and two-loop results as building blocks threshold behavior G(z) = π z + O( 1 z) Π (1) (z) = 3 16 log(1 z) + const + O( 1 z) high-energy behavior Ansatz for Π log (z) G(z) = log( 4z) 2z + O(z 2 ) Π log (z) = k ij Π (1) (z) i G(z) j + d mn (zg(z)) m (1 1 z ) m 2 threshold high-energy 1 z n

37 Padé approximation III Π reg (z) Π reg (z) = Π(z) Π log (z) is free of logarithmic singularities perform a conformal mapping to the unit circle z 4ω/(1 + ω) 2 Im(z) Im(ω) 0 1 Re(z) Re(ω)

38 Padé approximation IV fit by Padé approximation of the form p nm (ω) = n i=0 a iω i 1 + m i=1 b iω i with n + m + 1 = 9 degrees of freedom error estimate: modify Π log (z), vary a i and b m Π log (z) = k ij Π (1) (z) i G(z) j (a i + 1 z ) + d mn (zg(z)) m (1 1 z ) m 2 1 z n (b m + 1 z )

39 Padé approximation V Quality of Fit Distribution of the O(8000) reconstructed values for the first missing low-energy constant C 4 strongly peaked, very narrow distribution ( < C 4 < ) choose standard deviation as measure for error

40 Padé approximation VI Results n l = 3 n l = 4 n l = (11) (10) (9) (32) (32) (27) (61) (63) (54) (9) (10) (9) (13) (14) (12) (17) (18) (16) (20) (22) (19)

41 Padé approximation VI Results n l = 3 n l = 4 n l = (11) (10) (9) (32) (32) (27) (61) (63) (54) (9) (10) (9) (13) (14) (12) (17) (18) (16) (20) (22) (19) K (3),v 0 17(11) 17(29) 16(10)

42 Padé approximation VI Results n l = 3 n l = 4 n l = (11) (10) (9) (32) (32) (27) (61) (63) (54) (9) (10) (9) (13) (14) (12) (17) (18) (16) (20) (22) (19) K (3),v 0 17(11) 17(29) 16(10) D (3),v 2 2.0(42) 1.2(83) 1.4(21)

43 Padé approximation IV Results n l = 3 n l = 4 n l = (11) (10) (9) (32) (32) (27) (61) (63) (54) (9) (10) (9) (13) (14) (12) (17) (18) (16) (20) (22) (19) K (3),v 0 17(11) 17(29) 16(10) D (3),v 2 2.0(42) 1.2(83) 1.4(21) ± 0.57 [Hoang et al] 10 ± 11 [Hoang et al]

44 Padé approximation V R(s) reconstruction of Π(q 2 ) below and R(s) above threshold [Kiyo, Maier, Maierhöfer, PM 09] red error band corresponds to three times the local standard deviation (1 z)π(z) below threshold vr(v) above threshold

45 Outline of the method Experiment R(s) BES (2001) J/ψ ψ, MD pqcd CLEO BES (2006) s (GeV) Define experimental moments M exp R(s) n = ds sn+1 Theory Π(q 2 ) = 1 12π 2 R(s) s q 2 ds Taylor expand Π(q 2 ) around q 2 = 0: ( ) Π(q 2 ) = 1 n q 2 Cn 16π 2 4m 2 Q theoretical moments C n ( ) 1 m Q Mn 2n C n

46 Experimental Data R(s) pqcd BES (2001) J/ψ ψ, MD-1 CLEO BES (2006) s (GeV)

47 Analysis contributions from three regions Resonances: width and mass of J/Ψ, Ψ by BES, CLEO, BABAR (PDG) threshold region 3.73 GeV < s < 4.8 GeV: R(s) by BES continuum s > 4.8 GeV: 3-loop QCD prediction We determine the MS mass m c (µ) at the scale µ = 3 GeV.

48 Results m c (3 GeV)[MeV] n m c (3 GeV) ± exp αs µ np tot res thres cont ± ± ± ± m c (3GeV) = 986(13)MeV [Chetyrkin et al]

49 Comparison: 1-loop 4-loop m c (3 GeV) (GeV) n

50 Experimental Data CLEO (1985)/1.28 BABAR (2009) 0.5 R b (s) s (GeV) recent data from BABAR corresponding data from Belle???

51 Analysis contributions from three regions: Resonances: width and mass off Υ(1S),..., Υ(4S) threshold region 10.6 GeV < s < 11.2 GeV: R(s) from BABAR continuum s > 11.2 GeV: 3-loop QCD prediction

52 Results m b (10 GeV)[MeV] n m b (10 GeV) ± exp αs µ tot res thres cont ± ± ± ± m b (10GeV) = 3610(16)MeV m b (m b ) = 4163(16)MeV [Chetyrkin et al]

53 Comparison: 1-loop 4-loop m b (10 GeV) (GeV) n

54 Quark Masses from Lattice Calculations current-current correlators can be directly simulated on the lattice experimental data can be replaced by lattice simulations in principle all correlators can be used even non-diagonal ones even high moments can be used

55 Results HPQCD collaboration: analysis based on the pseudo-scalar correlator with the current j 5 = Ψγ 5 Ψ Charm: Input: M(η c ) m c (3 GeV) = 986(6) MeV Bottom: Input: M(η b ) m b (10 GeV) = 3617(25) MeV compare with quark masses obtained using R(s): m c (3 GeV) = 986(13) MeV m b (10GeV) = 3610(16) MeV

56 Comparison Charm-Quark mass Bodenstein et. al 10 finite energy sum rule, NNNLO HPQCD 10 lattice + pqcd HPQCD + Karlsruhe 08 lattice + pqcd Kuehn, Steinhauser, Sturm 07 low-moment sum rules, NNNLO Buchmueller, Flaecher 05 B decays α s 2β 0 Hoang, Manohar 05 B decays α s 2β 0 Hoang, Jamin 04 NNLO moments dedivitiis et al. 03 lattice quenched Rolf, Sint 02 lattice (ALPHA) quenched Becirevic, Lubicz, Martinelli 02 lattice quenched Kuehn, Steinhauser 01 low-moment sum rules, NNLO QWG 2004 PDG m c (3 GeV) (GeV)

57 Comparison Bottom-Quark mass HPQCD 10 Karlsruhe 09 low-moment sum rules, NNNLO, new Babar Kuehn, Steinhauser, Sturm 07 low-moment sum rules, NNNLO Pineda, Signer 06 Υ sum rules, NNLL (not complete) Della Morte et al. 06 lattice (ALPHA) quenched Buchmueller, Flaecher 05 B decays α s 2β 0 Mc Neile, Michael, Thompson 04 lattice (UKQCD) dedivitiis et al. 03 lattice quenched Penin, Steinhauser 02 Υ(1S), NNNLO Pineda 01 Υ(1S), NNLO Kuehn, Steinhauser 01 low-moment sum rules, NNLO Hoang 00 Υ sum rules, NNLO QWG 2004 PDG m b (m b ) (GeV)

58 top-quark mass: Motivation The mass of the top quark is an important input parameter for electro-weak precision physics July 2011 LEP2 and Tevatron LEP1 and SLD 68% CL m W [GeV] m H [GeV] α m t [GeV]

59 top-quark mass: Motivation The mass of the top quark is an important input parameter for electro-weak precision physics. Measurements of the top-quark mass at hadron colliders limited by systematic errors M t 1 GeV mass definition not quite clear

60 top-quark mass: Motivation The mass of the top quark is an important input parameter for electro-weak precision physics. Measurements of the top-quark mass at hadron colliders limited by systematic errors M t 1 GeV mass definition not quite clear Measurement of the top-quark mass at a future linear collider M t < 100 MeV

61 top-quark mass: Motivation The mass of the top quark is an important input parameter for electro-weak precision physics. Measurements of the top-quark mass at hadron colliders limited by systematic errors M t 1 GeV mass definition not quite clear Measurement of the top-quark mass at a future linear collider M t < 100 MeV Calculation discussed in this talk is also an important building block for the determination of the bottom-quark mass from Υ sum rules

62 Introduction The top-quark mass can be obtained from a scan of the top anti-top threshold at a linear collider (M t = 175 GeV) [Martinez, Miquel]

63 Introduction The top-quark mass can be obtained from a scan of the top anti-top threshold at a linear collider (M t = 175 GeV ± 200 MeV)

64 Theoretical Status Calculation best done in the framework of effective field theories: (P)NRQCD two-loop: calculation done by several groups using different methods [Hoang,Teubner; Melnikov,Yelkhovsky; Yakovlev; R R q 2 GeV Beneke, Signer, Smirnov; Nagano, Ota, Sumino; Penin, Pivovarov ] Beneke Signer Smirnov Hoang Teubner q 2 GeV R R Yakovlev q 2 GeV Melnikov Yelkhovsky q 2 GeV

65 Theoretical Status Calculation best done in the framework of effective field theories: (P)NRQCD two-loop: calculation done by several groups using different methods [Hoang,Teubner; Melnikov,Yelkhovsky; Yakovlev; Beneke, Signer, Smirnov; Nagano, Ota, Sumino; Penin, Pivovarov ] three-loop: Most building blocks now available: matching coefficient c v n l [PM,Piclum,Seidel,Steinhauser 06] n f [PM,Piclum,Seidel,Steinhauser 09] nf 0 NEW heavy-quark potential a 3 potential contributions ( ) ultrasoft contributions [Smirnov,Smirnov,Steinhauser; Anzai,Kiyo,Sumino] [Beneke,Kiyo,Schuller] [Beneke,Kiyo,Penin]

66 Definition QCD vector current j µ v = Qγ µ Q NRQCD vector current jk v = φ σ k χ Matching ( ) 1 jv k = c v jk v + O M 2

67 Definition QCD vector current j µ v = Qγ µ Q NRQCD vector current jk v = φ σ k χ Matching j k v = c v jk v + d v 6M 2φ σ k D 2 χ+

68 Definition QCD vector current j µ v = Qγ µ Q NRQCD vector current jk v = φ σ k χ Matching ( ) 1 jv k = c v jk v + O M 2 c v can be extracted by calculating vertex corrections involving j v and j v 1 Z 2 Γ v = c v Z2 Z v Γ v +

69 Setup of the Calculation Feynman diagrams generated using QGRAF mapped onto 78 topologies using Q2E/EXP Feynman integrals reduced to master integrals with CRUSHER master integrals in different topologies have to be identified main obstacle: O(100) master integrals had to be calculated analytically/numerically using various techniques numerical errors added in quadrature

70 Calculation of Master Integrals some simple (propagator-type) master integrals known analytically others can be calculated precisely using Mellin-Barnes methods difficult (vertex-type) integrals calculated numerically using FIESTA (Feynman Integral Evaluation by a Sector decomposition Approach) [Smirnov,Tentyukov]

71 Calculation of Master Integrals some simple (propagator-type) master integrals known analytically others can be calculated precisely using Mellin-Barnes methods difficult (vertex-type) integrals calculated numerically using FIESTA (Feynman Integral Evaluation by a Sector decomposition Approach) [Smirnov,Tentyukov] = N ( (3) ǫ (1) ǫ (2) ) (4)ǫ + O(ǫ 2 )

72 Checks Renormalization constant Z v of the NRQCD vector current can be reproduced Z v analytically known, 1/ǫ part numerically small agreement within the error estimate at the percent level

73 Checks Renormalization constant Z v of the NRQCD vector current can be reproduced Z v analytically known, 1/ǫ part numerically small agreement within the error estimate at the percent level Gauge independence: terms linear in ξ vanish after renormalization

74 Checks Renormalization constant Z v of the NRQCD vector current can be reproduced Z v analytically known, 1/ǫ part numerically small agreement within the error estimate at the percent level Gauge independence: terms linear in ξ vanish after renormalization Change basis of master integrals and compare

75 Phenomenology Residue of the QCD two-point function Π(q 2 ) E En N c 2m Q Z n E n (E + i0)

76 Phenomenology Residue of the QCD two-point function Π(q 2 ) E En N c 2m Q Z n E n (E + i0) Z t (µ)/z t (µ S ) LO µ (GeV)

77 Phenomenology Residue of the QCD two-point function Π(q 2 ) E En N c 2m Q Z n E n (E + i0) Z t (µ)/z t (µ S ) µ (GeV) NLO LO

78 Phenomenology Residue of the QCD two-point function Π(q 2 ) E En N c 2m Q Z n E n (E + i0) 1.2 Z t (µ)/z t (µ S ) NNLO µ (GeV) NLO LO

79 Phenomenology Residue of the QCD two-point function Π(q 2 ) E En N c 2m Q Z n E n (E + i0) Z t (µ)/z t (µ S ) NNNLO (ferm.) NNLO µ (GeV) NLO LO

80 Conclusion many terms of low-energy expansion at NNLO calculated third low-energy moment at NNNLO reconstructed Π(q 2 ) and therefore R(s) very precise prediction for the low-energy moments of Π(q 2 ) up to n = 10 precise result for charm-quark mass m c (3GeV) = 986(13)MeV precise result for bottom-quark mass m b (10 GeV) = 3610(16)MeV 3-loop prediction for t t production at threshold on its way

Top and bottom at threshold

Top and bottom at threshold Top and bottom at threshold Matthias Steinhauser TTP Karlsruhe Vienna, January 27, 2015 KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

More information

High order corrections in theory of heavy quarkonium

High order corrections in theory of heavy quarkonium High order corrections in theory of heavy quarkonium Alexander Penin TTP Karlsruhe & INR Moscow ECT Workshop in Heavy Quarkonium Trento, Italy, August 17-31, 2006 A. Penin, TTP Karlsruhe & INR Moscow ECT

More information

A pnrqcd approach to t t near threshold

A pnrqcd approach to t t near threshold LoopFest V, SLAC, 20. June 2006 A pnrqcd approach to t t near threshold Adrian Signer IPPP, Durham University BASED ON WORK DONE IN COLLABORATION WITH A. PINEDA AND M. BENEKE, V. SMIRNOV LoopFest V p.

More information

Precise quark masses and strong coupling constant from heavy quark current correlators

Precise quark masses and strong coupling constant from heavy quark current correlators Precise quark masses ad strog couplig costat from heavy quark curret correlators Christia Sturm Physics Departmet Brookhave Natioal Laboratory High Eergy Theory Group Upto, New York I. Itroductio & Motivatio

More information

Corrections of Order β 3 0α 3 s to the Energy Levels and Wave Function

Corrections of Order β 3 0α 3 s to the Energy Levels and Wave Function 005 International Linear Collider Workshop - Stanford U.S.A. Corrections of Order β 0α s to the Energy Levels and Wave Function M. Steinhauser Institut für Theoretische Teilchenphysik Universität Karlsruhe

More information

Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum

Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum Nikolai Zerf in collaboration with M. Baker, A. Penin, D. Seidel Department of Physics University of Alberta Radcor-Loopfest,

More information

Heavy Quark Masses. Matthias Steinhauser TTP, University of Karlsruhe. May 2008, CAQCD08, University of Minnesota

Heavy Quark Masses. Matthias Steinhauser TTP, University of Karlsruhe. May 2008, CAQCD08, University of Minnesota Heavy Quark Masses Matthias Steihauser TTP, Uiversity of Karlsruhe May 2008, CAQCD08, Uiversity of Miesota i collaboratio with Kostja Chetyrki, Has Küh, Christia Sturm ad (i part with) the HPQCD Collaboratio:

More information

Recent Results in NRQCD

Recent Results in NRQCD Max-Planck-Institute für Physik (Werner-Heisenberg-Institut) Recent Results in NRQCD Pedro D. Ruiz-Femenía Continuous Advances in QCD 2006 Continuous Advances in QCD 2006 May 11-14, University of Minnesota

More information

Charm Mass Determination from QCD Sum Rules at O(α )

Charm Mass Determination from QCD Sum Rules at O(α ) Charm Mass Determination from QCD Sum Rules at O(α ) 3 s Vicent Mateu MIT - CTP Cambridge - USA PANIC 11 - MIT 25-07 - 2011 Taskforce: A. H. Hoang MPI & U. Vienna V. Mateu MIT & IFIC S.M. Zebarjad & B.

More information

Multiloop QCD: 33 years of continuous development

Multiloop QCD: 33 years of continuous development B 1 / 35 Multiloop QCD: 33 years of continuous development (on example of R(s) and inclusive Z decay hadrons) Konstantin Chetyrkin KIT, Karlsruhe & INR, Moscow SFB TR9 Computational Theoretical Particle

More information

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1 Two-loop QCD Corrections to the Heavy Quark Form Factors Thomas Gehrmann Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII Snowmass Linear Collider Worksho005 Two-loop QCD Corrections to the Heavy

More information

Precision Measurements in Electron-Positron Annihilation: Theory and Experiment

Precision Measurements in Electron-Positron Annihilation: Theory and Experiment Precision Measurements in Electron-Positron Annihilation: Theory and Experiment Konstantin Chetyrkin and Institut für Theoretische Teilchenphysik, KIT, 76131 Karlsruhe E-mail: Johann.Kuehn@KIT.edu Theory

More information

strong coupling Antonio Vairo INFN and University of Milano

strong coupling Antonio Vairo INFN and University of Milano potential Non-Relativistic QCD strong coupling Antonio Vairo INFN and University of Milano For most of the quarkonium states: 1/r mv Λ QCD (0) V (r) (GeV) 2 1 Υ Υ Υ Υ η ψ c χ ψ ψ 2 0 1 2 r(fm) -1 weak

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

Top Quarks, Unstable Particles... and NRQCD

Top Quarks, Unstable Particles... and NRQCD Top Quarks, Unstable Particles... and NRQCD André H. Hoang Max-Planck-Institute for Physics Munich (Thanks to A. Manohar, I. Stewart, T. Teubner, C. Farrell, C. Reisser, M. Stahlhofen ) INT Workshop, May

More information

Toward a Precision Standard Model Theory of the Higgs Boson Couplings

Toward a Precision Standard Model Theory of the Higgs Boson Couplings Toward a Precision Standard Model Theory of the Higgs Boson Couplings M. E. Peskin Gunion-fest March 2014 describing work with P. Lepage, P. Mackenzie Ellis, Gunion, Haber, Roszkowski, Zwirner, PR D 39,

More information

V cb : experimental and theoretical highlights. Marina Artuso Syracuse University

V cb : experimental and theoretical highlights. Marina Artuso Syracuse University V cb : experimental and theoretical highlights Marina Artuso Syracuse University 1 The method b q W - e, µ, ν c or u q τ Ultimate goal: a precise determination of V cb The challenge: precise evaluation

More information

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) 7618 Karlsruhe, Germany E-mail: joshua.davies@kit.edu Matthias Steinhauser Institut für Theoretische Teilchenphysik, Karlsruhe

More information

arxiv: v1 [hep-ph] 28 Jul 2017

arxiv: v1 [hep-ph] 28 Jul 2017 with Calibrated Uncertainty arxiv:1707.09404v1 [hep-ph] 28 Jul 2017 Departamento de Física Teórica Instituto de Física Universidad Nacional Autónoma de México Apartado Postal 20 364, México CDMX 01000,

More information

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September Four-fermion production near the W-pair production threshold Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September 12-14 2007 International Linear Collider we all believe that no matter

More information

Determination of α s from the QCD static energy

Determination of α s from the QCD static energy Determination of α s from the QCD static energy Antonio Vairo Technische Universität München Bibliography (1) A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination

More information

Precision Top Quark Measurements at Linear Colliders. M. E. Peskin LCWS 2015 November 2015

Precision Top Quark Measurements at Linear Colliders. M. E. Peskin LCWS 2015 November 2015 Precision Top Quark Measurements at Linear Colliders M. E. Peskin LCWS 2015 November 2015 In discussion of the physics case for future e+e- colliders, the top quark is often unappreciated. Some people

More information

Effective Field Theories for Quarkonium

Effective Field Theories for Quarkonium Effective Field Theories for Quarkonium recent progress Antonio Vairo Technische Universität München Outline 1. Scales and EFTs for quarkonium at zero and finite temperature 2.1 Static energy at zero temperature

More information

Lattice QCD determination of quark masses and

Lattice QCD determination of quark masses and Lattice QCD determination of quark masses and s Christine Davies University of Glasgow HPQCD collaboration APS GHP2017 Washington Jan 2017 Quark masses and strong coupling are fundamental parameters of

More information

Top mass effects in gluon fusion processes

Top mass effects in gluon fusion processes Top mass effects in gluon fusion processes Thomas Rauh AEC, University of Bern Ramona Gröber, Andreas Maier, TR arxiv:1709.07799 JHEP 1803 (2018) 020 Outline 2 Gluon fusion processes Validity of approximations

More information

News from Top/QCD. André H. Hoang. Max-Planck-Institute Munich. ECFA Durham 2004 André Hoang p.1

News from Top/QCD. André H. Hoang. Max-Planck-Institute Munich. ECFA Durham 2004 André Hoang p.1 News from Top/QCD André H. Hoang Max-Planck-Institute Munich Top/QCD @ ECFA Durham 2004 André Hoang p.1 Program Top/QCD Session C. Schwinn: Top couling to Higgs and gauge bosons: 6 and 8 fermion final

More information

Precision determination of the charm quark mass Christine Davies University of Glasgow HPQCD collaboration. CHARM2013, August 2013

Precision determination of the charm quark mass Christine Davies University of Glasgow HPQCD collaboration. CHARM2013, August 2013 Precision determination of the charm quark mass Christine Davies University of Glasgow HPQCD collaboration CHARM2013, August 2013 Quark masses are CDF fundamental parameters of the SM but cannot be directly

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

Top Antitop Pair Production Close to Threshold Synopsis of Recent NNLO Results

Top Antitop Pair Production Close to Threshold Synopsis of Recent NNLO Results EPJdirect C3, 1 22 (2000) DOI 10.1007/s1010500c0003 EPJdirect electronic only c Springer-Verlag 2000 Top Antitop Pair Production Close to Threshold Synopsis of Recent NNLO Results A.H. Hoang 1, M. Beneke

More information

Quarkonium Results from Fermilab and NRQCD

Quarkonium Results from Fermilab and NRQCD Quarkonium Results from Fermilab and NRQCD Paul Mackenzie mackenzie@fnal.gov International Workshop on Heavy Quarkonium Fermilab Sept. 20-22 2003 Thanks Christine Davies (HPQCD), Jim Simone Recent progress

More information

Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov XIV Conference Moscow (2009/08/24)

Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov XIV Conference Moscow (2009/08/24) Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov XIV Conference Moscow (2009/08/24) Outline Brief overview: BaBar Data Bottomonium Spectra Report on selected BaBar analyses

More information

On the Top Quark Mass André H. Hoang

On the Top Quark Mass André H. Hoang On the Top Quark Mass André H. Hoang University of Vienna Outline Introduction Top quark mass schemes Calibration of the Monte Carlo top mass parameter: e + e - t t (2-jettiness) Butenschön, Dehnadi, Mateu,

More information

Calibration of the Top Quark Mass Parameter in Pythia 8.2 André H. Hoang

Calibration of the Top Quark Mass Parameter in Pythia 8.2 André H. Hoang Calibration of the Top Quark Mass Parameter in Pythia 8.2 André H. Hoang University of Vienna Why the top quark is not just heavy Top quark: heaviest known particle Most sensitive to the mechanism of mass

More information

Radiative transitions and the quarkonium magnetic moment

Radiative transitions and the quarkonium magnetic moment Radiative transitions and the quarkonium magnetic moment Antonio Vairo based on Nora Brambilla, Yu Jia and Antonio Vairo Model-independent study of magnetic dipole transitions in quarkonium PRD 73 054005

More information

Virtual Hadronic and Heavy-Fermion O(α 2 ) Corrections to Bhabha Scattering

Virtual Hadronic and Heavy-Fermion O(α 2 ) Corrections to Bhabha Scattering Virtual Hadronic and Heavy-Fermion O(α 2 ) Corrections to Bhabha Scattering Janusz Gluza University of Silesia, Katowice in collaboration with S. Actis, M. Czakon and T. Riemann Beijing, China, October

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

gg! hh in the high energy limit

gg! hh in the high energy limit gg! hh in the high energy limit Go Mishima Karlsruhe Institute of Technology (KIT), TTP in collaboration with Matthias Steinhauser, Joshua Davies, David Wellmann work in progress gg! hh : previous works

More information

Determination of α s from the QCD static energy

Determination of α s from the QCD static energy Determination of α s from the QCD static energy Antonio Vairo Technische Universität München Bibliography (1) A. Bazakov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Colour octet potential to three loops

Colour octet potential to three loops SFB/CPP-13-54 TTP13-8 Colour octet potential to three loops Chihaya Anzai a), Mario Prausa a), Alexander V. Smirnov b), Vladimir A. Smirnov c), Matthias Steinhauser a) a) Institut für Theoretische Teilchenphysik,

More information

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 1/46 Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 in collaboration with T. Ahmed, M. C. Kumar, M. Mahakhud, M. K. Mandal, P.

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

Light hadrons in 2+1 flavor lattice QCD

Light hadrons in 2+1 flavor lattice QCD Light hadrons..., Lattice seminar, KITP, Jan 26, 2005. U.M. Heller p. 1/42 Light hadrons in 2+1 flavor lattice QCD Urs M. Heller American Physical Society & BNL Modern Challenges for Lattice Field Theory

More information

arxiv:hep-ph/ v1 18 Nov 1996

arxiv:hep-ph/ v1 18 Nov 1996 TTP96-55 1 MPI/PhT/96-122 hep-ph/9611354 November 1996 arxiv:hep-ph/9611354v1 18 Nov 1996 AUTOMATIC COMPUTATION OF THREE-LOOP TWO-POINT FUNCTIONS IN LARGE MOMENTUM EXPANSION K.G. Chetyrkin a,b, R. Harlander

More information

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge)

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge) Inclusive B decay Spectra by Dressed Gluon Exponentiation Plan of the talk Einan Gardi (Cambridge) Inclusive Decay Spectra Why do we need to compute decay spectra? Kinematics, the endpoint region and the

More information

The heavy-light sector of N f = twisted mass lattice QCD

The heavy-light sector of N f = twisted mass lattice QCD The heavy-light sector of N f = 2 + 1 + 1 twisted mass lattice QCD Marc Wagner Humboldt-Universität zu Berlin, Institut für Physik mcwagner@physik.hu-berlin.de http://people.physik.hu-berlin.de/ mcwagner/

More information

arxiv: v1 [hep-ph] 8 Nov 2018

arxiv: v1 [hep-ph] 8 Nov 2018 Exclusive Top Threshold Matching at Lepton Colliders DESY, Hamburg, Germany E-mail: juergen.reuter@desy.de arxiv:1811.03950v1 [hep-ph] 8 Nov 2018 Bijan Chokoufé Nejad DESY, Hamburg, Germany E-mail: bijan.chokoufe@desy.de

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Summary of precision QCD issues at FCC-ee

Summary of precision QCD issues at FCC-ee Summary of precision QCD issues at FCC-ee th 11 FCC-ee workshop: Theory & Experiments th CERN, 11 Jan. 2019 David d'enterria CERN 1/25 Precision QCD & FCC-ee physics FCC-ee uniquely small EXP uncertainties

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Spin Correlations in Top Quark Pair Production Near Threshold at the e + e Linear Collider

Spin Correlations in Top Quark Pair Production Near Threshold at the e + e Linear Collider Commun. Theor. Phys. Beijing, China 40 003 pp. 687 69 c International Academic Publishers Vol. 40, No. 6, December 15, 003 Spin Correlations in Top Quark Pair Production Near Threshold at the e + e Linear

More information

Lectures on NRQCD Factorization for Quarkonium Production and Decay

Lectures on NRQCD Factorization for Quarkonium Production and Decay Lectures on NRQCD Factorization for Quarkonium Production and Decay Eric Braaten Ohio State University I. Nonrelativistic QCD II. Annihilation decays III. Inclusive hard production 1 NRQCD Factorization

More information

arxiv: v1 [hep-ph] 21 Sep 2007

arxiv: v1 [hep-ph] 21 Sep 2007 The QCD potential Antonio Vairo arxiv:0709.3341v1 [hep-ph] 1 Sep 007 Dipartimento di Fisica dell Università di Milano and INFN, via Celoria 16, 0133 Milano, Italy IFIC, Universitat de València-CSIC, Apt.

More information

J/Ψ-Production in γγ-collisions at NLO. Michael Klasen LPSC Grenoble April 19, 2005

J/Ψ-Production in γγ-collisions at NLO. Michael Klasen LPSC Grenoble April 19, 2005 J/Ψ-Production in γγ-collisions at NLO Michael Klasen LPSC Grenoble April 19, 2005 CERN / Fréjus LPSC ILL ESRF April 19, 2005 Michael Klasen, LPSC Grenoble 2 Research at LPSC Grenoble Astroparticles: Particles:

More information

Introduction to perturbative QCD and factorization

Introduction to perturbative QCD and factorization Introduction to perturbative QCD and factorization Part 1 M. Diehl Deutsches Elektronen-Synchroton DESY Ecole Joliot Curie 2018 DESY Plan of lectures 0. Brief introduction 1. Renormalisation, running coupling,

More information

Expected precision in future lattice calculations p.1

Expected precision in future lattice calculations p.1 Expected precision in future lattice calculations Shoji Hashimoto (KEK) shoji.hashimoto@kek.jp Super-B Workshop, at University of Hawaii, Jan 19 22, 2004 Expected precision in future lattice calculations

More information

Status and possible improvements of electroweak effective couplings for future precision experiments.

Status and possible improvements of electroweak effective couplings for future precision experiments. Status and possible improvements of electroweak effective couplings for future precision experiments. Fred Jegerlehner, DESY Zeuthen/HU Berlin, fjeger@physik.hu-berlin.de LC10 Workshop, INFN/LNF Frascati,

More information

Exotic and excited-state radiative transitions in charmonium from lattice QCD

Exotic and excited-state radiative transitions in charmonium from lattice QCD Exotic and excited-state radiative transitions in charmonium from lattice QCD Christopher Thomas, Jefferson Lab Hadron Spectroscopy Workshop, INT, November 2009 In collaboration with: Jo Dudek, Robert

More information

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory E-mail: vziegler@slac.stanford.edu Selected studies in bottomonium physics carried out by the BaBar experiment at the SLAC PEP-II e + e collider are presented. They

More information

Origin of Nucleon Mass in Lattice QCD

Origin of Nucleon Mass in Lattice QCD Origin of Nucleon Mass in Lattice QCD Quark and glue components of hadron mass Decomposition of meson masses πn σ term, strangeness and charmness Decomposition of nucleon mass c QCD Collaboration Trento,

More information

Feynman Integral Calculus

Feynman Integral Calculus Feynman Integral Calculus Vladimir A. Smirnov Feynman Integral Calculus ABC Vladimir A. Smirnov Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics Moscow 119992, Russia E-mail: smirnov@theory.sinp.msu.ru

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

Belle Hot Topics. Nagoya University Koji Ikado (for the Belle Collaboration) Flavor Physics and CP Violation Conference (FPCP2006) Apr.

Belle Hot Topics. Nagoya University Koji Ikado (for the Belle Collaboration) Flavor Physics and CP Violation Conference (FPCP2006) Apr. Belle Hot Topics Nagoya University Koji Ikado (for the Belle Collaboration) Flavor Physics and CP Violation Conference (FPCP2006) Apr. 9, 2006 Outline Search for the Purely Leptonic Decay Β τν Results

More information

Light Meson spectrum with Nf=2+1 dynamical overlap fermions

Light Meson spectrum with Nf=2+1 dynamical overlap fermions Light Meson spectrum with Nf=2+1 dynamical overlap fermions Jun Noaki (KEK) for JLQCD-TWQCD Collaborations: S.Aoki, T-W.Chiu, H.Fukaya, S.Hashimoto, T-H.Hsieh, T.Kaneko, H.Matsufuru, T.Onogi, E.Shintani

More information

Vector meson dominance, axial anomaly and mixing

Vector meson dominance, axial anomaly and mixing Vector meson dominance, axial anomaly and mixing Yaroslav Klopot 1, Armen Oganesian 1,2 and Oleg Teryaev 1 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

More information

PUZZLING b QUARK DECAYS: HOW TO ACCOUNT FOR THE CHARM MASS

PUZZLING b QUARK DECAYS: HOW TO ACCOUNT FOR THE CHARM MASS Vol. 36 005 ACTA PHYSICA POLONICA B No 11 PUZZLING b QUARK DECAYS: HOW TO ACCOUNT FOR THE CHARM MASS Andrzej Czarnecki, Alexey Pak, Maciej Ślusarczyk Department of Physics, University of Alberta Edmonton,

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

The Higgs pt distribution

The Higgs pt distribution The Higgs pt distribution Chris Wever (TUM) In collaboration with: F. Caola, K. Kudashkin, J. Lindert, K. Melnikov, P. Monni, L. Tancredi GGI: Amplitudes in the LHC era, Florence 16 Oktober, 2018 Outline

More information

The Radiative Return at Φ- and B-Meson Factories

The Radiative Return at Φ- and B-Meson Factories The Radiative Return at Φ- and B-Meson Factories J.H. KÜHN INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK KARLSRUHER INSTITUT FÜR TECHNOLOGIE I II Basic Idea Monte Carlo Generators: Status & Perspectives III

More information

The rare decay H Zγ in perturbative QCD

The rare decay H Zγ in perturbative QCD The rare decay H Zγ in perturbative QCD [arxiv: hep-ph/1505.00561] Thomas Gehrmann, Sam Guns & Dominik Kara June 15, 2015 RADCOR 2015 AND LOOPFEST XIV - UNIVERSITY OF CALIFORNIA, LOS ANGELES Z Z H g q

More information

Part 7: Hadrons: quarks and color

Part 7: Hadrons: quarks and color FYSH3, fall Tuomas Lappi tuomas.v.v.lappi@jyu.fi Office: FL49. No fixed reception hours. kl Part 7: Hadrons: quarks and color Introductory remarks In the previous section we looked at the properties of

More information

Light Stop Bound State Production at the LHC. Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim at Yonsei U.

Light Stop Bound State Production at the LHC. Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim at Yonsei U. Light Stop Bound State Production at the LHC Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim 0. 6. 8 at Yonsei U. Outline About stop Motivation for light stop Phenomenology Formalism Summary

More information

The role of σ hadronic. for future precision physics

The role of σ hadronic. for future precision physics The role of σ hadronic for future precision physics F. JEGERLEHNER DESY Zeuthen Humboldt-Universität zu Berlin Seminar, December 7, 2005, LNF, Fracsati (Italy) supported by EU projects TARI and EURIDICE

More information

Particle Discovery at the LHC. Sally Seidel University of New Mexico 20 October 2017 APS Four Corners Meeting

Particle Discovery at the LHC. Sally Seidel University of New Mexico 20 October 2017 APS Four Corners Meeting Particle Discovery at the LHC Sally Seidel University of New Mexico 20 October 2017 APS Four Corners Meeting 1 The LHC experiments have announced the discovery of several new particle states - in addition

More information

Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD)

Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD) Top@LHC LHC TTbar-Threshold Threshold@ILC/LHC Green Functions Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD) Yuichiro Kiyo TTP, Universität Karlsruhe Collaboration with: J. H. Kühn(KA),

More information

Fun with the S parameter on the lattice

Fun with the S parameter on the lattice Fun with the S parameter on the lattice David Schaich (Boston Colorado Syracuse) from work with the LSD Collaboration and USQCD BSM community arxiv:1009.5967 & arxiv:1111.4993 Origin of Mass 2013 Lattice

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

Loop integrals, integration-by-parts and MATAD

Loop integrals, integration-by-parts and MATAD Loop integrals, integration-by-parts and MATAD Matthias Steinhauser TTP, University of Karlsruhe CAPP 009, March/April 009, DESY, Zeuthen Matthias Steinhauser p. Outline I. Integration-by-parts II. MATAD

More information

hep2001 Theoretical progress in describing the B-meson lifetimes International Europhysics Conference on High Energy Physics DAMIR BECIREVIC

hep2001 Theoretical progress in describing the B-meson lifetimes International Europhysics Conference on High Energy Physics DAMIR BECIREVIC PROCEEDINGS Theoretical progress in describing the B-meson lifetimes Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma, Italy E-mail: Damir.Becirevic@roma1.infn.it

More information

Inclusive B decay Spectra by Dressed Gluon Exponentiation

Inclusive B decay Spectra by Dressed Gluon Exponentiation Inclusive B decay Spectra by Dressed Gluon Exponentiation Plan of the tal Einan Gardi (Cambridge) Inclusive B decay spectra motivation Strategy of the theoretical study Very short introduction to Sudaov

More information

SM parameters and heavy quarks on the lattice

SM parameters and heavy quarks on the lattice SM parameters and heavy quarks on the lattice Michele Della Morte CERN Lattice 2007, Regensburg Michele Della Morte (CERN) SM parameters and heavy quarks Lattice 2007, Regensburg 1 / 34 What is the required

More information

ATLAS studies of spectroscopy and B-decays

ATLAS studies of spectroscopy and B-decays ATLAS studies of spectroscopy and B-decays Zdeněk Doležal on behalf of the ATLAS Collaboration Charles University in Prague 53rd International Winter Meeting on Nuclear Physics 26-30 January 2015 Outline

More information

D semi-leptonic and leptonic decays at BESIII

D semi-leptonic and leptonic decays at BESIII Institute of High Energy Physics, Chinese Academy of Sciences E-mail: mahl@ihep.ac.cn During 2010 and 2011, a data sample of 2.92 fb 1 was accumulated at s = 3.773 GeV by the BESIII detector operating

More information

Soft-Collinear Effective Theory and B-Meson Decays

Soft-Collinear Effective Theory and B-Meson Decays Soft-Collinear Effective Theory and B-Meson Decays Thorsten Feldmann (TU München) presented at 6th VIENNA CENTRAL EUROPEAN SEMINAR on Particle Physics and Quantum Field Theory, November 27-29, 2009 Th.

More information

Applications of QCD Sum Rules to Heavy Quark Physics

Applications of QCD Sum Rules to Heavy Quark Physics Applications of QCD Sum Rules to Heavy Quark Physics Alexander Khodjamirian UNIVERSITÄT SIEGEN Theoretische Physik 1 RESEARCH UNIT q et f 3 lectures at Helmholtz International School "Physics of Heavy

More information

e e Collisions at ELIC

e e Collisions at ELIC Physics With Collisions at ELIC Collisions at ELIC E. Chudakov (JLab), June 26, 26 Opportunity to build a collider using the ELIC ring Physics motivation for a high luminosity, polarized collider Discussion

More information

V cb. Determination of. and related results from BABAR. Masahiro Morii, Harvard University on behalf of the BABAR Collaboration

V cb. Determination of. and related results from BABAR. Masahiro Morii, Harvard University on behalf of the BABAR Collaboration Determination of and related results from BABAR V cb Masahiro Morii, Harvard University on behalf of the BABAR Collaboration V cb from inclusive B semileptonic decays Lepton energy moments Hadron mass

More information

Charmonium Radiative Transitions

Charmonium Radiative Transitions Charmonium Radiative Transitions Jielei Zhang Institute of High Energy of Physics (for the BESIII collaboration) QWG2016 1 What to measure What have done with old datasets 1.06 10 8 ψ(3686) 2009 What will

More information

Spectra of Light and Heavy Mesons, Glueball and QCD Effective Coupling Gurjav GANBOLD Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna

Spectra of Light and Heavy Mesons, Glueball and QCD Effective Coupling Gurjav GANBOLD Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna Spectra of Light and Heavy Mesons, Glueball and QCD Effective Coupling Gurjav GANBOLD Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna XIV International Conference on Hadron Spectroscopy 13-17

More information

The Role of Heavy Quarks in Light Hadron Fragmentation. HUGS Manuel Epele Instituto de Física La Plata

The Role of Heavy Quarks in Light Hadron Fragmentation. HUGS Manuel Epele Instituto de Física La Plata The Role of Heavy Quarks in Light Hadron Fragmentation. In collaboration with C. A. Garcia Canal and R. Sassot HUGS 2016 Jefferson Lab, Newport News, Virginia June, 2016 Outline Fragmentation Functions

More information

11 FCC-ee workshop: Theory & Experiments

11 FCC-ee workshop: Theory & Experiments s extractions at FCC-ee th 11 FCC-ee workshop: Theory & Experiments th CERN, 8 Jan. 2019 David d'enterria CERN Mostly based on: D. d'enterria, P.Z. Skands (eds.), Proceeds. High-precision s from LHC to

More information

Precision Higgs physics. at hadron colliders

Precision Higgs physics. at hadron colliders Precision Higgs physics at hadron colliders Claude Duhr in collaboration with C. Anastasiou, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, B. Mistlberger RadCor/LoopFest 2015 UCLA, 16/06/2015

More information

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation Three-loop time-like splitting functions in Mellin space and NNLO fragmentation Alexander Mitov DESY Work in progress with: M. Cacciari; Lance Dixon; S-O. Moch Also based on: hep-ph/0604160 (with Sven

More information

Testing QCD with τ Decays. Antonio Pich IFIC, Univ. Valencia - CSIC

Testing QCD with τ Decays. Antonio Pich IFIC, Univ. Valencia - CSIC Testing QCD with τ Decays Antonio Pich IFIC, Univ. Valencia - CSIC Mainz Institute for Theoretical Physics, Johannes Gutenberg University Determination of the Fundamental Parameters in QCD, 7-1 March 016

More information

Exclusive Event Generation for the t t Threshold and the Transition to the Continuum

Exclusive Event Generation for the t t Threshold and the Transition to the Continuum Exclusive Event Generation for the t t Threshold and the Transition to the Continuum Wolfgang Kilian University of Siegen QWG 2017, Peking University November 2017 F. Bach, B. Chokoufé Nejad, A.H. Hoang,

More information

from B -Factories A. Oyanguren (IFIC U. Valencia) BaBar Collaboration

from B -Factories A. Oyanguren (IFIC U. Valencia) BaBar Collaboration Charm Form Factors from B -Factories A. Oyanguren (IFIC U. Valencia) BaBar Collaboration Purpose: Charm Form Factors - Validate Lattice-QCD calculations - Discriminate between models describing hadronic

More information

Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings

Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings Matthias Ko nig Johannes Gutenberg-University Mainz 25th International Workshop on Weak Interactions and Neutrinos Heidelberg,

More information

Determination of running coupling αs for N f = QCD with Schrödinger functional scheme. Yusuke Taniguchi for PACS-CS collaboration

Determination of running coupling αs for N f = QCD with Schrödinger functional scheme. Yusuke Taniguchi for PACS-CS collaboration Determination of running coupling αs for N f = 2 + QCD with Schrödinger functional scheme Yusuke Taniguchi for PACS-CS collaboration Purpose of this project Determine the fundamental parameter of N f =

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Measurements of the Vector boson production with the ATLAS Detector

Measurements of the Vector boson production with the ATLAS Detector Measurements of the Vector boson production with the ATLAS Detector Pavel Staroba for ATLAS Collaboration 1 W/Z measurements at ATLAS More than 50 publications in total. Wide range of topics is covered.

More information