Precision determination of the charm quark mass Christine Davies University of Glasgow HPQCD collaboration. CHARM2013, August 2013

Size: px
Start display at page:

Download "Precision determination of the charm quark mass Christine Davies University of Glasgow HPQCD collaboration. CHARM2013, August 2013"

Transcription

1 Precision determination of the charm quark mass Christine Davies University of Glasgow HPQCD collaboration CHARM2013, August 2013

2 Quark masses are CDF fundamental parameters of the SM but cannot be directly determined from experiment. Well-defined masses are scheme and scale-dependent. Convention to use MS Compare results from multiple approaches for strong test of QCD. Masses are input to theoretical expressions for SM crosssections e.g. (but Higgs WG inflate errors -why?) H cc Higgs X- Section WG PDG lattice Karlsruhe (e + e -) world non-lattice!!s ! mc (GeV) ! mb (GeV) P. Mackenzie, Snowmass 2013

3 Lattice QCD works directly with the QCD Lagrangian. Can tune bare mass parameters very accurately using experimentally very well-determined hadron masses ' b b '' ' h b (2P) h b (1P) b2 b1 (2P) b0 b2 b0 b1 (1P) (1D) expt fix params postdcns predcns MESON MASS (GeV/c 2 ) ' ' c2 c h c1 c J/ c0 c ' B c B c B s B B c *' B c * B s * B * * B c0 R. Dowdall et al, HPQCD, D s D 0 K

4 Conversion of lattice quark masses to Direct methods: Determine m q,latt m MS (µ) =Z(µa)m latt MS scheme in lattice QCD. Calculate Z in lattice QCD pert. th. or use nonpert lattice matching. Error dominated by that of Z and continuum extrapolation. Note: Z cancels in mass ratios. Indirect methods: (after tuning m latt ) match a quantity calculated in lattice QCD to continuum pert. th. in terms of MS quark mass e.g. Current-current correlators for J J heavy quarks known through. α 3 s Chetyrkin et al, Maier et al

5 Issues with handling heavy quarks on the lattice: L q = ψ(d/ + m)ψ ψ(γ + ma)ψ is a finite difference on the lattice - leads to discretisation errors. What sets the scale for these? For light hadrons the scale is Λ QCD = few hundred MeV For heavy hadrons the scale can be m Q E(a) =E(a = 0) (1 + A(m Q a) 2 + B(m Q a) ) m c a 0.4,m b a 2 for a 0.1fm need good discretisation of Dirac equation and multiple values of for accurate continuum extrapolation. Highly Improved Staggered Quarks (HISQ) formalism has errors improved to α s (am) 2, (am) 4 a Follana et al, HPQCD, hep-lat/

6 R(s) R(s) Current-current correlator method for mc Continuum: extract charm piece of: C k R e + e (s) =σ(e+ e hadrons) 4πα 2 /(3s) pqcd! BES (2001) J/!!, " MD-1 # CLEO $ BES (2006) "# s (GeV) Π4.5 5 c (q 2 )= π 2 e2 V c k 0 α 1.5 2!, s (µ) Use k=1: m c (m c )=1.279(13)GeV from experiment, then a power series in, known through for first few values of k C k q 2 4(m c (µ)) 2 k α 3 s M k = 12π2 n! J errors: expt + α s e.g. Kuhn et al, hep-ph/ ds s k+1 R e + e (s) k d dq 2 Π c (q 2 ) 2 q =0 c c J vector coupling to photon Chetyrkin et al,

7 Current-current correlator method for lattice mc HPQCD + Chetyrkin et al, , C. Mcneile et al, HPQCD, Substitute time-moment of lattice charmonium correlator for experiment. In principle can use any current J now. For HISQ quarks pseudoscalar η c correlator is most accurate. J is absolutely normalised. step 1: calculate η c correlators by combining lattice charm quark propagators step 2: large time - fit to exponential, gives η c mass step 3: tune lattice quark mass so η c mass correct. step 4: calculate time moments to compare to QCD pert. theory. Emphasises short-time contribns. correlator(t) e-06 1e-08 1e-10 1e-12 1e-14 J J J PC any current now t

8 Correlator time-moments: G(t) =a 6 x G n = t (am c ) 2 < 0 j 5 (x, t)j 5 (0, 0) 0 > (t/a) n G(t) R n,latt = G 4 /G (0) 4 n =4 ratio to results with no gluon field improves disc. errors = am η c (G n /G (0) n ) 1/(n 4) n =6, 8, am c J (match k = 2, 3, 4...) extrapolate to a=0 and compare to contnm pert. th. R n,cont = m η c Ck P 2m c (µ) C P,0 k C P k C P,0 K =1+ c i α i s(µ) t J n = 2k +2

9 Fit first 4 moments simultaneously, gives Result: m c (m c )=1.273(6)GeV error dominated by unknown higher orders in pert. th. C. McNeile et al, HPQCD, Further check: compare vector moments (after normalising current) to those extracted from R e+ e Agreement is a 1% test of (lattice ) QCD m ηc 2m c (µ) expt (n th moment) 1/(n 2) (GeV 1 ) AND α s (µ) lattice and expt errors similar size n = 10 n = 8 n = 6 n = (am c ) 2 G. Donald et al, HPQCD,

10 m c /m s Mass ratio can be obtained directly from lattice QCD if same quark formalism is used for both quarks. Ratio is at same scale and for same nf. mq1,latt m q2,latt 14 a=0 = m q1,ms (µ) m q2,ms (µ) HISQ Not possible with any other method... mc/ms a 2 (in fm 2 ) m c = 11.85(16) n m f =3 s C. Davies et al,hpqcd, (1.3) MeV allows 1% accuracy in ms

11 Current-current correlator method -HISQ HPQCD, Repeat calcln for m q m c inc. ultrafine lattices 11 mηh /(2m h(µ)) mηh /(2m h(µ)) mηh /(2m h(µ)) (4) (4) (5) (5) (6) (7) (7) (8) (7) (8) (7) (7) (9) (9) log W 11 log W 12 log W BR log W CC log W 13 log W 14 log W 22 log W 23 R 6 /r 6 µ =3m h (µ) R 8 /r 8 µ =3m h (µ) log W 13 /W 22 log W 11 W 22 /W12 2 log W CC W BR /W R 10 /r log W CC /W BR µ =3m h (µ) log W 14 /W 23 log W 11 W 23 /W 12 W 13 m ηc m ηb (5) logm W ηh 12 (GeV) /u (8) log W BR /u 6 0 Agrees well with contnm. 1: Function (7) z(µ/m h log =3,m W CC ηh )/u m 6 0 ηh /(2m h ) as a funcof m ηh (6) results using The solid line, Rlog e + plus We 13 gray /u 8 0error envelope, shows a Saturday, = 0 extrapolation (6) August 2013 obtained log W from our fit. This is com- 14 /u 10 mηh /(2m h(µ)) c Can determine m ηh µ = 3m h m h m h /2 FIG. 6: z(µ/m h,m ηh ) versus m ηh for three different values of µ/m h. The curve for µ =3m h comes from the best fit heavy quarks - extrapolate to the moments. The other curves are obtained by evolving perturbatively from µ=3m h. (slightly) to b. m, mηh ) n f =5 b m h /m ηh b for (m b )=4.164(23)GeV key error is now extrapoln in a

12 mb/mc from lattice QCD m0hmηc/(m0cmηh ) mq1,latt m q2,latt a=0 = m q1,ms (µ) m q2,ms (µ) m ηc m ηb m ηh (GeV) completely nonperturbative determination of ratio gives: m b m c =4.49(4) Agrees with that from current-current correlator method - test of pert. th.

13 Ongoing work Existing lattice QCD results include u, d, s sea quarks with u/d quark masses heavier than their real values. NOW have gluon configurations including flavours of sea quarks and u/d quark masses at their physical values. M c /(2m c (m c )) , result a 2 (GeV -2 ) n=10 n=8 n=6 HPQCD preliminary results (HISQ quarks) show very little effect of c in sea (as expected) ETMC also working on mc with quarks in sea.

14 Improved accuracy on ratio mc/ms on nf = configs with physical u/d quarks: MILC/Fermilab result@lat13 m c m s = 11.75(6) will allow improved ms from improved mc determination

15 PDG compilation of results WEIGHTED AVERAGE 1.275±0.004 (Error scaled by 1.0) c-quark MASS (GeV) mc(mc)! 2 ALEKHIN 13 THEO 0.6 NARISON 13 THEO ALEKHIN 12 THEO NARISON 12A THEO 0.7 BODENSTEIN 11 THEO 0.1 LASCHKA 11 THEO AUBERT 10A BABR BLOSSIER 10 LATT 0.0 MCNEILE 10 LATT 0.1 CHETYRKIN 09 THEO 0.1 SIGNER 09 THEO 0.4 BOUGHEZAL 06 THEO 1.8 BUCHMULLER 06 THEO HOANG 06 THEO 3.9 (Confidence Level = 0.792) Their evaluation: 1.275(25) GeV good agreement between most precise lattice and non-lattice results NB new result from joint H1+ZEUS charm prodn cross-section: mc=1.26(6) GeV arxiv;

16 Conclusions m c (m c ) m b (m b ) is determined to 1% and to 0.5% from continuum and lattice methods. Will be hard to improve mc further directly. mb can be improved from lattice QCD with finer lattices reducing/removing extrapolation to b. Then determine mb/mc ratio nonperturbatively to improve mc Improved mc will give improved ms from 0.5% accurate mc/ms New lattice QCD determinations in progress using a variety of formalisms and now with u, d, s and c quarks in sea and physical u/d quarks. Watch this space... NOTE: errors are ~a factor of 3 better than Higgs WG assume

17 Error budget for HISQ current-current method m c ð3þ m b ð10þ m b =m c MS ðm Z Þ a 2 extrapolation 0.2% 0.6% 0.5% 0.2% Perturbation theory Statistical errors m h extrapolation Errors in r Errors in r 1 =a Errors in m c, m b prior Gluon condensate Total 0.6% 0.7% 0.8% 0.6%

Lattice QCD determination of quark masses and

Lattice QCD determination of quark masses and Lattice QCD determination of quark masses and s Christine Davies University of Glasgow HPQCD collaboration APS GHP2017 Washington Jan 2017 Quark masses and strong coupling are fundamental parameters of

More information

Relativistic heavy quarks on the lattice

Relativistic heavy quarks on the lattice Relativistic heavy quarks on the lattice Christine Davies University of Glasgow HPQCD collaboration ECT* workshop April 2012 Charm and bottom physics Lattice QCD calculations important because: simple

More information

High Precision. Charm Physics. HISQ quarks

High Precision. Charm Physics. HISQ quarks f % f K High Precision m Charm Physics $ with m N m Ds m D m D * HISQ quarks - m s D s m " - m #c "(1P-1S) 2m Bs,av -m! Christine m Davies Bc E. Follana, G. P. Lepage, R. Horgan, K. Hornbostel, C. McNeile,

More information

arxiv: v1 [hep-lat] 23 Nov 2018

arxiv: v1 [hep-lat] 23 Nov 2018 B c spectroscopy using highly improved staggered quarks arxiv:1811.09448v1 [hep-lat] 23 Nov 2018 INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma RM, Italy E-mail: andrew.lytle@roma2.infn.it

More information

Lattice QCD Christine Davies University of Glasgow, HPQCD collaboration. Lepton-photon 2007 Daegu, Korea

Lattice QCD Christine Davies University of Glasgow, HPQCD collaboration. Lepton-photon 2007 Daegu, Korea Lattice QCD 2007 Christine Davies University of Glasgow, HPQCD collaboration Lepton-photon 2007 Daegu, Korea QCD is key part of SM but quark confinement tricky a Lattice QCD enables calcn of QCD effects

More information

SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK

SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK School of Mathematics, Trinity College, Dublin 2, Ireland E-mail: donaldg@tcd.ie Christine Davies SUPA, School of Physics

More information

Heavy quark physics with light dynamical quarks (plus a lot of other stuff) Christine Davies

Heavy quark physics with light dynamical quarks (plus a lot of other stuff) Christine Davies Heavy quark physics with light dynamical quarks (plus a lot of other stuff) Christine Davies University of Glasgow HPQCD and UKQCD collaborations Key aim of HPQCD collabn: accurate calcs in lattice QCD,

More information

Phenomenology with Lattice NRQCD b Quarks

Phenomenology with Lattice NRQCD b Quarks HPQCD Collaboration 16 July 2015 Our approaches to b quarks In Glasgow, we take two complementary approaches to b quarks: Nonrelativistic QCD and heavy HISQ. Here I will focus exclusively on NRQCD (for

More information

Charm Mass Determination from QCD Sum Rules at O(α )

Charm Mass Determination from QCD Sum Rules at O(α ) Charm Mass Determination from QCD Sum Rules at O(α ) 3 s Vicent Mateu MIT - CTP Cambridge - USA PANIC 11 - MIT 25-07 - 2011 Taskforce: A. H. Hoang MPI & U. Vienna V. Mateu MIT & IFIC S.M. Zebarjad & B.

More information

Quarkonium Results from Fermilab and NRQCD

Quarkonium Results from Fermilab and NRQCD Quarkonium Results from Fermilab and NRQCD Paul Mackenzie mackenzie@fnal.gov International Workshop on Heavy Quarkonium Fermilab Sept. 20-22 2003 Thanks Christine Davies (HPQCD), Jim Simone Recent progress

More information

Precise determination of the lattice spacing in full lattice QCD

Precise determination of the lattice spacing in full lattice QCD Precise determination of the lattice spacing in full lattice QCD None of these quantities can be computed as accurately as r 1 /a in simulations, but we can combine simulation rearxiv:0910.1229v1 [hep-lat]

More information

PoS(LAT2006)094. The decay constants f B + and f D + from three-flavor lattice QCD

PoS(LAT2006)094. The decay constants f B + and f D + from three-flavor lattice QCD The decay constants f B + and f D + from three-flavor lattice QCD C. Bernard a, C. DeTar b, M. Di Pierro c, A.X. El-Khadra d, R.T. Evans d, E. Freeland e, S. Gottlieb f, U.M. Heller g, J.E. Hetrick h,

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD Hadron structure from lattice QCD Giannis Koutsou Computation-based Science and Technology Research Centre () The Cyprus Institute EINN2015, 5th Nov. 2015, Pafos Outline Short introduction to lattice calculations

More information

arxiv: v1 [hep-lat] 20 Oct 2017

arxiv: v1 [hep-lat] 20 Oct 2017 arxiv:1710.07554v1 [hep-lat] 20 Oct 2017 Light meson form factors at high Q 2 from lattice QCD Jonna Koponen 1,, André Zimermmane-Santos 2, Christine Davies 3, G. Peter Lepage 4, and Andrew Lytle 3 1 INFN,

More information

Heavy quark physics with NRQCD bs and light dynamical quarks Christine Davies

Heavy quark physics with NRQCD bs and light dynamical quarks Christine Davies Heavy quark physics with NRQCD bs and light dynamical quarks Christine Davies University of Glasgow HPQCD and UKQCD collaborations Key aim of HPQCD collabn: accurate calcs in lattice QCD, emphasising heavy

More information

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations Charmonium, D s and D s from overlap fermion on domain wall fermion configurations,, Y. Chen, A. Alexandru, S.J. Dong, T. Draper, M. Gong,, F.X. Lee, A. Li, 4 K.F. Liu, Z. Liu, M. Lujan, and N. Mathur

More information

arxiv: v1 [hep-lat] 17 Mar 2012

arxiv: v1 [hep-lat] 17 Mar 2012 Standard Model Heavy Flavor physics on the Lattice arxiv:1203.3862v1 [hep-lat] 17 Mar 2012 University of Glasgow E-mail: c.davies@physics.gla.ac.uk Lattice QCD calculations in charm and bottom physics

More information

Review of lattice flavour physics

Review of lattice flavour physics Review of lattice flavour physics Rachel Dowdall University of Cambridge HPQCD Collaboration DiRAC Summary Generalities The role and status of lattice QCD in flavour physics Uncertainities in lattice calculations

More information

Hadronic physics from the lattice

Hadronic physics from the lattice Hadronic physics from the lattice Chris Michael c.michael@liv.ac.uk University of Liverpool Hadronic physics from the lattice p.1/24 Hadronic Structure - Introduction What are hadrons made of? Is a meson

More information

PoS(LATTICE 2013)243. Hadron spectra from overlap fermions on HISQ gauge configurations.

PoS(LATTICE 2013)243. Hadron spectra from overlap fermions on HISQ gauge configurations. Hadron spectra from overlap fermions on HISQ gauge configurations. S. Basak a, S. Datta b, A. T. Lytle b, Padmanath M. b, P. Majumdar c, and b (Indian Lattice Gauge Theory Initiative) a School of Physical

More information

Toward a Precision Standard Model Theory of the Higgs Boson Couplings

Toward a Precision Standard Model Theory of the Higgs Boson Couplings Toward a Precision Standard Model Theory of the Higgs Boson Couplings M. E. Peskin Gunion-fest March 2014 describing work with P. Lepage, P. Mackenzie Ellis, Gunion, Haber, Roszkowski, Zwirner, PR D 39,

More information

Charmed Bottom Mesons from Lattice QCD

Charmed Bottom Mesons from Lattice QCD Charmed Bottom Mesons from Lattice QCD Nilmani Mathur Department of Theoretical Physics Tata Institute of Fundamental Research, India Collaborators : ILGTI, M. Padmanath, R. Lewis Lattice 2016, University

More information

Lattice QCD and Heavy Quark Physics

Lattice QCD and Heavy Quark Physics Christine Davies Department of Physics and Astronomy University of Glasgow Glasgow G12 8QQ, U.K. Lattice QCD results relevant to heavy quark physics are reviewed. In particular new results will be shown

More information

Light hadrons in 2+1 flavor lattice QCD

Light hadrons in 2+1 flavor lattice QCD Light hadrons..., Lattice seminar, KITP, Jan 26, 2005. U.M. Heller p. 1/42 Light hadrons in 2+1 flavor lattice QCD Urs M. Heller American Physical Society & BNL Modern Challenges for Lattice Field Theory

More information

MILC results and the convergence of the chiral expansion

MILC results and the convergence of the chiral expansion MILC results and the convergence of the chiral expansion MILC Collaboration + (for part) HPQCD, UKQCD Collaborations Benasque Center for Science, July 27, 2004 p.1 Collaborators MILC Collaboration: C.

More information

arxiv: v1 [hep-ph] 28 Jul 2017

arxiv: v1 [hep-ph] 28 Jul 2017 with Calibrated Uncertainty arxiv:1707.09404v1 [hep-ph] 28 Jul 2017 Departamento de Física Teórica Instituto de Física Universidad Nacional Autónoma de México Apartado Postal 20 364, México CDMX 01000,

More information

D and B Meson Semileptonic Decays from the Lattice. Lattice QCD Meets Experiment Workshop April 26-27, 2010 Fermilab

D and B Meson Semileptonic Decays from the Lattice. Lattice QCD Meets Experiment Workshop April 26-27, 2010 Fermilab D and B Meson Semileptonic Decays from the Lattice Lattice QCD Meets Experiment Workshop April 26-27, 2010 Fermilab presented by : Junko Shigemitsu The Ohio State University 1 Meson Semileptonic Decays

More information

Lattice QCD. Steven Gottlieb, Indiana University. Fermilab Users Group Meeting June 1-2, 2011

Lattice QCD. Steven Gottlieb, Indiana University. Fermilab Users Group Meeting June 1-2, 2011 Lattice QCD Steven Gottlieb, Indiana University Fermilab Users Group Meeting June 1-2, 2011 Caveats I will borrow (shamelessly). 3 Lattice field theory is very active so there is not enough time to review

More information

Nonperturbative comparison of clover and HISQ quarks in lattice QCD and the properties of the φ meson

Nonperturbative comparison of clover and HISQ quarks in lattice QCD and the properties of the φ meson Nonperturbative comparison of clover and HISQ quarks in lattice QCD and the properties of the φ meson to create a B meson from the vacuum with the temporal axial current containing a bottom quark field

More information

arxiv: v1 [hep-lat] 3 Nov 2009

arxiv: v1 [hep-lat] 3 Nov 2009 SU(2 chiral fits to light pseudoscalar masses and decay constants arxiv:0911.0472v1 [hep-lat] 3 Nov 2009 The MILC Collaboration: A. Bazavov, W. Freeman and D. Toussaint Department of Physics, University

More information

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration Physics at HERA Summer Student Lectures 18 + 19 August 28 Kirchhoff Institut für Physik H1 Collaboration email: katja.krueger@desy.de Overview Part 2 Exotics Jet Physics Cross Sections Strong Coupling

More information

(Towards) Baryon Resonances from Lattice QCD

(Towards) Baryon Resonances from Lattice QCD (Towards) Baryon Resonances from Lattice QCD Daniel Mohler Fermilab Theory Group Batavia, IL, USA Paphos, October 2013 Daniel Mohler (Fermilab) Baryon Resonances from Lattice QCD Paphos, October 2013 1

More information

Lattice QCD on Blue Waters

Lattice QCD on Blue Waters Lattice QCD on Blue Waters PI: Paul Mackenzie (Fermilab) Presenter: Steven Gottlieb (Indiana) (USQCD) NCSA Blue Waters Symposium for Petascale Science and Beyond Sunriver Resort May 16-19, 2017 Collaborators

More information

Spectroscopy and Decay properties of D and D s mesons with Martin-like confinement potential in Dirac formalism

Spectroscopy and Decay properties of D and D s mesons with Martin-like confinement potential in Dirac formalism Spectroscopy and Decay properties of D and D s mesons with Martin-like confinement potential in Dirac formalism Department of Physics, Sardar Patel University, Vallabh Vidyanagar- 388 120, Gujarat, INDIA

More information

Lectures on NRQCD Factorization for Quarkonium Production and Decay

Lectures on NRQCD Factorization for Quarkonium Production and Decay Lectures on NRQCD Factorization for Quarkonium Production and Decay Eric Braaten Ohio State University I. Nonrelativistic QCD II. Annihilation decays III. Inclusive hard production 1 NRQCD Factorization

More information

Heavy quark masses from Loop Calculations

Heavy quark masses from Loop Calculations Heavy quark masses from Loop Calculations Peter Marquard Institute for Theoretical Particle Physics Karlsruhe Institute of Technology in collaboration with K. Chetyrkin, D. Seidel, Y. Kiyo, J.H. Kühn,

More information

arxiv: v1 [hep-lat] 4 Nov 2014

arxiv: v1 [hep-lat] 4 Nov 2014 Meson Mass Decomposition,2, Ying Chen, Terrence Draper 2, Ming Gong,2, Keh-Fei Liu 2, Zhaofeng Liu, and Jian-Ping Ma 3,4 arxiv:4.927v [hep-lat] 4 Nov 24 (χqcd Collaboration) Institute of High Energy Physics,

More information

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory E-mail: vziegler@slac.stanford.edu Selected studies in bottomonium physics carried out by the BaBar experiment at the SLAC PEP-II e + e collider are presented. They

More information

Muon g 2 Hadronic Vacuum Polarization from flavors of sea quarks using the HISQ action

Muon g 2 Hadronic Vacuum Polarization from flavors of sea quarks using the HISQ action Muon g 2 Hadronic Vacuum Polarization from 2+1+1 flavors of sea quarks using the HISQ action Jack Laiho Syracuse University April 31, 2015 Motivation The muon anomalous magnetic moment is currently measured

More information

High-Precision Nonperturbative QCD

High-Precision Nonperturbative QCD High-Precision Nonperturbative QCD Peter Lepage Cornell University. G.P. Lepage, High Precision Nonperturbative QCD at the SLAC Summer Institute (August 2002). p.1/77 Why High-Precision and Nonperturbative?.

More information

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks RBC and UKQCD collaborations Oliver Witzel Center for Computational Science Lattice 2013, Mainz,

More information

Applications of QCD Sum Rules to Heavy Quark Physics

Applications of QCD Sum Rules to Heavy Quark Physics Applications of QCD Sum Rules to Heavy Quark Physics Alexander Khodjamirian UNIVERSITÄT SIEGEN Theoretische Physik 1 RESEARCH UNIT q et f 3 lectures at Helmholtz International School "Physics of Heavy

More information

Lattice QCD study of Radiative Transitions in Charmonium

Lattice QCD study of Radiative Transitions in Charmonium Lattice QCD study of Radiative Transitions in Charmonium (with a little help from the quark model) Jo Dudek, Jefferson Lab with Robert Edwards & David Richards Charmonium spectrum & radiative transitions

More information

Current Physics Projects by JLQCD

Current Physics Projects by JLQCD Current Physics Projects by JLQCD Jun Noaki 野秋 淳一 for JLQCD Collaboration Lattice Hadron Physics V, Cairns July 20 24, 2015 Geography JLQCD members (as of Jul. 2015) Tsukuba (KEK) : G. Cossu, B. Fahy,

More information

Global QCD Analysis of Nucleon Structure: Progress and Prospects

Global QCD Analysis of Nucleon Structure: Progress and Prospects Global QCD Analysis of Nucleon Structure: Progress and Prospects Recent Past (say, up to DIS2002): Experiment: More precision DIS measurements (mainly HERA) and Tevatron inclusive jet production (CDF,

More information

Lattice QCD Calculations for Quark Flavor Physics. Matthew Wingate Institute for Nuclear Theory University of Washington

Lattice QCD Calculations for Quark Flavor Physics. Matthew Wingate Institute for Nuclear Theory University of Washington Lattice QCD Calculations for Quark Flavor Physics Matthew Wingate Institute for Nuclear Theory University of Washington work done with A. Gray, E. Gulez, J. Shigemitsu (Ohio State) C. T. H. Davies (Glasgow)

More information

New Physics Opportunities in the Charm/Tau Region: The BESIII - Experiment at IHEP/Beijing

New Physics Opportunities in the Charm/Tau Region: The BESIII - Experiment at IHEP/Beijing New Physics Opportunities in the Charm/Tau Region: The BESIII - Experiment at IHEP/Beijing Introduction BES3/BEPC2 Physics Programme First Results Summary 1 W.Kühn, Univ. Giessen Charmonium: Positronium

More information

https://doi.org/ /epjconf/

https://doi.org/ /epjconf/ Heavy Domain Wall Fermions: physics program The RBC and UKQCD charm Peter A Boyle 1, Luigi Del Debbio 1, Andreas Jüttner 2, Ava Khamseh 1, Justus Tobias Tsang 1,, and Oliver Witzel 1,3 1 Higgs Centre for

More information

Heavy Quark Masses. Matthias Steinhauser TTP, University of Karlsruhe. May 2008, CAQCD08, University of Minnesota

Heavy Quark Masses. Matthias Steinhauser TTP, University of Karlsruhe. May 2008, CAQCD08, University of Minnesota Heavy Quark Masses Matthias Steihauser TTP, Uiversity of Karlsruhe May 2008, CAQCD08, Uiversity of Miesota i collaboratio with Kostja Chetyrki, Has Küh, Christia Sturm ad (i part with) the HPQCD Collaboratio:

More information

Origin of Nucleon Mass in Lattice QCD

Origin of Nucleon Mass in Lattice QCD Origin of Nucleon Mass in Lattice QCD Quark and glue components of hadron mass Decomposition of meson masses πn σ term, strangeness and charmness Decomposition of nucleon mass c QCD Collaboration Trento,

More information

PoS(EPS-HEP2011)179. Lattice Flavour Physics

PoS(EPS-HEP2011)179. Lattice Flavour Physics Rome University Tor Vergata" and INFN sez. Rome Tor Vergata" E-mail: nazario.tantalo@roma.infn.it I briefly discuss recent lattice calculations of a selected list of hadronic matrix elements that play

More information

Zahra Haddadi, KVI-CART (University of Groningen) for the BESIII collaboration 1 Sep EUNPC 2015, Groningen

Zahra Haddadi, KVI-CART (University of Groningen) for the BESIII collaboration 1 Sep EUNPC 2015, Groningen Zahra Haddadi, KVI-CART (University of Groningen) for the BESIII collaboration 1 Sep. 2015 EUNPC 2015, Groningen Outline: Charmonium spectroscopy spin-singlet states puzzle BESIII & precision measurements

More information

arxiv: v1 [hep-lat] 30 Oct 2018

arxiv: v1 [hep-lat] 30 Oct 2018 E-mail: genwang27@uky.edu arxiv:1810.12824v1 [hep-lat] 30 Oct 2018 Jian Liang E-mail: jian.liang@uky.edu Terrence Draper E-mail: draper@pa.uky.edu Keh-Fei Liu E-mail: liu@pa.uky.edu Yi-Bo Yang Institute

More information

Expected precision in future lattice calculations p.1

Expected precision in future lattice calculations p.1 Expected precision in future lattice calculations Shoji Hashimoto (KEK) shoji.hashimoto@kek.jp Super-B Workshop, at University of Hawaii, Jan 19 22, 2004 Expected precision in future lattice calculations

More information

Lattice studies of multiply charmed baryons

Lattice studies of multiply charmed baryons Lattice studies of multiply charmed baryons Gunnar Bali (Regensburg) QWG13, IHEP Beijing, 23.4.2013 Outline Motivation Simulation parameters Multiply charmed baryons Summary Gunnar Bali (Uni Regensburg)

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab the light meson spectrum relatively simple models of hadrons: bound states of constituent quarks and antiquarks the quark model empirical meson

More information

First Results from CLEO-c

First Results from CLEO-c First Results from CLEO-c Thomas Coan Southern Methodist University CLEO Collaboration CLEO-c Physics Program D + µ + ν µ Decays Absolute Br(D hadrons) e + e - σ (DD) Summary 1 CLEO-c Physics Focus Heavy

More information

PoS(LATTICE 2013)248. Charmed Bottom Baryon Spectroscopy. Zachary S. Brown

PoS(LATTICE 2013)248. Charmed Bottom Baryon Spectroscopy. Zachary S. Brown The College of William & Mary E-mail: zsbrown@email.wm.edu William Detmold Massachusetts Institute of Technology E-mail: wdetmold@mit.edu Stefan Meinel Massachusetts Institute of Technology E-mail: smeinel@mit.edu

More information

Study on the Two-Photon Transition from ψ(2s) to J/ψ at BESIII

Study on the Two-Photon Transition from ψ(2s) to J/ψ at BESIII Study on the Two-Photon Transition from ψ(2s) to J/ψ at BESIII 吕晓睿 Xiao-Rui Lu (E-mail: xiaorui@gucas.ac.cn) Graduate University of Chinese Academy of Sciences (GUCAS) List of Contents: Introduction (on

More information

Hadronic (ns) decays. VI International Workshop on Heavy Quarkonia, Elisabetta Prencipe On behalf of the BaBar collaboration

Hadronic (ns) decays. VI International Workshop on Heavy Quarkonia, Elisabetta Prencipe On behalf of the BaBar collaboration VI International Workshop on Heavy Quarkonia, 2008 Hadronic (ns) decays at BABAR Nara, 2 th 5 th December 2008 Elisabetta Prencipe On behalf of the BaBar collaboration Introduction Studying Quarkonia studying

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Kai Zhu on behalf of BESIII collaboration Institute of High Energy Physics, Beijing March, Moriond QCD 2015

Kai Zhu on behalf of BESIII collaboration Institute of High Energy Physics, Beijing March, Moriond QCD 2015 Kai Zhu on behalf of BESIII collaboration Institute of High Energy Physics, Beijing 21-28 March, Moriond QCD 2015 Introduction Charmonium & Exotics states BESIII experiment and BEPCII Exotic charmonium-like

More information

New Charmonium Results from CLEO c

New Charmonium Results from CLEO c New Charmonium Results from CLEO c Helmut Vogel (for the CLEO Collaboration) Carnegie Mellon University CHARM09, Leimen, Germany One of the last CLEO c events (taken on 3 March 2008) e+e- Ds*+Ds- CLEO

More information

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = 2 + 1 + 1 twisted mass fermions Grit Hotzel 1 in collaboration with Florian Burger 1, Xu Feng 2, Karl Jansen

More information

PoS(LATTICE 2015)261. Scalar and vector form factors of D πlν and D Klν decays with N f = Twisted fermions

PoS(LATTICE 2015)261. Scalar and vector form factors of D πlν and D Klν decays with N f = Twisted fermions Scalar and vector form factors of D πlν and D Klν decays with N f = + + Twisted fermions N. Carrasco (a), (a,b), V. Lubicz (a,b), E. Picca (a,b), L. Riggio (a), S. Simula (a), C. Tarantino (a,b) (a) INFN,

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

Puzzles in the Charmonium Sector of QCD

Puzzles in the Charmonium Sector of QCD Puzzles in the Charmonium Sector of QCD Eric Braaten Ohio State University support DOE Division of High Energy Physics 1 Lots of pieces Y(4140) X(3940) Y(3940) Y(4660) Y(4360) Y(4260) Y(4008) X(4160) X(3872)

More information

Expected Precision of Higgs Boson Partial Widths within the Standard Model

Expected Precision of Higgs Boson Partial Widths within the Standard Model FERMILAB PUB 14 068 T SLAC PUB 15936 April, 2014 Expected Precision of Higgs Boson Partial Widths within the Standard Model G. Peter Lepage a1, Paul B. Mackenzie b2, and Michael E. Peskin c3 a. Laboratory

More information

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II)

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Stefan Sint Trinity College Dublin INT Summer School Lattice QCD and its applications Seattle, August 16, 2007 Stefan Sint Bare

More information

arxiv: v1 [hep-lat] 24 Oct 2013

arxiv: v1 [hep-lat] 24 Oct 2013 arxiv:30.646v [hep-lat] 24 Oct 203 Lattice NRQCD study of in-medium bottomonium states using N f = 2+,48 3 2 HotQCD configurations Department of Physics, Sejong University, Seoul 43-747, Korea E-mail:

More information

Form factors on the lattice

Form factors on the lattice Form factors on the lattice Bipasha Chakraborty Jefferson Lab Hadronic Physics with Leptonic and Hadronic Beams, Newport News, USA 8 th Sept, 2017. 1 Pion electromagnetic form factor Simplest hadron p

More information

ZEUS physics results for summer 2013

ZEUS physics results for summer 2013 ZEUS physics results for summer 2013 Misha Lisovyi (DESY) on behalf of the ZEUS and H1 Collaborations HERA Forum 18.06.2013 HERA physics p HERA physics: Structure functions and electro weak effects QCD

More information

Exotic and excited-state radiative transitions in charmonium from lattice QCD

Exotic and excited-state radiative transitions in charmonium from lattice QCD Exotic and excited-state radiative transitions in charmonium from lattice QCD Christopher Thomas, Jefferson Lab Hadron Spectroscopy Workshop, INT, November 2009 In collaboration with: Jo Dudek, Robert

More information

Charmonium Transitions

Charmonium Transitions Hans Kuipers & Maikel de Vries Student Seminar on Subatomic Physics October 14, 2009 Outline n 2S+1 L J J PC Aspects of charmonium Charmonium is a mesonic bound state of c c. Charmonium produced in e e

More information

QCD at the Tevatron: The Production of Jets & Photons plus Jets

QCD at the Tevatron: The Production of Jets & Photons plus Jets QCD at the Tevatron: The Production of Jets & Photons plus Jets Mike Strauss The University of Oklahoma The Oklahoma Center for High Energy Physics for the CDF and DØD Collaborations APS 2009 Denver, Colorado

More information

Radiative transitions and the quarkonium magnetic moment

Radiative transitions and the quarkonium magnetic moment Radiative transitions and the quarkonium magnetic moment Antonio Vairo based on Nora Brambilla, Yu Jia and Antonio Vairo Model-independent study of magnetic dipole transitions in quarkonium PRD 73 054005

More information

Charmed Baryon spectroscopy at Belle 1. Y. Kato KMI topics. Mainly based on the paper recently accepted by PRD ( arxiv: )

Charmed Baryon spectroscopy at Belle 1. Y. Kato KMI topics. Mainly based on the paper recently accepted by PRD ( arxiv: ) Charmed Baryon spectroscopy at Belle 1 Y. Kato KMI topics Mainly based on the paper recently accepted by PRD ( arxiv:1312.1026) Introduction 2 The mass of matter is almost made of nucleons. But they are

More information

On a Singular Solution in Higgs Field (2) -A Representation of Certain f 0 Mesons Masses.

On a Singular Solution in Higgs Field (2) -A Representation of Certain f 0 Mesons Masses. On a Singular Solution in Higgs Field () -A Representation of Certain f Mesons Masses. Kazuyoshi KITAZAWA Mitsui Chemicals (DPF Meeting 11, August 9-13, Brown Univ.) Contents We have recently discussed

More information

Determination of α s from the QCD static energy

Determination of α s from the QCD static energy Determination of α s from the QCD static energy Antonio Vairo Technische Universität München Bibliography (1) A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination

More information

CHARMED BOTTOM BARYON SPECTROSCOPY. Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos

CHARMED BOTTOM BARYON SPECTROSCOPY. Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos CHARMED BOTTOM BARYON SPECTROSCOPY Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos 1 OUTLINE Landscape of heavy baryon spectroscopy Details of our calculation Extrapolations Results

More information

Goodbye to Large G? Marek Karliner. Cambridge University and Tel Aviv University. with John Ellis, hep-ph/ ph/

Goodbye to Large G? Marek Karliner. Cambridge University and Tel Aviv University. with John Ellis, hep-ph/ ph/ Goodbye to Large G? Marek Karliner Cambridge University and Tel Aviv University with John Ellis, hep-ph/0501115 ph/0501115 LC2005, Cairns, 7/2005 nucleon spin quark helicities: q = Z 1 0 h q (x) q (x)

More information

arxiv: v1 [hep-ph] 17 Nov 2016

arxiv: v1 [hep-ph] 17 Nov 2016 Modern Physics Letters A c World Scientific Publishing Company arxiv:1611.05648v1 [hep-ph] 17 Nov 2016 CHARM QUARK MASS DETERMINED FROM A PAIR OF SUM RULES JENS ERLER Instituto de Física, Universidad Nacional

More information

Bound states on the lattice

Bound states on the lattice Bound states on the lattice Daniel Mohler Admont, February, 2017 Daniel Mohler (HIM) Bound states on the lattice Admont, February, 2017 1 / 55 A simplistic take on fermion discretizations family staggered

More information

FLAG: LATTICE FLAVOUR PHYSICS AND WORLD

FLAG: LATTICE FLAVOUR PHYSICS AND WORLD FLAG: LATTICE FLAVOUR PHYSICS AND WORLD AVERAGES A. Vladikas INFN - TOR VERGATA Trento - ECT* 14th January 2013 Lattice QCD and Hadron Physics LPHA ACollaboration OUTLINE FLAG description and summary of

More information

arxiv: v1 [hep-lat] 7 Oct 2007

arxiv: v1 [hep-lat] 7 Oct 2007 Charm and bottom heavy baryon mass spectrum from lattice QCD with 2+1 flavors arxiv:0710.1422v1 [hep-lat] 7 Oct 2007 and Steven Gottlieb Department of Physics, Indiana University, Bloomington, Indiana

More information

Charmonium Spectroscopy and Decay at CLEO c

Charmonium Spectroscopy and Decay at CLEO c Charmonium Spectroscopy and Decay at CLEO c Helmut Vogel Carnegie Mellon University CLEO c at CESR (for the CLEO Collaboration) PHIPSI09, IHEP, Beijing, 13 Oct 2009 Acknowledgments and thanks to: Matt

More information

arxiv: v1 [hep-lat] 12 Sep 2016

arxiv: v1 [hep-lat] 12 Sep 2016 Neutral Kaon Mixing Beyond the Standard Model with n f = 2 + 1 Chiral Fermions Part 1: Bare Matrix Elements and Physical Results N. Garron a, R.J. Hudspith b, A.T. Lytle c a Theoretical Physics Division,

More information

ATLAS studies of spectroscopy and B-decays

ATLAS studies of spectroscopy and B-decays ATLAS studies of spectroscopy and B-decays Zdeněk Doležal on behalf of the ATLAS Collaboration Charles University in Prague 53rd International Winter Meeting on Nuclear Physics 26-30 January 2015 Outline

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

strong coupling Antonio Vairo INFN and University of Milano

strong coupling Antonio Vairo INFN and University of Milano potential Non-Relativistic QCD strong coupling Antonio Vairo INFN and University of Milano For most of the quarkonium states: 1/r mv Λ QCD (0) V (r) (GeV) 2 1 Υ Υ Υ Υ η ψ c χ ψ ψ 2 0 1 2 r(fm) -1 weak

More information

Particle Discovery at the LHC. Sally Seidel University of New Mexico 20 October 2017 APS Four Corners Meeting

Particle Discovery at the LHC. Sally Seidel University of New Mexico 20 October 2017 APS Four Corners Meeting Particle Discovery at the LHC Sally Seidel University of New Mexico 20 October 2017 APS Four Corners Meeting 1 The LHC experiments have announced the discovery of several new particle states - in addition

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

Nonperturbative QCD corrections to electroweak observables. Dru Renner Jefferson Lab (JLab)

Nonperturbative QCD corrections to electroweak observables. Dru Renner Jefferson Lab (JLab) Nonperturbative QCD corrections to electroweak observables Dru Renner Jefferson Lab (JLab) work with Xu Feng (KEK), Grit Hotzel (Humboldt U.) Karl Jansen (DESY) and Marcus Petschlies (Cyprus Institute)

More information

Scattering amplitudes from lattice QCD

Scattering amplitudes from lattice QCD Scattering amplitudes from lattice QCD David Wilson Old Dominion University Based on work in collaboration with J.J. Dudek, R.G. Edwards and C.E. Thomas. Jefferson lab theory center 20th October 2014.

More information

Spectra of Heavy-Light Mesons. Estia J. Eichten, Christopher T. Hill, and Chris Quigg. P.O. Box 500, Batavia, Illinois May 25, 1994.

Spectra of Heavy-Light Mesons. Estia J. Eichten, Christopher T. Hill, and Chris Quigg. P.O. Box 500, Batavia, Illinois May 25, 1994. Spectra of Heavy-Light Mesons Estia J. Eichten, Christopher T. Hill, and Chris Quigg Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 3 y z May 5, 1994 ( Qq) mesons that are

More information

Heavy mesons and tetraquarks from lattice QCD

Heavy mesons and tetraquarks from lattice QCD Heavy mesons and tetraquarks from lattice QCD seminar, Technische Universität Darmstadt Marc Wagner Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de

More information

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1-55 Cracow School of Theoretical Physics 20 28/6/2015, Zakopane, Poland Outline The Lagrangian of QCD and its symmetries

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab a black box? QCD lattice QCD observables (scattering amplitudes?) in these lectures, hope to give you a look inside the box 2 these lectures how

More information

DAMTP, University of Cambridge HPQCD

DAMTP, University of Cambridge HPQCD Outline of Talk Phenomenological Motivation Overview of lattice methodology Results Future work -Motivation The CKM Matrix After EW symmetry breaking the standard model in the mass basis contains the flavour

More information