6.883: Online Methods in Machine Learning Alexander Rakhlin

Size: px
Start display at page:

Download "6.883: Online Methods in Machine Learning Alexander Rakhlin"

Transcription

1 6.883: Olie Methods i Machie Learig Alexader Rakhli LECTURE 0. Preamble This course will focus o olie methods i machie learig. Roughly speakig, olie methods are those that process oe datum at a time. This is a somewhat vague defiitio, but the scope of methods will be clear as we go through the course. We will focus o the algorithmic aspect ( how it works ) ad the theoretical aspect ( why it works ). We will also discuss applicatios, ad you will get to implemet the methods for homework/projects. For the more applicatio-orieted studets there will be plety of opportuities to try thigs out i practice; for the more theoretically-iclied, there will be plety of ew mathematical ideas ad research directios. We ca divide the scope of olie methods ito those that have to process oe datum at a time because there is too much data to fit ito memory, or the applicatio is itself iheretly olie. We will cover both of these ad draw may coectios betwee them. While the first group of olie methods is ofte covered i machie learig classes (e.g. ru stochastic gradiet descet o a eural etwork), the secod is more rare. I this secod part, we shall focus o very recet developmets i olie learig ad develop powerful tools for creatig ew algorithms (that may or may ot look like some form of a gradiet descet). With these ew tools we will be able to derive ad implemet methods for predictio i social etworks, ad placemet, ad so forth. 0.2 Bit predictio I 950 s, David Hagelbarger [Hag56] at the Bell Labs built the so-called mid readig machie to play the game of matchig peies. His colleague ad fried, Claude Shao [Sha53], built a simplified versio (which is curretly i the MIT Museum s storage facility i Somerville [Pou4]). Accordig to some accouts, the machie was cosistetly predictig the sequece of bits produced by utraied players better tha 50%. Here is a moder versio of this machie: by Yoav Freud ad colleagues. Try to beat it! Of course, the oly reaso the machie might be able to predict the sequece etered by a huma is that these sequeces ted to be oradom. How ca we capture the structure i the sequece ad exploit it to our advatage? (If you re comig from iformatio theory, you might be familiar with the close coectio betwee predictability of the sequece ad the ability to compress it. ) Let us try to formalize the problem. Eve i this simple settig there will be a few surprises. Let y = (y,..., y ) {, } be as sequece of (siged) bits. A determiistic

2 predictio strategy ca be writte as A = (ŷ,..., ŷ ), with ŷ t = ŷ t (y,..., y t ) {, }. If we employ the determiistic strategy ŷ o (y,..., y ), we make t= {ŷ t y t } average umber of mistakes. You should be able to covece yourself that for ay such determiistic strategy there exists a sequece o which this strategy makes mistakes all the time, thus icurrig a average loss of. This upsettig issue, however, is fixed by cosiderig radomized strategies, as we show ext. A radomized algorithm will be deoted by A = (q,..., q ), with q t = q t (y,..., y t ) [, ]. Each value q t is to be uderstood as parametrizig the mea of a distributio o {, }. For ay sequece y,..., y, we ow cosider the expected value of the loss l(a; y,..., y ) = E [ t= {ŷ t y t }], where the expectatio is over the radomizatio of the algorithm. The value l(a; y,..., y ) tells us how may mistakes, o average, the radomized algorithm A is expected to make o the give sequece. A algorithm that guesses radomly will icur the average loss of /2 for ay sequece, ad so there is o loger a sigle bad sequece for the algorithm. Ca l(a; y,..., y ) be always smaller tha 50%? That is, ca we fid a super algorithm that will predict all the sequeces better tha a radom guess? Let s take a look. Let ɛ,..., ɛ deote idepedet Rademacher radom variables (ubiased coi flips). The 2 l(a; y,..., y ) = E ɛ,...,ɛ l(a; ɛ,..., ɛ ) = (y,...,y ) 2. Covice yourself of all these steps. Coclusio? Ay algorithm will ecessarily pay larger expected loss o some sequeces ad smaller o the others, so that, o average, the loss is 50%. This souds like a simple egative result, but we ca put a positive spi o it. If we care about particular sequeces (e.g. those produced by humas) we may try to develop a algorithm A that has small expected umber of mistakes o these chose sequeces, ad large umber of mistakes o the oes we will ot expect to ecouter. Of course, the ext questio is: how does oe costruct a good algorithm, give that we have some idea of the sequeces we ll likely ecouter i practice. Let φ(y,..., y ) deote the target expected value we d like to achieve o sequece (y,..., y ), ad let us specify the values of φ o all such sequeces. We may thik of φ as a fuctio o the biary hypercube {, }. Let us also posit that φ does ot chage too fast o earby vertices: φ(..., +,...) φ(...,,...). () If Eφ(ɛ,..., ɛ ) < /2, o algorithm ca achieve l(a; y,..., y ) = φ(y,..., y ) for all sequeces. This follows from the previous argumet. But the iterestig questio is whether we ca achieve ay φ with Eφ 2. This simple but somewhat surprisig result is stated i [Cov65]. Lemma. Let φ {±} R be such that () holds ad Eφ = /2 uder the uiform distributio o {±}. The there exists a radomized algorithm A with (y,..., y ), l(a; y,..., y ) = φ(y,..., y ). 2

3 Proof. Defie the followig shorthad to ease the proof a bit: φ t (y,..., y t ) = Eφ(y,..., y t, ɛ t+,..., ɛ ) where the expectatio is over ɛ t+,..., ɛ. Showig l(a; y,..., y ) = φ(y,..., y ) is equivalet to exhibitig a algorithm with E [ {ŷ t y t } + φ t (y t ) φ t (y t ) 2 ] = 0 (2) t= (you should check this by simplifyig the expressio ad usig the assumptios of the lemma). To show (2), we start from the ed ad defie algorithm A o roud as q (φ(y,..., y, ) φ(y,..., y, +)). Writig {a b} = 2 ( ab) for a, b {±} (a useful represetatio to keep i mid for the rest of the course), ad usig liearity of expectatio, the expected loss o roud is E[{ŷ y }] = 2 ( q y ). We ow peel off the last term from the sum i (2): E[{ŷ y }] + φ (y ) φ (y ) 2 = φ (y ) 2 (φ(y,..., y, +) + φ(y,..., y, )) = 0. (4) We also remark that the choice of q equalizes the values of (3) for the possibilities y = ad y =. Such a strategy is called a equalizer. For itermediate steps, the algorithm takes o the form q t (y,..., y t ) (φ t (y,..., y t, ) φ t (y,..., y t, +)). (5) Cotiuig i this fashio from backwards to t = proves the claim. We may iterpret φ as a potetial fuctio. The the algorithm at time t is sayig: The predictio should be biased towards that label whose potetial (uder a radom evolutio of future) is higher. What is especially iterestig, we are justified (by the fact that our method is optimal) i usig coi flips ɛ t+,..., ɛ for the future eve though the sequece y,..., y t will cotiue to evolve i reality i a arbitrary way o which we place o stochastic assumptios. This is a fortuitous cosequece of our choice of a equalizer strategy. A trivial corollary is: Corollary 2. For ay φ {±} R, satisfyig () ad Eφ /2, there exists a radomized algorithm A makig (o average over its radomizatio) the umber of mistakes o more tha φ(y,..., y ), for ay sequece: (y,..., y ), l(a; y,..., y ) φ(y,..., y ). (3) 3

4 Why is this simple result surprisig? It tells us that existece of a predictio method ca be verified by simply checkig some probabilistic iequality (Eφ /2). I the ext part of the course, we will sped some time learig several techiques for checkig (slightly more complicated) expressios for certifyig existece of predictio methods, ad for fidig them. We ow have a way of choosig φ that will work well for the problem at had. For istace, if we are predictig class labels for odes of a graph, we may tilt φ towards smooth labeligs, expectig homogeeity with respect to the graph structure. Moreover, this is doe is a completely determiistic fashio, without reliace o a probabilistic source for the data. Later i the course we will cover more geeral techiques that do ot arise from simply takig a φ fuctio ad defiig a algorithm the way we did. But for ow we ca already try to costruct good φ s for the problem of predictig sequeces geerated by humas. Oe of the first tools is a method for combiig several good predictors ito a meta-predictor. After that, we may defie a collectio of φ s that predict huma-geerated sequeces accordig to some fiite state machies, ad create a meta-predictor that does as well as the best of them o the give sequece. (For those iterested, the versio of the mid-reader o the web seems to be usig cotext weighted trees). Performig as well as a give fiite collectio of predictors is ofte called the experts settig. Assume that we have access to predictios of k experts E,..., E k, which produce o roud t (i a o-aticipatig maer) a umber (called advice) E j (y,..., y t ) {, }. For each j [k], defie φ j (y,..., y ) = t= {E j (y,..., y t ) y t }, the performace of expert j, which is oly kow at the ed. We check that Eφ j (ɛ,..., ɛ ) = /2. Of course, we ca do as well as a sigle expert j by followig her advice, ad also icurrig φ j umber of mistakes. The questio is whether it is possible to do (almost) as well as the best expert? The first attempt is to take the fuctio mi j [k] φj (y,..., y ) as the overall quality fuctio φ(y,..., y ). However, we observe that the expectatio of this fuctio uder the uiform distributio is less tha /2 (prove it!). Luckily, we eed oly a small correctio: φ(y,..., y ) = mi j [k] φj (y,..., y ) + c log(k) Homework: fid a value of c that esures Eφ /2 for this fuctio. Now that we ve certified Eφ /2, there must exist a method that makes the umber of mistakes o more tha the best of the experts, plus a vaishig term. What is the method? There are several. Of course, the oe i (5) works. However, it requires certai averagig with radom sigs. There are more efficiet methods, ad a popular oe is called the Expoetial Weights (or, Multiplicative Weights). It ca be derived i a pricipled maer with the tools we will itroduce. Two caveats: the argumet i the lemma requires us to be able to simulate the values of experts o some hypothetical future give by radom 4

5 coi flips, ad the experts caot kow future. As we will see, the Expoetial Weights algorithm works eve if these two requiremets are removed. We fiish this lecture with a cocrete example. Suppose you have a huch that humaetered sequeces ted to have imbalace of s ad s. Ca we exploit it? Here is what follows immediately from our previous discussio: There is a (simple) algorithm that will make at most mi{ p, p} + O(/ ) mistakes o ay sequece with p proportio of s, ad the method does ot eed to kow this proportio. For example, if the sequece happes to cosist of 80% s, the algorithm makes roughly 20%, if is large eough. This is ot a trivial statemet, sice we do ot assume that the sequece is i.i.d. The coclusio is: we ca easily build a predictio method that will wi over ay ubalaced sequece etered by a huma. Refereces [Cov65] Thomas M Cover. Behaviour of sequetial predictors of biary sequeces. I Proc. 4th Prague Cof. Iform. Theory, Statistical Decisio Fuctios, Radom Processes, 965. [Hag56] DW Hagelbarger. Seer, a sequece extrapolatig robot. Electroic Computers, IRE Trasactios o, (): 7, 956. [Pou4] W. Poudstoe. How to Predict the Upredictable: The Art of Outsmartig Almost Everyoe [Sha53] Claude E Shao. A mid-readig machie. Bell Laboratories memoradum,

6.883: Online Methods in Machine Learning Alexander Rakhlin

6.883: Online Methods in Machine Learning Alexander Rakhlin 6.883: Olie Methods i Machie Learig Alexader Rakhli LECTURES 5 AND 6. THE EXPERTS SETTING. EXPONENTIAL WEIGHTS All the algorithms preseted so far halluciate the future values as radom draws ad the perform

More information

Intro to Learning Theory

Intro to Learning Theory Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 2 : Learig Frameworks, Examples Settig up learig problems. X : istace space or iput space Examples: Computer Visio: Raw M N image vectorized X = 0, 255 M N, SIFT

More information

6.883: Online Methods in Machine Learning Alexander Rakhlin

6.883: Online Methods in Machine Learning Alexander Rakhlin 6.883: Olie Methods i Machie Learig Alexader Rakhli LECTURE 23. SOME CONSEQUENCES OF ONLINE NO-REGRET METHODS I this lecture, we explore some cosequeces of the developed techiques.. Covex optimizatio Wheever

More information

On Equivalence of Martingale Tail Bounds and Deterministic Regret Inequalities

On Equivalence of Martingale Tail Bounds and Deterministic Regret Inequalities O Equivalece of Martigale Tail Bouds ad Determiistic Regret Iequalities Sasha Rakhli Departmet of Statistics, The Wharto School Uiversity of Pesylvaia Dec 16, 2015 Joit work with K. Sridhara arxiv:1510.03925

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 3 : Olie Learig, miimax value, sequetial Rademacher complexity Recap: Miimax Theorem We shall use the celebrated miimax theorem as a key tool to boud the miimax rate

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

Shannon s noiseless coding theorem

Shannon s noiseless coding theorem 18.310 lecture otes May 4, 2015 Shao s oiseless codig theorem Lecturer: Michel Goemas I these otes we discuss Shao s oiseless codig theorem, which is oe of the foudig results of the field of iformatio

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

Lecture 11: Pseudorandom functions

Lecture 11: Pseudorandom functions COM S 6830 Cryptography Oct 1, 2009 Istructor: Rafael Pass 1 Recap Lecture 11: Pseudoradom fuctios Scribe: Stefao Ermo Defiitio 1 (Ge, Ec, Dec) is a sigle message secure ecryptio scheme if for all uppt

More information

Induction: Solutions

Induction: Solutions Writig Proofs Misha Lavrov Iductio: Solutios Wester PA ARML Practice March 6, 206. Prove that a 2 2 chessboard with ay oe square removed ca always be covered by shaped tiles. Solutio : We iduct o. For

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 18.657: Mathematics of Machie Learig Lecturer: Philippe Rigollet Lecture 15 Scribe: Zach Izzo Oct. 27, 2015 Part III Olie Learig It is ofte the case that we will be asked to make a sequece of predictios,

More information

STAT Homework 2 - Solutions

STAT Homework 2 - Solutions STAT-36700 Homework - Solutios Fall 08 September 4, 08 This cotais solutios for Homework. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better isight.

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Hashing and Amortization

Hashing and Amortization Lecture Hashig ad Amortizatio Supplemetal readig i CLRS: Chapter ; Chapter 7 itro; Sectio 7.. Arrays ad Hashig Arrays are very useful. The items i a array are statically addressed, so that isertig, deletig,

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

Chapter 8: Estimating with Confidence

Chapter 8: Estimating with Confidence Chapter 8: Estimatig with Cofidece Sectio 8.2 The Practice of Statistics, 4 th editio For AP* STARNES, YATES, MOORE Chapter 8 Estimatig with Cofidece 8.1 Cofidece Itervals: The Basics 8.2 8.3 Estimatig

More information

Lecture 9: Hierarchy Theorems

Lecture 9: Hierarchy Theorems IAS/PCMI Summer Sessio 2000 Clay Mathematics Udergraduate Program Basic Course o Computatioal Complexity Lecture 9: Hierarchy Theorems David Mix Barrigto ad Alexis Maciel July 27, 2000 Most of this lecture

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Information Theory and Statistics Lecture 4: Lempel-Ziv code

Information Theory and Statistics Lecture 4: Lempel-Ziv code Iformatio Theory ad Statistics Lecture 4: Lempel-Ziv code Łukasz Dębowski ldebowsk@ipipa.waw.pl Ph. D. Programme 203/204 Etropy rate is the limitig compressio rate Theorem For a statioary process (X i)

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

Lecture 9: Boosting. Akshay Krishnamurthy October 3, 2017

Lecture 9: Boosting. Akshay Krishnamurthy October 3, 2017 Lecture 9: Boostig Akshay Krishamurthy akshay@csumassedu October 3, 07 Recap Last week we discussed some algorithmic aspects of machie learig We saw oe very powerful family of learig algorithms, amely

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15 CS 70 Discrete Mathematics ad Probability Theory Summer 2014 James Cook Note 15 Some Importat Distributios I this ote we will itroduce three importat probability distributios that are widely used to model

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Lecture 4: April 10, 2013

Lecture 4: April 10, 2013 TTIC/CMSC 1150 Mathematical Toolkit Sprig 01 Madhur Tulsiai Lecture 4: April 10, 01 Scribe: Haris Agelidakis 1 Chebyshev s Iequality recap I the previous lecture, we used Chebyshev s iequality to get a

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

Posted-Price, Sealed-Bid Auctions

Posted-Price, Sealed-Bid Auctions Posted-Price, Sealed-Bid Auctios Professors Greewald ad Oyakawa 207-02-08 We itroduce the posted-price, sealed-bid auctio. This auctio format itroduces the idea of approximatios. We describe how well this

More information

1 Duality revisited. AM 221: Advanced Optimization Spring 2016

1 Duality revisited. AM 221: Advanced Optimization Spring 2016 AM 22: Advaced Optimizatio Sprig 206 Prof. Yaro Siger Sectio 7 Wedesday, Mar. 9th Duality revisited I this sectio, we will give a slightly differet perspective o duality. optimizatio program: f(x) x R

More information

1 Review and Overview

1 Review and Overview DRAFT a fial versio will be posted shortly CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #3 Scribe: Migda Qiao October 1, 2013 1 Review ad Overview I the first half of this course,

More information

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables CSCI-B609: A Theorist s Toolkit, Fall 06 Aug 3 Lecture 0: the Cetral Limit Theorem Lecturer: Yua Zhou Scribe: Yua Xie & Yua Zhou Cetral Limit Theorem for iid radom variables Let us say that we wat to aalyze

More information

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1 . Ifiite Series Oce we have a sequece of umbers, the ext thig to do is to sum them up. Give a sequece a be a sequece: ca we give a sesible meaig to the followig expressio? a = a a a a While summig ifiitely

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information

Lecture 7: October 18, 2017

Lecture 7: October 18, 2017 Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n, CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 9 Variace Questio: At each time step, I flip a fair coi. If it comes up Heads, I walk oe step to the right; if it comes up Tails, I walk oe

More information

Understanding Samples

Understanding Samples 1 Will Moroe CS 109 Samplig ad Bootstrappig Lecture Notes #17 August 2, 2017 Based o a hadout by Chris Piech I this chapter we are goig to talk about statistics calculated o samples from a populatio. We

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Math 216A Notes, Week 5

Math 216A Notes, Week 5 Math 6A Notes, Week 5 Scribe: Ayastassia Sebolt Disclaimer: These otes are ot early as polished (ad quite possibly ot early as correct) as a published paper. Please use them at your ow risk.. Thresholds

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

1 Hash tables. 1.1 Implementation

1 Hash tables. 1.1 Implementation Lecture 8 Hash Tables, Uiversal Hash Fuctios, Balls ad Bis Scribes: Luke Johsto, Moses Charikar, G. Valiat Date: Oct 18, 2017 Adapted From Virgiia Williams lecture otes 1 Hash tables A hash table is a

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities CS8B/Stat4B Sprig 008) Statistical Learig Theory Lecture: Ada Boost, Risk Bouds, Cocetratio Iequalities Lecturer: Peter Bartlett Scribe: Subhrasu Maji AdaBoost ad Estimates of Coditioal Probabilities We

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions CS 70 Discrete Mathematics for CS Sprig 2005 Clacy/Wager Notes 21 Some Importat Distributios Questio: A biased coi with Heads probability p is tossed repeatedly util the first Head appears. What is the

More information

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound Lecture 7 Ageda for the lecture Gaussia chael with average power costraits Capacity of additive Gaussia oise chael ad the sphere packig boud 7. Additive Gaussia oise chael Up to this poit, we have bee

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population A quick activity - Cetral Limit Theorem ad Proportios Lecture 21: Testig Proportios Statistics 10 Coli Rudel Flip a coi 30 times this is goig to get loud! Record the umber of heads you obtaied ad calculate

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

CS 330 Discussion - Probability

CS 330 Discussion - Probability CS 330 Discussio - Probability March 24 2017 1 Fudametals of Probability 11 Radom Variables ad Evets A radom variable X is oe whose value is o-determiistic For example, suppose we flip a coi ad set X =

More information

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY Structure 2.1 Itroductio Objectives 2.2 Relative Frequecy Approach ad Statistical Probability 2. Problems Based o Relative Frequecy 2.4 Subjective Approach

More information

IP Reference guide for integer programming formulations.

IP Reference guide for integer programming formulations. IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002 ECE 330:541, Stochastic Sigals ad Systems Lecture Notes o Limit Theorems from robability Fall 00 I practice, there are two ways we ca costruct a ew sequece of radom variables from a old sequece of radom

More information

Polynomial identity testing and global minimum cut

Polynomial identity testing and global minimum cut CHAPTER 6 Polyomial idetity testig ad global miimum cut I this lecture we will cosider two further problems that ca be solved usig probabilistic algorithms. I the first half, we will cosider the problem

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013 Large Deviatios for i.i.d. Radom Variables Cotet. Cheroff boud usig expoetial momet geeratig fuctios. Properties of a momet

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Lecture 15: Strong, Conditional, & Joint Typicality

Lecture 15: Strong, Conditional, & Joint Typicality EE376A/STATS376A Iformatio Theory Lecture 15-02/27/2018 Lecture 15: Strog, Coditioal, & Joit Typicality Lecturer: Tsachy Weissma Scribe: Nimit Sohoi, William McCloskey, Halwest Mohammad I this lecture,

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

Lecture 14: Graph Entropy

Lecture 14: Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS Sprig 2013 Lecture 14: Graph Etropy March 19, 2013 Lecturer: Mahdi Cheraghchi Scribe: Euiwoog Lee 1 Recap Bergma s boud o the permaet Shearer s Lemma Number

More information

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15 CS 70 Discrete Mathematics ad Probability Theory Sprig 2012 Alistair Siclair Note 15 Some Importat Distributios The first importat distributio we leared about i the last Lecture Note is the biomial distributio

More information

The Growth of Functions. Theoretical Supplement

The Growth of Functions. Theoretical Supplement The Growth of Fuctios Theoretical Supplemet The Triagle Iequality The triagle iequality is a algebraic tool that is ofte useful i maipulatig absolute values of fuctios. The triagle iequality says that

More information

Lecture 9: Expanders Part 2, Extractors

Lecture 9: Expanders Part 2, Extractors Lecture 9: Expaders Part, Extractors Topics i Complexity Theory ad Pseudoradomess Sprig 013 Rutgers Uiversity Swastik Kopparty Scribes: Jaso Perry, Joh Kim I this lecture, we will discuss further the pseudoradomess

More information

Last time, we talked about how Equation (1) can simulate Equation (2). We asserted that Equation (2) can also simulate Equation (1).

Last time, we talked about how Equation (1) can simulate Equation (2). We asserted that Equation (2) can also simulate Equation (1). 6896 Quatum Complexity Theory Sept 23, 2008 Lecturer: Scott Aaroso Lecture 6 Last Time: Quatum Error-Correctio Quatum Query Model Deutsch-Jozsa Algorithm (Computes x y i oe query) Today: Berstei-Vazirii

More information

SOME TRIBONACCI IDENTITIES

SOME TRIBONACCI IDENTITIES Mathematics Today Vol.7(Dec-011) 1-9 ISSN 0976-38 Abstract: SOME TRIBONACCI IDENTITIES Shah Devbhadra V. Sir P.T.Sarvajaik College of Sciece, Athwalies, Surat 395001. e-mail : drdvshah@yahoo.com The sequece

More information

Measures of Spread: Standard Deviation

Measures of Spread: Standard Deviation Measures of Spread: Stadard Deviatio So far i our study of umerical measures used to describe data sets, we have focused o the mea ad the media. These measures of ceter tell us the most typical value of

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

L = n i, i=1. dp p n 1

L = n i, i=1. dp p n 1 Exchageable sequeces ad probabilities for probabilities 1996; modified 98 5 21 to add material o mutual iformatio; modified 98 7 21 to add Heath-Sudderth proof of de Fietti represetatio; modified 99 11

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

STAT 350 Handout 19 Sampling Distribution, Central Limit Theorem (6.6)

STAT 350 Handout 19 Sampling Distribution, Central Limit Theorem (6.6) STAT 350 Hadout 9 Samplig Distributio, Cetral Limit Theorem (6.6) A radom sample is a sequece of radom variables X, X 2,, X that are idepedet ad idetically distributed. o This property is ofte abbreviated

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information