Posted-Price, Sealed-Bid Auctions

Size: px
Start display at page:

Download "Posted-Price, Sealed-Bid Auctions"

Transcription

1 Posted-Price, Sealed-Bid Auctios Professors Greewald ad Oyakawa We itroduce the posted-price, sealed-bid auctio. This auctio format itroduces the idea of approximatios. We describe how well this auctio does agaist a secod price auctio, ad give a lower boud o the expected welfare geerated. The Posted-Price, Sealed-Bid Auctio I our auctio desig space, we have see that there is a large differece i our methodology of aalyzig strategies whe we go from a pricig scheme that charges the secod highest bid, to oe i which bidders pay their bid. We ow itroduce a differet pricig ad allocatio scheme: suppose the auctioeer aouces the price of a good, ad ay bidder that bids at least the posted price has uiform probability of wiig. The wier is charged the posted price P, ad all other bidders are charged othig. Give a posted price P, we ca ask: How should bidders bid? How good is this outcome? Good i the secod questio implies that we are measurig somethig. I this case, it will be the total expected welfare, which is the sum of everyoe s expected utility. Recall that the utility of each bidder is u i b i, b i ) = v i x i b i, b i ) p i b i, b i ), i N, ) ad that the utility of the auctioeer is u 0 b i, b i ) = p i b i, b i ). 2) The total expected welfare is the sum of everyoe s expected utility: ] E v F u 0 b i, b i ) + u i b i, b i ). Computatioal Complexity = E v F p i b i, b i ) + v i x i b i, b i ) p i b i, b i ) 3) ] = E v F v i x i b i, b i ). 4) With bidders, determiig the wier takes O) time, as this is the complexity of a arg max fuctio. Give the wier, we ca ]

2 posted-price, sealed-bid auctios 2 determie paymets i O) time. Therefore, this auctio ca be ru i polyomial time. 2 Domiat Strategies The aalysis required to determie what strategy each bidder should use is similar to that of the secod-price, sealed-bid auctio. Sice utilities are quasi-liear, we ca reaso what the utility of a wiig bidder will be based o what she bids. The case aalysis is described graphically i Figure ad Figure 2, ad summarized i Figure 3. v i P Figure : The utility of bidder i if the posted price is smaller tha v, as a fuctio of what she bids. Utility 0 P v i Bid, b i Figure 2: The utility of bidder i if the posted price is larger tha v, as a fuctio of what she bids. Utility 0 v i P v i P Bid, b i Thus, we ca see that the posted-price, sealed-bid auctio format is DSIC: regardless of what ay other bidder does, submittig oes

3 posted-price, sealed-bid auctios 3 v i Figure 3: The utility of bidder i if she wis, as a fuctio of the posted price. Utility 0 0 v i = P Posted Price, P true valuatio as a bid is a domiat strategy. Bidders oly have a strictly positive probability of beig allocated a good whe they exceed the posted price the auctioeer has set, ad the radomized ature of wier selectio meas that each bidder ca do othig to try ad block other bidders from wiig beyod placig a bid at least as large as the posted price. Successfully prevetig aother bidder from wiig would mea havig placed a bid b i p, ad it is of bidder i s iterest to oly do so if v i p. Now, observe that because paymets for the wier are predetermied by the auctioeer, a bid is i fact describig a biary sigal. Placig a bid b i P is tellig the auctioeer I am willig to purchase the good at that price. Placig a bid b i < P is tellig the auctioeer I am ot willig to purchase the good at that price. Thus, a strategy which places the followig bids is also a domiat strategy: P, ), if v i P b i 5), P), otherwise. This meas that there are multiple domiat strategies i this auctio format. The followig two strategies would do just as well as biddig truthfully i the posted price auctio: P, if v i P b i = 6) 0, otherwise, if v i P b i =, otherwise. 7)

4 posted-price, sealed-bid auctios 4 Sice there are multiple domiat strategies, it is ot the case that the auctioeer may always kow exactly what valuatios the bidders have. This may be beeficial i settigs where bidders do ot wat to divulge their true prefereces to a auctioeer: iformatio is ofte a very useful trade secret etities try to guard. 3 Expected Welfare Ulike the first ad secod price auctios formats, which ca always produce a wier amogst the participats, the posted price mechaism has o such guaratee. For example, if the posted price is larger tha ay possible bidder type, the o oe will ever wi. Thus, based o distributioal kowledge of bidder types, the auctioeer must reaso about what a appropriate posted price is i order to maximize the expected welfare. Suppose the bidders are symmetric, ad have iid draw valuatios from some distributio F. Oe reasoable way to set the posted price is to set it so that, i expectatio, there will be a wier. That is, we ca set P so that the probability of a bidder with type v i P is : If Pr v P) =, 8) the Pr v P) =, 9) so P = F ). 0) Now, with such a posted price, we ca try to fid what the expected welfare is. To do this, we will upper-boud what the expected optimal welfare, OPT, is, ad lower-boud the expected welfare of this auctio format, APX. You ca thik of OPT as the expected welfare a secod price auctio would geerate. Notice that i the secod-price auctio, it is the case that each bidder has probability of wiig. I expectatio, there will be a wier with valuatio v i P, as Prv i P) =. The welfare geerated from a expected profile is at least P, but o larger tha whatever the highest type may be. 3. Posted Price with Goods The upper boud o OPT will be costructed by aalyzig the total expected welfare of the posted price auctio with goods. That is, i a settig where everyoe ca be served. The reaso why we have this upper boud is because while a posted-price auctio may ot always sell a good, there are also istaces where we ca award multiple

5 posted-price, sealed-bid auctios 5 bidders a good, which will make up for those cases where there is o sale. To gai some ituitio for why this is, we will go over a few examples, where there are = 2 bidders, ad each draw valuatio from discrete distributio F, where there are two possible types. The low type is draw with probability q = 2, ad the high type is draw with probability q = 2. Example 3.. Suppose there are two types, T = {0, }, ad each are draw with equal probability. There are four possible bidder profiles, each of which occur with equal probability: 0, 0), Prv) = , ), Prv) = 0.25 v = ), 0), Prv) = 0.25, ), Prv) = The expected welfare a secod-price auctio will geerate is 3 4. Now cosider a posted-price auctio with P 0, ). The expected welfare this auctio will geerate is 3 4. Fially, cosider a posted-price auctio with P 0, ) where there are copies of the good. The expected welfare this auctio will geerate is. The first example tells us that the total expected welfare a postedprice auctio with goods is strictly larger tha the expected welfare a secod-price auctio ca geerate. We ow show that they ca be made to be arbitrarily close. Example 3.2. Suppose there are two types, T = { 2ɛ, }, ad each are draw with equal probability. There are four possible bidder profiles, each of which occur with equal probability: 2ɛ, 2ɛ), Prv) = ɛ, ), Prv) = 0.25 v = 2), 2ɛ), Prv) = 0.25, ), Prv) = Let the posted price be P = ɛ. The expected welfare a secod-price auctio will geerate is 4 2ɛ ) = 4 2ɛ). 4 The expected welfare a posted-price auctio will geerate is ) = 4 3).

6 posted-price, sealed-bid auctios 6 The expected welfare a posted-price auctio with copies of a good is ) = 4 4). Oce we set ɛ = 0, the there is oly oe type. A posted-price auctio will geerate the same expected welfare as a secod-price auctio, ad a posted-price auctio with copies of a good ca do strictly better tha the secod-price auctio format. Now, you might reaso the followig: if the probability of the low types appearig is sigificatly larger tha the probability of the high types appearig, the a posted-price auctio with copies of a good should do worse whe P = ɛ. This is certaily true. However, by shiftig probability mass towards the low types, we must reaso about what the appropriate posted price P should be. Recall that we had set the posted price so that i expectatio, there is oe bidder that will wi i.e., the iverse CDF at half, F 2 ). By shiftig probability mass towards the low types, we must adjust the posted price so that, i expectatio, we have at least wier. Example 3.3. Suppose there are two types, T = { ɛ, }, ad with probability q q, a bidder has type ɛ. There are four possible bidder profiles, ad the profile where both bidders have low types is sigificatly more probable: ɛ, ɛ), Prv) = q 2 ɛ, ), Prv) = q q) v = 3), ɛ), Prv) = q)q, ), Prv) = q) 2. Let the posted price be P 0, ɛ]. The expected welfare a secod-price auctio will geerate is q 2] ɛ) + 2 q q)] ) + q) 2] ) = q 2 ɛ. The expected welfare a posted-price auctio will geerate is q 2] ) ɛ) + 0) + 2 q q)] + q) 2] ) = q 2 ɛ q 2 qɛ +. 2 The expected welfare a posted-price auctio with copies of a good is q 2] ɛ)2 + 2 q q)] 2 ɛ)) + q) 2] )2 = 2 2qɛ. Each term i the sum for the copy case is at least as large as each term i the secod-price auctio case, so we coclude that the total expected welfare of a posted-price auctio with copies of a good does at least as well as that of a secod-price auctio.

7 posted-price, sealed-bid auctios Bouds Based o our ituitio about a upper boud o OPT, we ow derive upper ad lower bouds, as well as a approximatio ratio for the total expected welfare the posted price auctio ca geerate. Lemma 3.4. The optimal welfare is upper-bouded by OPT E v v P]. 4) Proof. We will upper-boud OPT by cosiderig a posted-price auctio where there are copies of the good beig sold. This meas it is possible for every bidder to be allocated, so the welfare geerated i this istace is at least as large as the expected welfare the optimal welfare a secod price auctio ca geerate. Sice bidders are ot competig agaist each other, we ca cosider each bidder s impact o welfare idepedet of what ay other bidder s impact is. Just like i the secod-price auctio, we expect someoe to wi, ad she will have valuatio v i P. However, ulike i the secod price auctio, there ca be more tha oe wier, makig the welfare upper boud times the highest type ay bidder ca have. The expected welfare such a auctio ca geerate is OPT E v i v i P] Pr v i P). 5) i= Sice Pr v i P) = ad all bidders are symmetric, OPT E v v P]. 6) Lemma 3.5. The lower boud o the expected welfare the posted-price auctio format achieves is at least APX ) E v v P] 7) e Proof. The probability that a aget has type v i P is, so the probability that a aget has type v i P is. This meas that the probability of a good ot begi sold is i= Pr v i P) = ad that the probability of a good beig sold is ), 8) ). 9)

8 posted-price, sealed-bid auctios 8 The expected welfare geerated by this auctio the must be at least APX ) ) E v v P]. 20) ) The term ca be bouded to form a slightly simpler ). I the limit, as teds lookig expressio. Let f ) = toward ifiity, lim f ) = e. 2) Also otice that f ) is a icreasig fuctio whe, as show i Figure 4. Thus, we ca coclude that ) e, 22) ad APX e ) ) E v v P] 23) ) E v v P]. 24) If you are ot satisfied with proof by picture, you may fid Sectio A of iterest, which derives this more formally. f ) ad /e f ) /e Figure 4: A compariso betwee ) f ) = ad /e. Notice that f ) is a icreasig fuctio whe, ad approaches e from below Now that we have a upper boud, ad lower boud, o the expected welfare that the posted price mechaism geerates, we ca derive a approximatio ratio. Theorem 3.6. The approximatio ratio of the welfare geerated by the posted price mechaism whe all valuatios are iid draws from a cotiuous distributio is. APX OPT ) e 25)

9 posted-price, sealed-bid auctios 9 Proof. Combie the results we have derived for the upper ad lower bouds o welfare geerated to get: E v v P] OPT APX ) E v v P]. 26) e Now divide by OPT: E v v P] OPT OPT OPT APX OPT ) E v v P] e OPT. 27) Sice E v v P] OPT, we ca costruct a weaker lower boud o the right had side to get APX OPT ) E v v P] 28) e OPT ) E v v P] 29) e E v v p] = ) 30) e ) The result is rather surprisig. What this meas is that by simply lettig buyers purchase goods usig a askig price, we ca obtai at least.63 of the optimal welfare. Thus, the posted price auctio format e e is a.58 approximatio to the optimal welfare maximizig auctio. Oe way to iterpret this is that competitio, a key igrediet dowplayed i this auctio format, accouts for just.37 of the optimal welfare. A Let The Expoetial Fuctio f x, ) = + x ). 32) Let s see what happes i the limit, as approaches, Ax) = lim + x ). 33) We begi by takig logs, log Ax) = lim log + x ) ) log + x = lim 34). 35) Apply L Hopital s rule 2 to get 2 f x) lim x c gx) = lim x c f x) g x)

10 posted-price, sealed-bid auctios 0 lim log + x ) )] log + x = lim ] 36) x = 2 lim + x 2 37) x = lim + x 38) = x. 39) Therefore, log Ax) = x, 40) ad so e x = Ax) 4) = lim + x ), 42) e = lim ). 43) Now, if f, ) is icreasig for, the log f, ) must be icreasig, as log is a icreasig fuctio: log f, ) = log ). 44) ) log is a icreasig fuctio, so we coclude that f, ) is also a icreasig fuctio. 3 3 The trasformatio with logarithms meas that the domai is restricted to > if we wat to restrict ourselves to real umbers. However, i) the limit, as approaches, log =.

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Sequences. Notation. Convergence of a Sequence

Sequences. Notation. Convergence of a Sequence Sequeces A sequece is essetially just a list. Defiitio (Sequece of Real Numbers). A sequece of real umbers is a fuctio Z (, ) R for some real umber. Do t let the descriptio of the domai cofuse you; it

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

Revenue Equivalence Theorem

Revenue Equivalence Theorem Reveue Equivalece Theorem Felix Muoz-Garcia Advaced Microecoomics II Washigto State Uiversity So far, several di eret auctio types have bee cosidered. The questio remais: How does the expected reveue for

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Hashing and Amortization

Hashing and Amortization Lecture Hashig ad Amortizatio Supplemetal readig i CLRS: Chapter ; Chapter 7 itro; Sectio 7.. Arrays ad Hashig Arrays are very useful. The items i a array are statically addressed, so that isertig, deletig,

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

10. Comparative Tests among Spatial Regression Models. Here we revisit the example in Section 8.1 of estimating the mean of a normal random

10. Comparative Tests among Spatial Regression Models. Here we revisit the example in Section 8.1 of estimating the mean of a normal random Part III. Areal Data Aalysis 0. Comparative Tests amog Spatial Regressio Models While the otio of relative likelihood values for differet models is somewhat difficult to iterpret directly (as metioed above),

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should be doe

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

1 Games in Normal Form (Strategic Form)

1 Games in Normal Form (Strategic Form) 1 Games i Normal Form Strategic Form) A Game i Normal strategic) Form cosists of three compoets: 1 A set of players For each player, a set of strategies called actios i textbook) The iterpretatio is that

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Please do NOT write in this box. Multiple Choice. Total

Please do NOT write in this box. Multiple Choice. Total Istructor: Math 0560, Worksheet Alteratig Series Jauary, 3000 For realistic exam practice solve these problems without lookig at your book ad without usig a calculator. Multiple choice questios should

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Glivenko-Cantelli Classes

Glivenko-Cantelli Classes CS28B/Stat24B (Sprig 2008 Statistical Learig Theory Lecture: 4 Gliveko-Catelli Classes Lecturer: Peter Bartlett Scribe: Michelle Besi Itroductio This lecture will cover Gliveko-Catelli (GC classes ad itroduce

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

6.046 Recitation 5: Binary Search Trees Bill Thies, Fall 2004 Outline

6.046 Recitation 5: Binary Search Trees Bill Thies, Fall 2004 Outline 6.046 Recitatio 5: Biary Search Trees Bill Thies, Fall 2004 Outlie My cotact iformatio: Bill Thies thies@mit.edu Office hours: Sat 1-3pm, 36-153 Recitatio website: http://cag.lcs.mit.edu/~thies/6.046/

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES 11.4 The Compariso Tests I this sectio, we will lear: How to fid the value of a series by comparig it with a kow series. COMPARISON TESTS

More information

The Growth of Functions. Theoretical Supplement

The Growth of Functions. Theoretical Supplement The Growth of Fuctios Theoretical Supplemet The Triagle Iequality The triagle iequality is a algebraic tool that is ofte useful i maipulatig absolute values of fuctios. The triagle iequality says that

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Notes for Lecture 11

Notes for Lecture 11 U.C. Berkeley CS78: Computatioal Complexity Hadout N Professor Luca Trevisa 3/4/008 Notes for Lecture Eigevalues, Expasio, ad Radom Walks As usual by ow, let G = (V, E) be a udirected d-regular graph with

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Physics 116A Solutions to Homework Set #1 Winter Boas, problem Use equation 1.8 to find a fraction describing

Physics 116A Solutions to Homework Set #1 Winter Boas, problem Use equation 1.8 to find a fraction describing Physics 6A Solutios to Homework Set # Witer 0. Boas, problem. 8 Use equatio.8 to fid a fractio describig 0.694444444... Start with the formula S = a, ad otice that we ca remove ay umber of r fiite decimals

More information

Big Picture. 5. Data, Estimates, and Models: quantifying the accuracy of estimates.

Big Picture. 5. Data, Estimates, and Models: quantifying the accuracy of estimates. 5. Data, Estimates, ad Models: quatifyig the accuracy of estimates. 5. Estimatig a Normal Mea 5.2 The Distributio of the Normal Sample Mea 5.3 Normal data, cofidece iterval for, kow 5.4 Normal data, cofidece

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

Shannon s noiseless coding theorem

Shannon s noiseless coding theorem 18.310 lecture otes May 4, 2015 Shao s oiseless codig theorem Lecturer: Michel Goemas I these otes we discuss Shao s oiseless codig theorem, which is oe of the foudig results of the field of iformatio

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Estimation of a population proportion March 23,

Estimation of a population proportion March 23, 1 Social Studies 201 Notes for March 23, 2005 Estimatio of a populatio proportio Sectio 8.5, p. 521. For the most part, we have dealt with meas ad stadard deviatios this semester. This sectio of the otes

More information

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain Assigmet 9 Exercise 5.5 Let X biomial, p, where p 0, 1 is ukow. Obtai cofidece itervals for p i two differet ways: a Sice X / p d N0, p1 p], the variace of the limitig distributio depeds oly o p. Use the

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Sequences. A Sequence is a list of numbers written in order.

Sequences. A Sequence is a list of numbers written in order. Sequeces A Sequece is a list of umbers writte i order. {a, a 2, a 3,... } The sequece may be ifiite. The th term of the sequece is the th umber o the list. O the list above a = st term, a 2 = 2 d term,

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Lecture 9: Hierarchy Theorems

Lecture 9: Hierarchy Theorems IAS/PCMI Summer Sessio 2000 Clay Mathematics Udergraduate Program Basic Course o Computatioal Complexity Lecture 9: Hierarchy Theorems David Mix Barrigto ad Alexis Maciel July 27, 2000 Most of this lecture

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? ABSTRACT

WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? ABSTRACT WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? Harold G. Loomis Hoolulu, HI ABSTRACT Most coastal locatios have few if ay records of tsuami wave heights obtaied over various time periods. Still

More information

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES Peter M. Maurer Why Hashig is θ(). As i biary search, hashig assumes that keys are stored i a array which is idexed by a iteger. However, hashig attempts to bypass

More information

There is no straightforward approach for choosing the warmup period l.

There is no straightforward approach for choosing the warmup period l. B. Maddah INDE 504 Discrete-Evet Simulatio Output Aalysis () Statistical Aalysis for Steady-State Parameters I a otermiatig simulatio, the iterest is i estimatig the log ru steady state measures of performace.

More information

6.883: Online Methods in Machine Learning Alexander Rakhlin

6.883: Online Methods in Machine Learning Alexander Rakhlin 6.883: Olie Methods i Machie Learig Alexader Rakhli LECTURES 5 AND 6. THE EXPERTS SETTING. EXPONENTIAL WEIGHTS All the algorithms preseted so far halluciate the future values as radom draws ad the perform

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS Jauary 25, 207 INTRODUCTION TO MATHEMATICAL STATISTICS Abstract. A basic itroductio to statistics assumig kowledge of probability theory.. Probability I a typical udergraduate problem i probability, we

More information

Notes on Hypothesis Testing, Type I and Type II Errors

Notes on Hypothesis Testing, Type I and Type II Errors Joatha Hore PA 818 Fall 6 Notes o Hypothesis Testig, Type I ad Type II Errors Part 1. Hypothesis Testig Suppose that a medical firm develops a ew medicie that it claims will lead to a higher mea cure rate.

More information

Continuous Functions

Continuous Functions Cotiuous Fuctios Q What does it mea for a fuctio to be cotiuous at a poit? Aswer- I mathematics, we have a defiitio that cosists of three cocepts that are liked i a special way Cosider the followig defiitio

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

CS 330 Discussion - Probability

CS 330 Discussion - Probability CS 330 Discussio - Probability March 24 2017 1 Fudametals of Probability 11 Radom Variables ad Evets A radom variable X is oe whose value is o-determiistic For example, suppose we flip a coi ad set X =

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

CS322: Network Analysis. Problem Set 2 - Fall 2009

CS322: Network Analysis. Problem Set 2 - Fall 2009 Due October 9 009 i class CS3: Network Aalysis Problem Set - Fall 009 If you have ay questios regardig the problems set, sed a email to the course assistats: simlac@staford.edu ad peleato@staford.edu.

More information

5.6 Absolute Convergence and The Ratio and Root Tests

5.6 Absolute Convergence and The Ratio and Root Tests 5.6 Absolute Covergece ad The Ratio ad Root Tests Bria E. Veitch 5.6 Absolute Covergece ad The Ratio ad Root Tests Recall from our previous sectio that diverged but ( ) coverged. Both of these sequeces

More information

Notes for Lecture 5. 1 Grover Search. 1.1 The Setting. 1.2 Motivation. Lecture 5 (September 26, 2018)

Notes for Lecture 5. 1 Grover Search. 1.1 The Setting. 1.2 Motivation. Lecture 5 (September 26, 2018) COS 597A: Quatum Cryptography Lecture 5 (September 6, 08) Lecturer: Mark Zhadry Priceto Uiversity Scribe: Fermi Ma Notes for Lecture 5 Today we ll move o from the slightly cotrived applicatios of quatum

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

Spectral Partitioning in the Planted Partition Model

Spectral Partitioning in the Planted Partition Model Spectral Graph Theory Lecture 21 Spectral Partitioig i the Plated Partitio Model Daiel A. Spielma November 11, 2009 21.1 Itroductio I this lecture, we will perform a crude aalysis of the performace of

More information

SYDE 112, LECTURE 2: Riemann Sums

SYDE 112, LECTURE 2: Riemann Sums SYDE, LECTURE : Riema Sums Riema Sums Cosider the problem of determiig the area below the curve f(x) boud betwee two poits a ad b. For simple geometrical fuctios, we ca easily determie this based o ituitio.

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

Section 6.4: Series. Section 6.4 Series 413

Section 6.4: Series. Section 6.4 Series 413 ectio 64 eries 4 ectio 64: eries A couple decides to start a college fud for their daughter They pla to ivest $50 i the fud each moth The fud pays 6% aual iterest, compouded mothly How much moey will they

More information

Carleton College, Winter 2017 Math 121, Practice Final Prof. Jones. Note: the exam will have a section of true-false questions, like the one below.

Carleton College, Winter 2017 Math 121, Practice Final Prof. Jones. Note: the exam will have a section of true-false questions, like the one below. Carleto College, Witer 207 Math 2, Practice Fial Prof. Joes Note: the exam will have a sectio of true-false questios, like the oe below.. True or False. Briefly explai your aswer. A icorrectly justified

More information

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Chapter 6. Sampling and Estimation

Chapter 6. Sampling and Estimation Samplig ad Estimatio - 34 Chapter 6. Samplig ad Estimatio 6.. Itroductio Frequetly the egieer is uable to completely characterize the etire populatio. She/he must be satisfied with examiig some subset

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

is also known as the general term of the sequence

is also known as the general term of the sequence Lesso : Sequeces ad Series Outlie Objectives: I ca determie whether a sequece has a patter. I ca determie whether a sequece ca be geeralized to fid a formula for the geeral term i the sequece. I ca determie

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

Sequences III. Chapter Roots

Sequences III. Chapter Roots Chapter 4 Sequeces III 4. Roots We ca use the results we ve established i the last workbook to fid some iterestig limits for sequeces ivolvig roots. We will eed more techical expertise ad low cuig tha

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

A PROBABILITY PRIMER

A PROBABILITY PRIMER CARLETON COLLEGE A ROBABILITY RIMER SCOTT BIERMAN (Do ot quote without permissio) A robability rimer INTRODUCTION The field of probability ad statistics provides a orgaizig framework for systematically

More information

The Sample Variance Formula: A Detailed Study of an Old Controversy

The Sample Variance Formula: A Detailed Study of an Old Controversy The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace

More information

Understanding Samples

Understanding Samples 1 Will Moroe CS 109 Samplig ad Bootstrappig Lecture Notes #17 August 2, 2017 Based o a hadout by Chris Piech I this chapter we are goig to talk about statistics calculated o samples from a populatio. We

More information

Worksheet on Generating Functions

Worksheet on Generating Functions Worksheet o Geeratig Fuctios October 26, 205 This worksheet is adapted from otes/exercises by Nat Thiem. Derivatives of Geeratig Fuctios. If the sequece a 0, a, a 2,... has ordiary geeratig fuctio A(x,

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information