The Pooling Problem - Applications, Complexity and Solution Methods

Size: px
Start display at page:

Download "The Pooling Problem - Applications, Complexity and Solution Methods"

Transcription

1 The Pooling Problem - Applications, Complexity and Solution Methods Dag Haugland Dept. of Informatics University of Bergen Norway EECS Seminar on Optimization and Computing NTNU, September 30, 2014

2 Outline Introduction Illustration Applications Complexity Recognizing hard cases Cases solvable as linear programs Solution methods Global optimization: Exact (branch-and-bound) methods Local optimization: Inexact (heuristic) methods

3 Illustration: Bar keeping Suggested ratios of gin-to-tonic are 1:1, 2:3, 1:2, and 1:3 (Wikipedia) 20% % Gin % % Tonic 13% %

4 Illustration: Bar keeping % % 20 0% Gin Tonic % 13% % Profit: 62.4

5 Illustration: Bar keeping 20% % Gin % % Tonic Pool 13% %

6 Illustration: Bar keeping 20% % 20 0% Gin Tonic Pool % 13% % Profit: 56.7

7 Applications

8 Applications Oil refining Distiller Refined products Component tanks Gasoline blending

9 Applications Crude oil scheduling (Lee et al. 1996, Wu et al. 2005, Mouret 2010) Pipeline(s) Distiller Storage tanks Charging tanks

10 Applications Pipeline transportation of natural gas Network arcs: Subsea pipelines Sources: Gas fields, process units Pools: Junction points Terminals: Gas Markets Quality parameters: Combustion values, contamination levels

11 Applications More applications Food industry (Ruiz et al. 2013): Wastewater treatment (Galan and Grossmann 1998, Meyer & Floudas 2006) Environmental protection (Misener et al. 2010) Kallrath (2002): The pooling problem occurs in all multi-component network flow problems in which the conservation of both mass flow and composition is required.

12 Extensions Not considered in this talk: Networks with pool-to-pool connections: The generalized pooling problem (Audet et al. 2004, Meyer & Floudas 2006, Alfaki & H. 2013) Non-linear blending (octane numbers, gas combustion values) MILP models (e.g. for network design) (Meyer & Floudas 2006)

13 Problem definition Input Digraph: D = (S, P, T, A) = (sources, pools, terminals, arcs), where A (S P) (P T ) Quality attributes: K Node capacities: b i (i S P T ) Arc costs: c ij ((i, j) A) Source qualities: q k s (s S, k K) Quality bounds at terminals: u k t (t T, k K)

14 Problem definition Input Digraph: D = (S, P, T, A) = (sources, pools, terminals, arcs), where A (S P) (P T ) Quality attributes: K Node capacities: b i (i S P T ) Arc costs: c ij ((i, j) A) Source qualities: q k s (s S, k K) Quality bounds at terminals: u k t (t T, k K) Linear blending assumption: Pool qualities: w k p = Terminal qualities: s qk s fsp s fsp p w p kfpt p fpt u k t qs s f sp p w p

15 Problem definition Input Digraph: D = (S, P, T, A) = (sources, pools, terminals, arcs), where A (S P) (P T ) Quality attributes: K Node capacities: b i (i S P T ) Arc costs: c ij ((i, j) A) Source qualities: q k s (s S, k K) Quality bounds at terminals: u k t (t T, k K) Linear blending assumption: Pool qualities: w k p = Terminal qualities: s qk s fsp s fsp p w p kfpt p fpt u k t qs s f sp f p pt w p t u t

16 Problem definition Pooling Problem Find a flow allocation in D minimizing total costs while respecting capacity and quality bounds

17 Problem definition Pooling Problem Find a flow allocation in D minimizing total costs while respecting capacity and quality bounds Formulation: Flow and quality variables (Haverly 1978) Arc flow: f R A + Pool qualities: w R P K + Flow polytope: F (D, b) = { f R A + : f respects node caps and flow cons } min f,w (i,j) A c ijf ij f F (D, b) wp k s f sp = s qk s f sp p w p k f pt ut k p f pt p P, k K t T, k K

18 Complexity

19 Complexity Theorem (Alfaki & H. 2012) The Pooling Problem with P = 1 is NP-hard.

20 Complexity Theorem (Alfaki & H. 2012) The Pooling Problem with P = 1 is NP-hard. Reduction: Maximum Independent Set: Given G = (V, E), find V V, E(V ) =, V maximum.

21 Complexity Theorem (Alfaki & H. 2012) The Pooling Problem with P = 1 is NP-hard. Reduction: Maximum Independent Set: Given G = (V, E), find V V, E(V ) =, V maximum. e a b d c

22 Complexity Theorem (Alfaki & H. 2012) The Pooling Problem with P = 1 is NP-hard. Reduction: Maximum Independent Set: Given G = (V, E), find V V, E(V ) =, V maximum. e d a b c q a = (1,0,0,0,0) a b c d e q e =(0,0,0,0,1) l a =(1/5,0,0,0,0) u a =(1,0,1,0,0) a b c d e l e =(0,0,0,0,1/5) u e =(0,1,1,0,1)

23 Complexity Theorem (Alfaki & H. 2012) The Pooling Problem with P = 1 is NP-hard. Reduction: Maximum Independent Set: Given G = (V, E), find V V, E(V ) =, V maximum. e d a b c q a = (1,0,0,0,0) a b c d e q e =(0,0,0,0,1) l a =(1/5,0,0,0,0) u a =(1,0,1,0,0) a (1/2,0,1/2,0,0) b c (1/2,0,1/2,0,0) d e l e =(0,0,0,0,1/5) u e =(0,1,1,0,1)

24 Complexity Theorem The Pooling Problem with K = 1 is NP-hard.

25 Complexity Theorem The Pooling Problem with K = 1 is NP-hard. Reduction from Packing in two bins

26 Complexity Theorem The Pooling Problem with K = 1 is NP-hard. Reduction from Packing in two bins

27 Complexity Theorem The Pooling Problem with K = 1 is NP-hard. Reduction from Packing in two bins

28 Complexity Theorem The Pooling Problem with K = 1 is NP-hard. Reduction from Packing in two bins Do fit! 5 5 6

29 Complexity Theorem The Pooling Problem with K = 1 is NP-hard. Reduction from Packing in two bins

30 Complexity Theorem The Pooling Problem with K = 1 is NP-hard. Reduction from Packing in two bins Do not fit!

31 Complexity Theorem The Pooling Problem with K = 1 is NP-hard. Corresponding Pooling Problem network

32 Complexity Theorem The Pooling Problem with K = 1 is NP-hard. Corresponding Pooling Problem network and parameter values 1 3 q=0 c=3 4 c=-4 u=0 5 q=1 c=1 5 c=-2 u=1 6 8

33 Complexity Theorem The Pooling Problem with K = 1 is NP-hard. Corresponding Pooling Problem network and parameter values 1 3 q=0 c=3 4 c=-4 u=0 5 q=1 c=1 5 c=-2 u=1 6 8

34 Complexity Theorem The Pooling Problem with K = 1 is NP-hard. Infeasible flow 1 3 q=0 c=3 4 c=-4 u=0 5 q=1 c=1 5 c=-2 u=1 6 8

35 Complexity Theorem The Pooling Problem with K = 1 is NP-hard. Suboptimal flow 1 3 q=0 c=3 4 c=-4 u=0 5 q=1 c=1 5 c=-2 u=1 6 8

36 Complexity Theorem The Pooling Problem with K = 1 is NP-hard. Optimum: Each pool satisfies either of the flow patterns

37 Complexity Theorem The Pooling Problem with K = 1 is NP-hard. Optimum: Each pool satisfies either of the flow patterns Full pool capacity utilization Items fit in two bins

38 Complexity Theorem The Pooling Problem with K = 1 and S = T = 2 or S = P = 2 or P = T = 2 is NP-hard.

39 Complexity - Overview NP-hard instance classes of the Pooling Problem Class Hardness Reduction P = 1 Strong Max Independent Set K = 1, S = T = 2 Weak Packing In Two Bins K = 1, S = P = 2 Weak Packing In Two Bins K = 1, P = T = 2 Weak Packing In Two Bins K = 1 Strong Exact Cover By 3-sets δ + (i) 2 Strong Max 2-Satisfiability δ (i) 2 Strong Min 2-Satisfiability

40 Easy versions The Pooling Problem is an LP if S = 1 Remove all terminals requiring better quality than provided by the unique source Solve minimum cost flow problem in the reduced graph T = 1 All flow ends up in the unique terminal t Disregard pool qualities (do not introduce variable wp k ) Apply the quality constraints to the total flow: s qk s p f sp ut k p f pt

41 Easy versions More generally: The Pooling Problem is an LP if p P: min {δ (p), δ + (p)} =

42 Easy versions More generally: The Pooling Problem is an LP if p P: min {δ (p), δ + (p)} = 1 No need for pool quality variables! q1 kf 48 + q1 kf 15 + q2 kf 25 + q3 kf 35 u8 k(f 48 + f 58 )

43 Easy versions More generally: The Pooling Problem is an LP if p P: min {δ (p), δ + (p)} =

44 Possibly easy versions If P = 1 the Pooling Problem can be solved by solving ( T + 1) K LPs, or 2 T LPs Polytime algorithm when K or T is bounded.

45 Possibly easy versions If P = 1 the Pooling Problem can be solved by solving ( T + 1) K LPs, or 2 T LPs Polytime algorithm when K or T is bounded. But be aware of the contrast: Solvable in polynomial time when P = 1 and K = 2 NP-hard when P = 2 and K = 1

46 Strong formulations and global optimization

47 Formulations based on proportion variables Source proportions (Ben-Tal et al. 1994) New variables: Proportion of flow through p coming from s: y s p [0, 1] Flow on path (s, p, t): x spt min f,x,y (i,j) A c ijf ij f F (D, b) x spt = ypf s pt (s, p, t) s y p s = 1 p ( p s q k s ut k ) xspt 0 t, k

48 Formulations based on proportion variables Terminal proportions (Alfaki & H. 2012) New variables: Proportion of flow through p going to t: y t p [0, 1] Flow on path (s, p, t): x spt min f,x,y (i,j) A c ijf ij f F (D, b) x spt = ypf t sp (s, p, t) t y p t = 1 p ( p s q k s ut k ) xspt 0 t, k

49 Formulations based on proportion variables Combined source and terminal proportions (Alfaki & H. 2012) min f,x,y (i,j) A c ijf ij f F (D, b) x spt = ypf s pt = ypf t sp (s, p, t) s y p s = 1 p t y p t = 1 p ( p s q k s ut k ) xspt t, k

50 Nonlinearities: Bilinear terms Quality variables: p w k p f pt u k t Source proportions: x spt = y s pf pt p f pt Terminal proportions: x spt = y t pf sp Fixing w k p, y s p, y t p Linear program in f

51 Lower bounds: Relaxations McCormick s envelopes: Approximate x = fy by (assume y y ȳ and f f f ): x yf + f y yf x ȳf + f y ȳ f x yf + f y y f x ȳf + f y ȳf Valid inequalities: f sp b p yp s (s, p) f pt b p yp t (p, t) f pt = s x spt (p, t) f sp = t x spt (s, p)

52 Lower bounds: Relaxations Comparing proportion formulations Relaxed optimal objective function value, proportion formulations: z S = Only source proportions z T = Only terminal proportions z ST = Both source and terminal proportions Comparison: z S vs z T : Instance dependent z ST max { z S, z T } When pool capacities are tight (b p < min { s b s, t b t}), we can have z ST > max { z S, z T }

53 Global optimization by B&B Using the ST-formulation, BARON (Sahinidis 1996) solves instances where max { S, P, T, K } 8 in < 1 CPU-second K = 1 and max { S, P, T } in a few CPU-seconds, and some instances where K = 24 and max { S, P, T } 20 in 10 CPU-minutes, but for instances where K = 34, S = 35, P = 17, T = 21 the optimality gap is > 50% after 1 CPU-hour.

54 Fast computation: Heuristics

55 Fast computation: Improvement methods Fix y, optimize f (Audet et al. 2004, Kejriwal 2014) Algorithm 1 ImproveFlow f feasible (non-zero) flow vector, mode S repeat if mode = S then Compute source proportions: yp s fsp t fpt For fixed y, let f be the solution to the S-formulation else Compute terminal proportions: yp t fpt s f t p For fixed y, let f be the solution to the T -formulation end if switch mode until no change in f Produces a sequence of flows with non-increasing cost

56 Fast computation: Construction methods Recall: The Pooling Problem with T = 1 is an LP Kejriwal (2014): For all t T, compute z t = min cost in (S, P, {t}). Rank the terminals by increasing z t (t 1,..., t T ) For i = 1,..., T, send flow to t i while preserving qualities at the pools supporting t 1,..., t i 1 Constraint at supporting pools: No quality deterioration Assumption: Quality at supporting pools remains unchanged

57 Fast computation: Construction methods

58 Fast computation: Construction methods Quality constraint

59 Fast computation: Construction methods Quality constraint

60 Fast computation: Construction methods Quality constraint Fixed flow

61 Fast computation: Construction methods Quality constraint Fixed flow

62 Fast computation: Construction methods Quality constraint Fixed flow

63 Fast computation: Construction methods Quality constraint Fixed flow

64 Fast computation: Construction methods Quality constraint Fixed flow

65 Summary The Pooling Problem occurs in network flow models where flow composition must be traced from sources to terminals is NP-hard even if P = 1 or K = 1 is an LP if S = 1, T = 1, or min {δ + (p), δ (p)} = 1 for all p P Global optimization of small-scale instances: linear relaxations of bilinear constraints embedded in spatial B&B-algorithms Fast computations without optimality guarantee: improvement techniques exploiting bilinearity: Sequences of LPs greedy construction techniques: Introduce terminals one by one

Mixed-Integer Nonlinear Programming

Mixed-Integer Nonlinear Programming Mixed-Integer Nonlinear Programming Claudia D Ambrosio CNRS researcher LIX, École Polytechnique, France pictures taken from slides by Leo Liberti MPRO PMA 2016-2017 Motivating Applications Nonlinear Knapsack

More information

Computer Sciences Department

Computer Sciences Department Computer Sciences Department Valid Inequalities for the Pooling Problem with Binary Variables Claudia D Ambrosio Jeff Linderoth James Luedtke Technical Report #682 November 200 Valid Inequalities for the

More information

Relaxations of multilinear convex envelopes: dual is better than primal

Relaxations of multilinear convex envelopes: dual is better than primal of multilinear convex envelopes: dual is better than primal 1 LIX, École Polytechnique, Palaiseau, France June 7th, 2012 11 th International Symposium on Experimental Algorithms (SEA) 2012 - Bordeaux (France)

More information

A Novel Priority-Slot Based Continuous-Time. Formulation for Crude-Oil Scheduling Problems

A Novel Priority-Slot Based Continuous-Time. Formulation for Crude-Oil Scheduling Problems A Novel Priority-Slot Based Continuous-Time Formulation for Crude-Oil Scheduling Problems Sylvain Mouret, Ignacio E. Grossmann,, and Pierre Pestiaux Department of Chemical Engineering, Carnegie Mellon

More information

A Tighter Piecewise McCormick Relaxation for Bilinear Problems

A Tighter Piecewise McCormick Relaxation for Bilinear Problems A Tighter Piecewise McCormick Relaxation for Bilinear Problems Pedro M. Castro Centro de Investigação Operacional Faculdade de Ciências niversidade de isboa Problem definition (NP) Bilinear program min

More information

Heuristics and Upper Bounds for a Pooling Problem with Cubic Constraints

Heuristics and Upper Bounds for a Pooling Problem with Cubic Constraints Heuristics and Upper Bounds for a Pooling Problem with Cubic Constraints Matthew J. Real, Shabbir Ahmed, Helder Inàcio and Kevin Norwood School of Chemical & Biomolecular Engineering 311 Ferst Drive, N.W.

More information

An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem

An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem Irene Lotero a, Francisco Trespalacios a, Myun-Seok Cheon b, Dimitri J. Papageorgiou

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Models and Solution Methods for the Pooling Problem

Models and Solution Methods for the Pooling Problem Models and Solution Methods for the Pooling Problem Mohammed Alfaki Dissertation for the degree of Philosophiae Doctor (PhD) University of Bergen Department of Informatics March 2012 ii ISBN: 978-82-308-2051-3

More information

Discrete (and Continuous) Optimization WI4 131

Discrete (and Continuous) Optimization WI4 131 Discrete (and Continuous) Optimization WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek e-mail: C.Roos@ewi.tudelft.nl

More information

An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms

An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms Leo Liberti CNRS LIX, École Polytechnique, F-91128 Palaiseau, France. E-mail: liberti@lix.polytechnique.fr. Constantinos

More information

Solving Mixed-Integer Nonlinear Programs

Solving Mixed-Integer Nonlinear Programs Solving Mixed-Integer Nonlinear Programs (with SCIP) Ambros M. Gleixner Zuse Institute Berlin MATHEON Berlin Mathematical School 5th Porto Meeting on Mathematics for Industry, April 10 11, 2014, Porto

More information

Lecture 5 January 16, 2013

Lecture 5 January 16, 2013 UBC CPSC 536N: Sparse Approximations Winter 2013 Prof. Nick Harvey Lecture 5 January 16, 2013 Scribe: Samira Samadi 1 Combinatorial IPs 1.1 Mathematical programs { min c Linear Program (LP): T x s.t. a

More information

Optimisation and Operations Research

Optimisation and Operations Research Optimisation and Operations Research Lecture 11: Integer Programming Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/OORII/ School of Mathematical

More information

Introduction to Bin Packing Problems

Introduction to Bin Packing Problems Introduction to Bin Packing Problems Fabio Furini March 13, 2015 Outline Origins and applications Applications: Definition: Bin Packing Problem (BPP) Solution techniques for the BPP Heuristic Algorithms

More information

Integer Programming Methods LNMB

Integer Programming Methods LNMB Integer Programming Methods LNMB 2017 2018 Dion Gijswijt homepage.tudelft.nl/64a8q/intpm/ Dion Gijswijt Intro IntPM 2017-2018 1 / 24 Organisation Webpage: homepage.tudelft.nl/64a8q/intpm/ Book: Integer

More information

Lectures 6, 7 and part of 8

Lectures 6, 7 and part of 8 Lectures 6, 7 and part of 8 Uriel Feige April 26, May 3, May 10, 2015 1 Linear programming duality 1.1 The diet problem revisited Recall the diet problem from Lecture 1. There are n foods, m nutrients,

More information

Multiperiod Blend Scheduling Problem

Multiperiod Blend Scheduling Problem ExxonMobil Multiperiod Blend Scheduling Problem Juan Pablo Ruiz Ignacio E. Grossmann Department of Chemical Engineering Center for Advanced Process Decision-making University Pittsburgh, PA 15213 1 Motivation

More information

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Definition: An Integer Linear Programming problem is an optimization problem of the form (ILP) min

More information

3.7 Cutting plane methods

3.7 Cutting plane methods 3.7 Cutting plane methods Generic ILP problem min{ c t x : x X = {x Z n + : Ax b} } with m n matrix A and n 1 vector b of rationals. According to Meyer s theorem: There exists an ideal formulation: conv(x

More information

Polyhedral Approaches to Online Bipartite Matching

Polyhedral Approaches to Online Bipartite Matching Polyhedral Approaches to Online Bipartite Matching Alejandro Toriello joint with Alfredo Torrico, Shabbir Ahmed Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Industrial

More information

An Integrated Approach to Truss Structure Design

An Integrated Approach to Truss Structure Design Slide 1 An Integrated Approach to Truss Structure Design J. N. Hooker Tallys Yunes CPAIOR Workshop on Hybrid Methods for Nonlinear Combinatorial Problems Bologna, June 2010 How to Solve Nonlinear Combinatorial

More information

Mixed Integer Non Linear Programming

Mixed Integer Non Linear Programming Mixed Integer Non Linear Programming Claudia D Ambrosio CNRS Research Scientist CNRS & LIX, École Polytechnique MPRO PMA 2016-2017 Outline What is a MINLP? Dealing with nonconvexities Global Optimization

More information

GLOBAL OPTIMIZATION WITH GAMS/BARON

GLOBAL OPTIMIZATION WITH GAMS/BARON GLOBAL OPTIMIZATION WITH GAMS/BARON Nick Sahinidis Chemical and Biomolecular Engineering University of Illinois at Urbana Mohit Tawarmalani Krannert School of Management Purdue University MIXED-INTEGER

More information

A Branch-and-Refine Method for Nonconvex Mixed-Integer Optimization

A Branch-and-Refine Method for Nonconvex Mixed-Integer Optimization A Branch-and-Refine Method for Nonconvex Mixed-Integer Optimization Sven Leyffer 2 Annick Sartenaer 1 Emilie Wanufelle 1 1 University of Namur, Belgium 2 Argonne National Laboratory, USA IMA Workshop,

More information

The inefficiency of equilibria

The inefficiency of equilibria The inefficiency of equilibria Chapters 17,18,19 of AGT 3 May 2010 University of Bergen Outline 1 Reminder 2 Potential games 3 Complexity Formalization Like usual, we consider a game with k players {1,...,

More information

Mathematical Programs Linear Program (LP)

Mathematical Programs Linear Program (LP) Mathematical Programs Linear Program (LP) Integer Program (IP) Can be efficiently solved e.g., by Ellipsoid Method Cannot be efficiently solved Cannot be efficiently solved assuming P NP Combinatorial

More information

ILP Formulations for the Lazy Bureaucrat Problem

ILP Formulations for the Lazy Bureaucrat Problem the the PSL, Université Paris-Dauphine, 75775 Paris Cedex 16, France, CNRS, LAMSADE UMR 7243 Department of Statistics and Operations Research, University of Vienna, Vienna, Austria EURO 2015, 12-15 July,

More information

Development of an algorithm for solving mixed integer and nonconvex problems arising in electrical supply networks

Development of an algorithm for solving mixed integer and nonconvex problems arising in electrical supply networks Development of an algorithm for solving mixed integer and nonconvex problems arising in electrical supply networks E. Wanufelle 1 S. Leyffer 2 A. Sartenaer 1 Ph. Toint 1 1 FUNDP, University of Namur 2

More information

Example 1 linear elastic structure; forces f 1 ;:::;f 100 induce deections d 1 ;:::;d f i F max i, several hundred other constraints: max load p

Example 1 linear elastic structure; forces f 1 ;:::;f 100 induce deections d 1 ;:::;d f i F max i, several hundred other constraints: max load p Convex Optimization in Electrical Engineering Stephen Boyd and Lieven Vandenberghe EE Dept., Stanford ISL EE370 Seminar, 2/9/96 1 Main idea many electrical engineering design problems can be cast as convex

More information

Feasibility Pump for Mixed Integer Nonlinear Programs 1

Feasibility Pump for Mixed Integer Nonlinear Programs 1 Feasibility Pump for Mixed Integer Nonlinear Programs 1 Presenter: 1 by Pierre Bonami, Gerard Cornuejols, Andrea Lodi and Francois Margot Mixed Integer Linear or Nonlinear Programs (MILP/MINLP) Optimize

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502)

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502) Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik Combinatorial Optimization (MA 4502) Dr. Michael Ritter Problem Sheet 1 Homework Problems Exercise

More information

Branch-and-Bound. Leo Liberti. LIX, École Polytechnique, France. INF , Lecture p. 1

Branch-and-Bound. Leo Liberti. LIX, École Polytechnique, France. INF , Lecture p. 1 Branch-and-Bound Leo Liberti LIX, École Polytechnique, France INF431 2011, Lecture p. 1 Reminders INF431 2011, Lecture p. 2 Problems Decision problem: a question admitting a YES/NO answer Example HAMILTONIAN

More information

Valid Inequalities for Optimal Transmission Switching

Valid Inequalities for Optimal Transmission Switching Valid Inequalities for Optimal Transmission Switching Hyemin Jeon Jeff Linderoth Jim Luedtke Dept. of ISyE UW-Madison Burak Kocuk Santanu Dey Andy Sun Dept. of ISyE Georgia Tech 19th Combinatorial Optimization

More information

16.1 Min-Cut as an LP

16.1 Min-Cut as an LP 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: LPs as Metrics: Min Cut and Multiway Cut Date: 4//5 Scribe: Gabriel Kaptchuk 6. Min-Cut as an LP We recall the basic definition

More information

Decentralized Control of Stochastic Systems

Decentralized Control of Stochastic Systems Decentralized Control of Stochastic Systems Sanjay Lall Stanford University CDC-ECC Workshop, December 11, 2005 2 S. Lall, Stanford 2005.12.11.02 Decentralized Control G 1 G 2 G 3 G 4 G 5 y 1 u 1 y 2 u

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612 Gaussian Elimination! Solving a system of simultaneous

More information

Real-Time Optimization (RTO)

Real-Time Optimization (RTO) Real-Time Optimization (RTO) In previous chapters we have emphasized control system performance for disturbance and set-point changes. Now we will be concerned with how the set points are specified. In

More information

REPORTS IN INFORMATICS

REPORTS IN INFORMATICS REPORTS IN INFORMATICS ISSN 0333-3590 Sensitivity Analysis Applied to the Pooling Problem Lennart Frimannslund, Geir Gundersen and Dag Haugland REPORT NO 380 December 2008 Department of Informatics UNIVERSITY

More information

Software for Integer and Nonlinear Optimization

Software for Integer and Nonlinear Optimization Software for Integer and Nonlinear Optimization Sven Leyffer, leyffer@mcs.anl.gov Mathematics & Computer Science Division Argonne National Laboratory Roger Fletcher & Jeff Linderoth Advanced Methods and

More information

4. Duality Duality 4.1 Duality of LPs and the duality theorem. min c T x x R n, c R n. s.t. ai Tx = b i i M a i R n

4. Duality Duality 4.1 Duality of LPs and the duality theorem. min c T x x R n, c R n. s.t. ai Tx = b i i M a i R n 2 4. Duality of LPs and the duality theorem... 22 4.2 Complementary slackness... 23 4.3 The shortest path problem and its dual... 24 4.4 Farkas' Lemma... 25 4.5 Dual information in the tableau... 26 4.6

More information

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on 6117CIT - Adv Topics in Computing Sci at Nathan 1 Algorithms The intelligence behind the hardware Outline! Approximation Algorithms The class APX! Some complexity classes, like PTAS and FPTAS! Illustration

More information

Three-partition Flow Cover Inequalities for Constant Capacity Fixed-charge Network Flow Problems

Three-partition Flow Cover Inequalities for Constant Capacity Fixed-charge Network Flow Problems Three-partition Flow Cover Inequalities for Constant Capacity Fixed-charge Network Flow Problems Alper Atamtürk, Andrés Gómez Department of Industrial Engineering & Operations Research, University of California,

More information

Scheduling with AND/OR Precedence Constraints

Scheduling with AND/OR Precedence Constraints Scheduling with AND/OR Precedence Constraints Seminar Mathematische Optimierung - SS 2007 23th April 2007 Synthesis synthesis: transfer from the behavioral domain (e. g. system specifications, algorithms)

More information

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle Directed Hamiltonian Cycle Chapter 8 NP and Computational Intractability Claim. G has a Hamiltonian cycle iff G' does. Pf. Suppose G has a directed Hamiltonian cycle Γ. Then G' has an undirected Hamiltonian

More information

Ant Colony Optimization: an introduction. Daniel Chivilikhin

Ant Colony Optimization: an introduction. Daniel Chivilikhin Ant Colony Optimization: an introduction Daniel Chivilikhin 03.04.2013 Outline 1. Biological inspiration of ACO 2. Solving NP-hard combinatorial problems 3. The ACO metaheuristic 4. ACO for the Traveling

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

Lecture 11 October 7, 2013

Lecture 11 October 7, 2013 CS 4: Advanced Algorithms Fall 03 Prof. Jelani Nelson Lecture October 7, 03 Scribe: David Ding Overview In the last lecture we talked about set cover: Sets S,..., S m {,..., n}. S has cost c S. Goal: Cover

More information

A Hub Location Problem with Fully Interconnected Backbone and Access Networks

A Hub Location Problem with Fully Interconnected Backbone and Access Networks A Hub Location Problem with Fully Interconnected Backbone and Access Networks Tommy Thomadsen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark tt@imm.dtu.dk

More information

PART 4 INTEGER PROGRAMMING

PART 4 INTEGER PROGRAMMING PART 4 INTEGER PROGRAMMING 102 Read Chapters 11 and 12 in textbook 103 A capital budgeting problem We want to invest $19 000 Four investment opportunities which cannot be split (take it or leave it) 1.

More information

Improved Big-M Reformulation for Generalized Disjunctive Programs

Improved Big-M Reformulation for Generalized Disjunctive Programs Improved Big-M Reformulation for Generalized Disjunctive Programs Francisco Trespalacios and Ignacio E. Grossmann Department of Chemical Engineering Carnegie Mellon University, Pittsburgh, PA 15213 Author

More information

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Siqian Shen Dept. of Industrial and Operations Engineering University of Michigan Joint work with Yan Deng (UMich, Google)

More information

Strongly Polynomial Algorithm for a Class of Minimum-Cost Flow Problems with Separable Convex Objectives

Strongly Polynomial Algorithm for a Class of Minimum-Cost Flow Problems with Separable Convex Objectives Strongly Polynomial Algorithm for a Class of Minimum-Cost Flow Problems with Separable Convex Objectives László A. Végh April 12, 2013 Abstract A well-studied nonlinear extension of the minimum-cost flow

More information

Discrete (and Continuous) Optimization Solutions of Exercises 2 WI4 131

Discrete (and Continuous) Optimization Solutions of Exercises 2 WI4 131 Discrete (and Continuous) Optimization Solutions of Exercises 2 WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek

More information

APPLIED MECHANISM DESIGN FOR SOCIAL GOOD

APPLIED MECHANISM DESIGN FOR SOCIAL GOOD APPLIED MECHANISM DESIGN FOR SOCIAL GOOD JOHN P DICKERSON Lecture #4 09/08/2016 CMSC828M Tuesdays & Thursdays 12:30pm 1:45pm PRESENTATION LIST IS ONLINE! SCRIBE LIST COMING SOON 2 THIS CLASS: (COMBINATORIAL)

More information

Can Li a, Ignacio E. Grossmann a,

Can Li a, Ignacio E. Grossmann a, A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables Can Li a, Ignacio E. Grossmann

More information

Selected partial inverse combinatorial optimization problems with forbidden elements. Elisabeth Gassner

Selected partial inverse combinatorial optimization problems with forbidden elements. Elisabeth Gassner FoSP Algorithmen & mathematische Modellierung FoSP Forschungsschwerpunkt Algorithmen und mathematische Modellierung Selected partial inverse combinatorial optimization problems with forbidden elements

More information

Can Li a, Ignacio E. Grossmann a,

Can Li a, Ignacio E. Grossmann a, A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables Can Li a, Ignacio E. Grossmann

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

III. Linear Programming

III. Linear Programming III. Linear Programming Thomas Sauerwald Easter 2017 Outline Introduction Standard and Slack Forms Formulating Problems as Linear Programs Simplex Algorithm Finding an Initial Solution III. Linear Programming

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source

More information

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 Usual rules. :) Exercises 1. Lots of Flows. Suppose you wanted to find an approximate solution to the following

More information

In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight.

In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight. In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight. In the multi-dimensional knapsack problem, additional

More information

Submodular and Linear Maximization with Knapsack Constraints. Ariel Kulik

Submodular and Linear Maximization with Knapsack Constraints. Ariel Kulik Submodular and Linear Maximization with Knapsack Constraints Ariel Kulik Submodular and Linear Maximization with Knapsack Constraints Research Thesis Submitted in partial fulfillment of the requirements

More information

LP based heuristics for the multiple knapsack problem. with assignment restrictions

LP based heuristics for the multiple knapsack problem. with assignment restrictions LP based heuristics for the multiple knapsack problem with assignment restrictions Geir Dahl and Njål Foldnes Centre of Mathematics for Applications and Department of Informatics, University of Oslo, P.O.Box

More information

Decision Procedures An Algorithmic Point of View

Decision Procedures An Algorithmic Point of View An Algorithmic Point of View ILP References: Integer Programming / Laurence Wolsey Deciding ILPs with Branch & Bound Intro. To mathematical programming / Hillier, Lieberman Daniel Kroening and Ofer Strichman

More information

LIGHT ROBUSTNESS. Matteo Fischetti, Michele Monaci. DEI, University of Padova. 1st ARRIVAL Annual Workshop and Review Meeting, Utrecht, April 19, 2007

LIGHT ROBUSTNESS. Matteo Fischetti, Michele Monaci. DEI, University of Padova. 1st ARRIVAL Annual Workshop and Review Meeting, Utrecht, April 19, 2007 LIGHT ROBUSTNESS Matteo Fischetti, Michele Monaci DEI, University of Padova 1st ARRIVAL Annual Workshop and Review Meeting, Utrecht, April 19, 2007 Work supported by the Future and Emerging Technologies

More information

Outline. 1 Introduction. 2 Modeling and Applications. 3 Algorithms Convex. 4 Algorithms Nonconvex. 5 The Future of MINLP? 2 / 126

Outline. 1 Introduction. 2 Modeling and Applications. 3 Algorithms Convex. 4 Algorithms Nonconvex. 5 The Future of MINLP? 2 / 126 Outline 1 Introduction 2 3 Algorithms Convex 4 Algorithms Nonconvex 5 The Future of MINLP? 2 / 126 Larry Leading Off 3 / 126 Introduction Outline 1 Introduction Software Tools and Online Resources Basic

More information

Relaxations and Randomized Methods for Nonconvex QCQPs

Relaxations and Randomized Methods for Nonconvex QCQPs Relaxations and Randomized Methods for Nonconvex QCQPs Alexandre d Aspremont, Stephen Boyd EE392o, Stanford University Autumn, 2003 Introduction While some special classes of nonconvex problems can be

More information

MINLP: Theory, Algorithms, Applications: Lecture 3, Basics of Algorothms

MINLP: Theory, Algorithms, Applications: Lecture 3, Basics of Algorothms MINLP: Theory, Algorithms, Applications: Lecture 3, Basics of Algorothms Jeff Linderoth Industrial and Systems Engineering University of Wisconsin-Madison Jonas Schweiger Friedrich-Alexander-Universität

More information

Integer Linear Programming (ILP)

Integer Linear Programming (ILP) Integer Linear Programming (ILP) Zdeněk Hanzálek, Přemysl Šůcha hanzalek@fel.cvut.cz CTU in Prague March 8, 2017 Z. Hanzálek (CTU) Integer Linear Programming (ILP) March 8, 2017 1 / 43 Table of contents

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

1 Maximum Budgeted Allocation

1 Maximum Budgeted Allocation CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: November 4, 2010 Scribe: David Tobin 1 Maximum Budgeted Allocation Agents Items Given: n agents and m

More information

New algorithms for Disjoint Paths and Routing Problems

New algorithms for Disjoint Paths and Routing Problems New algorithms for Disjoint Paths and Routing Problems Chandra Chekuri Dept. of Computer Science Univ. of Illinois (UIUC) Menger s Theorem Theorem: The maximum number of s-t edgedisjoint paths in a graph

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

Embedded Systems Design: Optimization Challenges. Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden

Embedded Systems Design: Optimization Challenges. Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden of /4 4 Embedded Systems Design: Optimization Challenges Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden Outline! Embedded systems " Example area: automotive electronics " Embedded systems

More information

Exact Computation of Global Minima of a Nonconvex Portfolio Optimization Problem

Exact Computation of Global Minima of a Nonconvex Portfolio Optimization Problem Frontiers In Global Optimization, pp. 1-2 C. A. Floudas and P. M. Pardalos, Editors c 2003 Kluwer Academic Publishers Exact Computation of Global Minima of a Nonconvex Portfolio Optimization Problem Josef

More information

BBM402-Lecture 20: LP Duality

BBM402-Lecture 20: LP Duality BBM402-Lecture 20: LP Duality Lecturer: Lale Özkahya Resources for the presentation: https://courses.engr.illinois.edu/cs473/fa2016/lectures.html An easy LP? which is compact form for max cx subject to

More information

Decision Diagram Relaxations for Integer Programming

Decision Diagram Relaxations for Integer Programming Decision Diagram Relaxations for Integer Programming Christian Tjandraatmadja April, 2018 Tepper School of Business Carnegie Mellon University Submitted to the Tepper School of Business in Partial Fulfillment

More information

Lecture 15 (Oct 6): LP Duality

Lecture 15 (Oct 6): LP Duality CMPUT 675: Approximation Algorithms Fall 2014 Lecturer: Zachary Friggstad Lecture 15 (Oct 6): LP Duality Scribe: Zachary Friggstad 15.1 Introduction by Example Given a linear program and a feasible solution

More information

A Priori Route Evaluation for the Lateral Transhipment Problem (ARELTP) with Piecewise Linear Profits

A Priori Route Evaluation for the Lateral Transhipment Problem (ARELTP) with Piecewise Linear Profits 1 / 47 A Priori Route Evaluation for the Lateral Transhipment Problem (ARELTP) with Piecewise Linear Profits Martin Romauch 1 Richard Hartl 1 Thibaut Vidal 2 1 University of Vienna 2 PUC-Rio, Rio de Janeiro,

More information

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA Gestion de la production Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA 1 Contents 1 Integer Linear Programming 3 1.1 Definitions and notations......................................

More information

Algorithms and Theory of Computation. Lecture 13: Linear Programming (2)

Algorithms and Theory of Computation. Lecture 13: Linear Programming (2) Algorithms and Theory of Computation Lecture 13: Linear Programming (2) Xiaohui Bei MAS 714 September 25, 2018 Nanyang Technological University MAS 714 September 25, 2018 1 / 15 LP Duality Primal problem

More information

MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands

MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands Axel Nyberg Åbo Aademi University Ignacio E. Grossmann Dept. of Chemical Engineering, Carnegie Mellon University,

More information

Integer programming: an introduction. Alessandro Astolfi

Integer programming: an introduction. Alessandro Astolfi Integer programming: an introduction Alessandro Astolfi Outline Introduction Examples Methods for solving ILP Optimization on graphs LP problems with integer solutions Summary Introduction Integer programming

More information

Multi-Task/Multi-Stage Production Planning and Scheduling for Process Industries

Multi-Task/Multi-Stage Production Planning and Scheduling for Process Industries Multi-Task/Multi-Stage Production Planning and Scheduling for Process Industries Francesco Gaglioppa Lisa A. Miller Saif Benjaafar Graduate Program in Industrial Engineering Department of Mechanical Engineering

More information

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths H. Murat AFSAR Olivier BRIANT Murat.Afsar@g-scop.inpg.fr Olivier.Briant@g-scop.inpg.fr G-SCOP Laboratory Grenoble Institute of Technology

More information

EECS 495: Combinatorial Optimization Lecture Manolis, Nima Mechanism Design with Rounding

EECS 495: Combinatorial Optimization Lecture Manolis, Nima Mechanism Design with Rounding EECS 495: Combinatorial Optimization Lecture Manolis, Nima Mechanism Design with Rounding Motivation Make a social choice that (approximately) maximizes the social welfare subject to the economic constraints

More information

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem ORIE 633 Network Flows August 30, 2007 Lecturer: David P. Williamson Lecture 3 Scribe: Gema Plaza-Martínez 1 Polynomial-time algorithms for the maximum flow problem 1.1 Introduction Let s turn now to considering

More information

Deterministic Global Optimization Algorithm and Nonlinear Dynamics

Deterministic Global Optimization Algorithm and Nonlinear Dynamics Deterministic Global Optimization Algorithm and Nonlinear Dynamics C. S. Adjiman and I. Papamichail Centre for Process Systems Engineering Department of Chemical Engineering and Chemical Technology Imperial

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

Duality of LPs and Applications

Duality of LPs and Applications Lecture 6 Duality of LPs and Applications Last lecture we introduced duality of linear programs. We saw how to form duals, and proved both the weak and strong duality theorems. In this lecture we will

More information

Cable Trench Problem

Cable Trench Problem Cable Trench Problem Matthew V Galati Ted K Ralphs Joseph C Hartman magh@lehigh.edu Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA Cable Trench Problem p.1 Cable Trench

More information

where X is the feasible region, i.e., the set of the feasible solutions.

where X is the feasible region, i.e., the set of the feasible solutions. 3.5 Branch and Bound Consider a generic Discrete Optimization problem (P) z = max{c(x) : x X }, where X is the feasible region, i.e., the set of the feasible solutions. Branch and Bound is a general semi-enumerative

More information

Integer Programming Formulations for the Minimum Weighted Maximal Matching Problem

Integer Programming Formulations for the Minimum Weighted Maximal Matching Problem Optimization Letters manuscript No. (will be inserted by the editor) Integer Programming Formulations for the Minimum Weighted Maximal Matching Problem Z. Caner Taşkın Tınaz Ekim Received: date / Accepted:

More information

Stacy L. Janak, Xiaoxia Lin, and Christodoulos A. Floudas*

Stacy L. Janak, Xiaoxia Lin, and Christodoulos A. Floudas* 2516 Ind. Eng. Chem. Res. 2004, 43, 2516-2533 Enhanced Continuous-Time Unit-Specific Event-Based Formulation for Short-Term Scheduling of Multipurpose Batch Processes: Resource Constraints and Mixed Storage

More information

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling.

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling. Algorithm Design Scheduling Algorithms Part 2 Parallel machines. Open-shop Scheduling. Job-shop Scheduling. 1 Parallel Machines n jobs need to be scheduled on m machines, M 1,M 2,,M m. Each machine can

More information

Week 4. (1) 0 f ij u ij.

Week 4. (1) 0 f ij u ij. Week 4 1 Network Flow Chapter 7 of the book is about optimisation problems on networks. Section 7.1 gives a quick introduction to the definitions of graph theory. In fact I hope these are already known

More information

The traveling salesman problem

The traveling salesman problem Chapter 58 The traveling salesman problem The traveling salesman problem (TSP) asks for a shortest Hamiltonian circuit in a graph. It belongs to the most seductive problems in combinatorial optimization,

More information