A Tighter Piecewise McCormick Relaxation for Bilinear Problems

Size: px
Start display at page:

Download "A Tighter Piecewise McCormick Relaxation for Bilinear Problems"

Transcription

1 A Tighter Piecewise McCormick Relaxation for Bilinear Problems Pedro M. Castro Centro de Investigação Operacional Faculdade de Ciências niversidade de isboa

2 Problem definition (NP) Bilinear program min f 0 (x) f q (x) 0 q Q\{0} (P) f q (x) = (i,j) B q a ijq x i x j + h q (x) q Q 0 x x x x R m Relaxation provides a lower bound a ijq - parameters x vector of continuous variables B q - (i, j) index set i j strictly bilinear problems i = j can be allowed (quadratic problems) h q (x)- linear function in x MINP

3 Introduction Bilinear problems occur in a variety of applications Process network problems (Quesada & Grossmann, 1995) Water networks (Bagajewicz, 2000) Pooling and blending (Haverly, 1978) Non-convex, leading to multiple local solutions Gradient based solvers unable to certify optimality Need for global optimization algorithms What do they have in common? inear (P) or mixed-integer linear (MIP) relaxation of (P) B P: Standard McCormick envelopes (1976) MIP: Piecewise McCormick envelopes (Bergamini et al. 2005) MIP: Multiparametric disaggregation (Teles et al. 2013; Kolodziej et al. 2013) Solution of (P) with fast local solver B sing B as starting point Tight relaxation critical to ensure convergence Relative optimality gap (B-B)/B< MINP

4 Piecewise McCormick relaxation w ij = x i x j Domain of divided into N uniform partitions x j x j,1 n = 1 x j,1 n = 2 x j,2 x j,n 1 n = N x j,2... x j,n y j,1 = true y j,2 = true... y j,n = true x j,n x j Optimization will pick single partition Generalized Disjunctive Program (Balas, 1979; Raman & Grossmann, 1994) y jn w ij x i x jn + x i x j x i x jn n w ij x i x jn + x i x j x i x jn w ij x i x jn + x i x j x i x jn w ij x i x jn + x i x j x i x jn x jn x j x jn (PR-MIP) Convex hull x i Standard McCormick N = 1 N = 2 N = 20 x jn x i x i x i = x j + (x j x j ) (n 1)/N x jn = x j + (x j x j ) n/n x j x j x j MINP

5 New tighter piecewise relaxation Basic idea se partition-dependent n bounds also for variable x i x /x lower/upper bound when x j constrained to n Better bounds tighter relaxation lower gap y jn w ij x i x jn + x w ij x i x jn + x w ij x i x jn + x w ij x i x jn + x x jn x x jn x j x x j x x j x x j x x i x x j x jn x jn x jn x jn x jn = x j + (x j x j ) (n 1)/N x jn = x j + (x j x j ) n/n MINP 2014 Convex hull (PRT-MIP) min z R = f 0 x = f q x = x j = n x jn n y jn = 1 i,j B i,j B a ij0 w ij + h 0 x a ijq w ij + h q x 0 q Q\{0} {j (i, j) B} x jn = x j + x j x j n 1 N x jn = x j + x j x j n N x jn y jn x jn x jn y jn 5 w ij w ij w ij w ij x i = x n n n n x n x x jn + x x x jn + x x x jn + x x x jn + x y jn x x x jn x x jn x j x jn y jn x jn y jn x jn x x jn y jn x jn x x jn y jn i, j B, n y jn (i, j) B, n {1,, N} (i, j)

6 How to generate bounds x & x? Optimality bound contraction with McCormick envelopes Solve multiple instances of P problem (BC), two per: Non-partitioned variable x i Partitioned variable x j Partition n Focus on regions that can actually improve current B z obtained from solving (P) with local solver (BC) infeasible? Remove partition n of j from (PRT-MIP) Computation can be time consuming (BC) x i j n f 0 x = = min x i (x i j n = max x i i,j B 0 a ij0 w ij + h 0 (x) z f q (x) = i,j B q a ijq w ij + h q (x) 0 q Q\{0} w ij x i x j + x i x j x i x j w ij x i x j + x i x j x i x j w ij x i x j + x i x j x i x j w ij x i x j + x i x j x i x j x j = x j n x j x j n x x x (i, j) B = x j MINP

7 tighter bounds, Feasible? remove partition New optimization algorithm YES NO update bounds Key features ser selects: N partitions Partitioned variables x j Preliminary bound contraction stage Bounds updated at different levels B from MIP relaxation B from NP (single starting point) Computes an optimality gap tighter bounds, Given: partitions,,,,, SOVE (P) with local solver SOVE (standard bound contract) YES YES NO NO Initialization SOVE (BC) Feasible? YES NO NO upper bound update,,, remove partition update bounds update bounds NO NO YES YES SOVE (PRT-MIP) SOVE (P) with local solver Output Optimal solution Optimality gap Time Elapsed update bounds lower bound upper bound MINP 2014 SOVE YES lower bound June 3, 2014 Tighter (PRT-MIP) Piecewise McCormick Relaxation 7

8 Illustrative example P1 min f 0 x = x 1 + x 1 x 2 x 2 Global optimum z = f 0 x = Partitioned variable: x 1 B = {(2,1)} Non-partitioned variable: x 2 6x 1 + 8x 2 3 3x 1 x x 1, x Standard optimality bound contraction x x (PR-MIP) relaxation z R = (PRT-MIP) relaxation z R = Gap 8.60% 7.38% Partition-dependent bound contraction N = 3 Partition n x 1n x 1n x 21n x 21n P is infeasible MINP

9 How about using more partitions? p to two orders of magnitude reduction in optimality gap Major increase in total computational time Still, new approach performs best! P1 Relaxation Partitions (N) (PR-MIP) (PRT-MIP) Total CPs Optimality gap 1.67% 0.188% % % Optimality gap 0.77% 0.010% % Total CPs P2 Relaxation Partitions (N) min 6x x x 1 x 2 x 1 x x 1, x 2 10 (PR-MIP) (PRT-MIP) Total CPs Optimality gap 8.41% 0.84% % % Optimality gap 0.84% 0.02% % Total CPs MINP

10 Subset of problems selected for illustration Results for larger test problems 16 easiest water-using design problems New (PRT-MIP) approach leads to lower gaps at termination (3600 CPs) Faster in 56% of the cases (finest partition level) Single failure when finding best-known solution for (P) Number of variables (PR-MIP) (PRT-MIP) Non-partitioned I Partitioned J Partitions (N) Solution Total CPs Gap Gap Total CPs Solution Ex Ex Ex Ex Ex % % % % % % % % % % % % % % % % % % % % Ex % % % % Ex % % % % MINP

11 How to determine the number of partitions? Quality of relaxation increases with N Careful not to generate intractable MIPs (Gounaris et al. 2009) Several works identify most appropriate value for a particular problem (Misener et al. 2011; Wittmann-Holhbein and Pistikopoulos, 2013; 2014) No method to estimate N as a function of problem complexity Needed to provide a fair comparison with commercial solvers Proposed formula meets important criteria: Returns an integer value Ensures minimum of two partitions So as to benefit from piecewise relaxation scheme Reduces N with increase in problem size Roughly inversely proportional (r 2 =0.76) N = 1 + α I J α = 1.8E4 MINP

12 Cumulative distribution function Comparison to commercial solvers Performance profiles (Dolan & Moré, 2002) KPI: Optimality gap (PR-MIP) (PRT-MIP) GloMIQO 2.3 BARON GAMS , CPEX , GloMIQO 2.3, BARON , Intel Core i (3.07 GHz), 8 GB RAM, Windows 7 64-bit Termination criteria: gap=0.0001%, Time=3600 CPs (PRT-MIP) better (PR-MIP) GloMIQO outperforms BARON # Failures finding best-known solution (34 problems) Algorithm GloMIQO (PRT-MIP) BARON (PR-MIP) Suboptimal No solution Total MINP

13 (PR-BV-MIP) Why not bivariate partitioning? Domain of x i and x j known a priori for each 2-D partition Slightly better performance than univariate partitioning for P1 Gap for partitions one order of magnitude larger vs. (PRT-MIP) N N n=1 n =1 w ij x i x jn w ij x i x jn w ij x i x jn w ij x i x jn x in x jn y injn + x in x j x in x jn + x in x j x in x jn + x in x j x in x jn + x in x j x in x jn x i x in x j x jn (i, j) Relaxation Partitions (N) nivariate (PR-MIP) Bivariate (PR-BV-MIP) Total CPs Optimality gap 1.70% 0.197% % % N Optimality gap 1.28% 0.188% % % % Total CPs MINP

14 Conclusions Bilinear problems tackled through piecewise relaxation (PR) Novel approach with partition-dependent bounds for all bilinear variables Significant improvement in relaxation quality Need for extensive optimality-based bound contraction (BC) Total computational time is sometimes lower New algorithm outperforms state-of-the-art global solvers Specific class of water-using network design problems PR and BC schemes should be used to greater extent Integrating with spatial B&B subject of future work See CACE paper for further details Acknowledgments: uso-american Foundation (2013 Portugal-.S. Research Networks) Fundação para a Ciência e Tecnologia (Investigador FCT 2013) MINP

Multiperiod Blend Scheduling Problem

Multiperiod Blend Scheduling Problem ExxonMobil Multiperiod Blend Scheduling Problem Juan Pablo Ruiz Ignacio E. Grossmann Department of Chemical Engineering Center for Advanced Process Decision-making University Pittsburgh, PA 15213 1 Motivation

More information

Computer Sciences Department

Computer Sciences Department Computer Sciences Department Valid Inequalities for the Pooling Problem with Binary Variables Claudia D Ambrosio Jeff Linderoth James Luedtke Technical Report #682 November 200 Valid Inequalities for the

More information

Heuristics and Upper Bounds for a Pooling Problem with Cubic Constraints

Heuristics and Upper Bounds for a Pooling Problem with Cubic Constraints Heuristics and Upper Bounds for a Pooling Problem with Cubic Constraints Matthew J. Real, Shabbir Ahmed, Helder Inàcio and Kevin Norwood School of Chemical & Biomolecular Engineering 311 Ferst Drive, N.W.

More information

Solving Mixed-Integer Nonlinear Programs

Solving Mixed-Integer Nonlinear Programs Solving Mixed-Integer Nonlinear Programs (with SCIP) Ambros M. Gleixner Zuse Institute Berlin MATHEON Berlin Mathematical School 5th Porto Meeting on Mathematics for Industry, April 10 11, 2014, Porto

More information

The Pooling Problem - Applications, Complexity and Solution Methods

The Pooling Problem - Applications, Complexity and Solution Methods The Pooling Problem - Applications, Complexity and Solution Methods Dag Haugland Dept. of Informatics University of Bergen Norway EECS Seminar on Optimization and Computing NTNU, September 30, 2014 Outline

More information

Development of the new MINLP Solver Decogo using SCIP - Status Report

Development of the new MINLP Solver Decogo using SCIP - Status Report Development of the new MINLP Solver Decogo using SCIP - Status Report Pavlo Muts with Norman Breitfeld, Vitali Gintner, Ivo Nowak SCIP Workshop 2018, Aachen Table of contents 1. Introduction 2. Automatic

More information

Global Optimization of Non-convex Generalized Disjunctive Programs: A Review on Relaxations and Solution Methods

Global Optimization of Non-convex Generalized Disjunctive Programs: A Review on Relaxations and Solution Methods Noname manuscript No. (will be inserted by the editor) Global Optimization of Non-convex Generalized Disjunctive Programs: A Review on Relaxations and Solution Methods Juan P. Ruiz Ignacio E. Grossmann

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

Event-based MIP models for the resource constrained project scheduling problem

Event-based MIP models for the resource constrained project scheduling problem Event-based MIP models for the resource constrained project scheduling problem Oumar Koné, Christian Artigues, Pierre Lopez LAAS-CNRS, Université de Toulouse, France Marcel Mongeau IMT, Université de Toulouse,

More information

Projected Perspective Reformulations for NonLinear Network Design Problems

Projected Perspective Reformulations for NonLinear Network Design Problems Projected Perspective Reformulations for NonLinear Network Design Problems Antonio Frangioni Claudio Gentile Enrico Grande Andrea Pacifici Dipartimento di Informatica, Università di Pisa Polo Universitario

More information

An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem

An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem Irene Lotero a, Francisco Trespalacios a, Myun-Seok Cheon b, Dimitri J. Papageorgiou

More information

MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands

MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands Axel Nyberg Åbo Aademi University Ignacio E. Grossmann Dept. of Chemical Engineering, Carnegie Mellon University,

More information

Can Li a, Ignacio E. Grossmann a,

Can Li a, Ignacio E. Grossmann a, A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables Can Li a, Ignacio E. Grossmann

More information

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse Yongjia Song, James Luedtke Virginia Commonwealth University, Richmond, VA, ysong3@vcu.edu University

More information

23. Cutting planes and branch & bound

23. Cutting planes and branch & bound CS/ECE/ISyE 524 Introduction to Optimization Spring 207 8 23. Cutting planes and branch & bound ˆ Algorithms for solving MIPs ˆ Cutting plane methods ˆ Branch and bound methods Laurent Lessard (www.laurentlessard.com)

More information

Mixed-Integer Nonlinear Decomposition Toolbox for Pyomo (MindtPy)

Mixed-Integer Nonlinear Decomposition Toolbox for Pyomo (MindtPy) Mario R. Eden, Marianthi Ierapetritou and Gavin P. Towler (Editors) Proceedings of the 13 th International Symposium on Process Systems Engineering PSE 2018 July 1-5, 2018, San Diego, California, USA 2018

More information

Relaxations of multilinear convex envelopes: dual is better than primal

Relaxations of multilinear convex envelopes: dual is better than primal of multilinear convex envelopes: dual is better than primal 1 LIX, École Polytechnique, Palaiseau, France June 7th, 2012 11 th International Symposium on Experimental Algorithms (SEA) 2012 - Bordeaux (France)

More information

Nonconvex Generalized Benders Decomposition Paul I. Barton

Nonconvex Generalized Benders Decomposition Paul I. Barton Nonconvex Generalized Benders Decomposition Paul I. Barton Process Systems Engineering Laboratory Massachusetts Institute of Technology Motivation Two-stage Stochastic MINLPs & MILPs Natural Gas Production

More information

Indicator Constraints in Mixed-Integer Programming

Indicator Constraints in Mixed-Integer Programming Indicator Constraints in Mixed-Integer Programming Andrea Lodi University of Bologna, Italy - andrea.lodi@unibo.it Amaya Nogales-Gómez, Universidad de Sevilla, Spain Pietro Belotti, FICO, UK Matteo Fischetti,

More information

Mixed-Integer Nonlinear Programming

Mixed-Integer Nonlinear Programming Mixed-Integer Nonlinear Programming Claudia D Ambrosio CNRS researcher LIX, École Polytechnique, France pictures taken from slides by Leo Liberti MPRO PMA 2016-2017 Motivating Applications Nonlinear Knapsack

More information

Can Li a, Ignacio E. Grossmann a,

Can Li a, Ignacio E. Grossmann a, A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables Can Li a, Ignacio E. Grossmann

More information

An Exact Algorithm for the Steiner Tree Problem with Delays

An Exact Algorithm for the Steiner Tree Problem with Delays Electronic Notes in Discrete Mathematics 36 (2010) 223 230 www.elsevier.com/locate/endm An Exact Algorithm for the Steiner Tree Problem with Delays Valeria Leggieri 1 Dipartimento di Matematica, Università

More information

A note on : A Superior Representation Method for Piecewise Linear Functions

A note on : A Superior Representation Method for Piecewise Linear Functions A note on : A Superior Representation Method for Piecewise Linear Functions Juan Pablo Vielma Business Analytics and Mathematical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights,

More information

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy On the knapsack closure of 0-1 Integer Linear Programs Matteo Fischetti University of Padova, Italy matteo.fischetti@unipd.it Andrea Lodi University of Bologna, Italy alodi@deis.unibo.it Aussois, January

More information

Improved Big-M Reformulation for Generalized Disjunctive Programs

Improved Big-M Reformulation for Generalized Disjunctive Programs Improved Big-M Reformulation for Generalized Disjunctive Programs Francisco Trespalacios and Ignacio E. Grossmann Department of Chemical Engineering Carnegie Mellon University, Pittsburgh, PA 15213 Author

More information

REGULAR-SS12: The Bernstein branch-and-prune algorithm for constrained global optimization of multivariate polynomial MINLPs

REGULAR-SS12: The Bernstein branch-and-prune algorithm for constrained global optimization of multivariate polynomial MINLPs 1 2 3 4 REGULAR-SS12: The Bernstein branch-and-prune algorithm for constrained global optimization of multivariate polynomial MINLPs 5 6 7 8 Bhagyesh V. Patil Cambridge Centre for Advanced Research in

More information

Lifted Inequalities for 0 1 Mixed-Integer Bilinear Covering Sets

Lifted Inequalities for 0 1 Mixed-Integer Bilinear Covering Sets 1 2 3 Lifted Inequalities for 0 1 Mixed-Integer Bilinear Covering Sets Kwanghun Chung 1, Jean-Philippe P. Richard 2, Mohit Tawarmalani 3 March 1, 2011 4 5 6 7 8 9 Abstract In this paper, we study 0 1 mixed-integer

More information

Integer programming for the MAP problem in Markov random fields

Integer programming for the MAP problem in Markov random fields Integer programming for the MAP problem in Markov random fields James Cussens, University of York HIIT, 2015-04-17 James Cussens, University of York MIP for MRF MAP HIIT, 2015-04-17 1 / 21 Markov random

More information

Advanced Mixed Integer Programming Formulations for Non-Convex Optimization Problems in Statistical Learning

Advanced Mixed Integer Programming Formulations for Non-Convex Optimization Problems in Statistical Learning Advanced Mixed Integer Programming Formulations for Non-Convex Optimization Problems in Statistical Learning Juan Pablo Vielma Massachusetts Institute of Technology 2016 IISA International Conference on

More information

Online generation via offline selection - Low dimensional linear cuts from QP SDP relaxation -

Online generation via offline selection - Low dimensional linear cuts from QP SDP relaxation - Online generation via offline selection - Low dimensional linear cuts from QP SDP relaxation - Radu Baltean-Lugojan Ruth Misener Computational Optimisation Group Department of Computing Pierre Bonami Andrea

More information

Scheduling Home Hospice Care with Logic-Based Benders Decomposition

Scheduling Home Hospice Care with Logic-Based Benders Decomposition Scheduling Home Hospice Care with Logic-Based Benders Decomposition John Hooker Carnegie Mellon University Joint work with Aliza Heching Ryo Kimura Compassionate Care Hospice CMU Lehigh University October

More information

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano ... Our contribution PIPS-PSBB*: Multi-level parallelism for Stochastic

More information

19. Fixed costs and variable bounds

19. Fixed costs and variable bounds CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 19. Fixed costs and variable bounds ˆ Fixed cost example ˆ Logic and the Big M Method ˆ Example: facility location ˆ Variable lower bounds Laurent

More information

Integer Programming. Wolfram Wiesemann. December 6, 2007

Integer Programming. Wolfram Wiesemann. December 6, 2007 Integer Programming Wolfram Wiesemann December 6, 2007 Contents of this Lecture Revision: Mixed Integer Programming Problems Branch & Bound Algorithms: The Big Picture Solving MIP s: Complete Enumeration

More information

A Branch-and-Refine Method for Nonconvex Mixed-Integer Optimization

A Branch-and-Refine Method for Nonconvex Mixed-Integer Optimization A Branch-and-Refine Method for Nonconvex Mixed-Integer Optimization Sven Leyffer 2 Annick Sartenaer 1 Emilie Wanufelle 1 1 University of Namur, Belgium 2 Argonne National Laboratory, USA IMA Workshop,

More information

From structures to heuristics to global solvers

From structures to heuristics to global solvers From structures to heuristics to global solvers Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies OR2013, 04/Sep/13, Rotterdam Outline From structures to

More information

Improved quadratic cuts for convex mixed-integer nonlinear programs

Improved quadratic cuts for convex mixed-integer nonlinear programs Improved quadratic cuts for convex mixed-integer nonlinear programs Lijie Su a,b, Lixin Tang a*, David E. Bernal c, Ignacio E. Grossmann c a Institute of Industrial and Systems Engineering, Northeastern

More information

MIXED INTEGER PROGRAMMING APPROACHES FOR NONLINEAR AND STOCHASTIC PROGRAMMING

MIXED INTEGER PROGRAMMING APPROACHES FOR NONLINEAR AND STOCHASTIC PROGRAMMING MIXED INTEGER PROGRAMMING APPROACHES FOR NONLINEAR AND STOCHASTIC PROGRAMMING A Thesis Presented to The Academic Faculty by Juan Pablo Vielma Centeno In Partial Fulfillment of the Requirements for the

More information

Part 4. Decomposition Algorithms

Part 4. Decomposition Algorithms In the name of God Part 4. 4.4. Column Generation for the Constrained Shortest Path Problem Spring 2010 Instructor: Dr. Masoud Yaghini Constrained Shortest Path Problem Constrained Shortest Path Problem

More information

Semidefinite Relaxations for Non-Convex Quadratic Mixed-Integer Programming

Semidefinite Relaxations for Non-Convex Quadratic Mixed-Integer Programming Semidefinite Relaxations for Non-Convex Quadratic Mixed-Integer Programming Christoph Buchheim 1 and Angelika Wiegele 2 1 Fakultät für Mathematik, Technische Universität Dortmund christoph.buchheim@tu-dortmund.de

More information

A Framework for Integrating Optimization and Constraint Programming

A Framework for Integrating Optimization and Constraint Programming A Framework for Integrating Optimization and Constraint Programming John Hooker Carnegie Mellon University SARA 2007 SARA 07 Slide Underlying theme Model vs. solution method. How can we match the model

More information

Combining Optimization and Constraint Programming

Combining Optimization and Constraint Programming Combining Optimization and Constraint Programming John Hooker Carnegie Mellon University GE Research Center 7 September 2007 GE 7 Sep 07 Slide 1 Optimization and Constraint Programming Optimization: focus

More information

DSOS/SDOS Programming: New Tools for Optimization over Nonnegative Polynomials

DSOS/SDOS Programming: New Tools for Optimization over Nonnegative Polynomials DSOS/SDOS Programming: New Tools for Optimization over Nonnegative Polynomials Amir Ali Ahmadi Princeton University Dept. of Operations Research and Financial Engineering (ORFE) Joint work with: Anirudha

More information

A note on : A Superior Representation Method for Piecewise Linear Functions by Li, Lu, Huang and Hu

A note on : A Superior Representation Method for Piecewise Linear Functions by Li, Lu, Huang and Hu A note on : A Superior Representation Method for Piecewise Linear Functions by Li, Lu, Huang and Hu Juan Pablo Vielma, Shabbir Ahmed and George Nemhauser H. Milton Stewart School of Industrial and Systems

More information

Reduced RLT Representations for Nonconvex Polynomial Programming Problems

Reduced RLT Representations for Nonconvex Polynomial Programming Problems Journal of Global Optimization manuscript No. (will be inserted by the editor) Reduced RLT Representations for Nonconvex Polynomial Programming Problems Hanif D. Sherali Evrim Dalkiran Leo Liberti November

More information

A BRANCH AND CUT APPROACH TO LINEAR PROGRAMS WITH LINEAR COMPLEMENTARITY CONSTRAINTS

A BRANCH AND CUT APPROACH TO LINEAR PROGRAMS WITH LINEAR COMPLEMENTARITY CONSTRAINTS A BRANCH AND CUT APPROACH TO LINEAR PROGRAMS WITH LINEAR COMPLEMENTARITY CONSTRAINTS By Bin Yu A Thesis Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute in Partial Fulfillment of the

More information

Decision Diagrams for Discrete Optimization

Decision Diagrams for Discrete Optimization Decision Diagrams for Discrete Optimization Willem Jan van Hoeve Tepper School of Business Carnegie Mellon University www.andrew.cmu.edu/user/vanhoeve/mdd/ Acknowledgments: David Bergman, Andre Cire, Samid

More information

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs A Lifted Linear Programming Branch-and-Bound Algorithm for Mied Integer Conic Quadratic Programs Juan Pablo Vielma Shabbir Ahmed George L. Nemhauser H. Milton Stewart School of Industrial and Systems Engineering

More information

Computational Experiments with Cross and Crooked Cross Cuts

Computational Experiments with Cross and Crooked Cross Cuts Computational Experiments with Cross and Crooked Cross Cuts Sanjeeb Dash IBM Research sanjeebd@us.ibm.com Oktay Günlük IBM Research gunluk@us.ibm.com Juan Pablo Vielma Massachusetts Institute of Technology

More information

GLOBAL OPTIMIZATION WITH GAMS/BARON

GLOBAL OPTIMIZATION WITH GAMS/BARON GLOBAL OPTIMIZATION WITH GAMS/BARON Nick Sahinidis Chemical and Biomolecular Engineering University of Illinois at Urbana Mohit Tawarmalani Krannert School of Management Purdue University MIXED-INTEGER

More information

Lift-and-Project Inequalities

Lift-and-Project Inequalities Lift-and-Project Inequalities Q. Louveaux Abstract The lift-and-project technique is a systematic way to generate valid inequalities for a mixed binary program. The technique is interesting both on the

More information

The Generalized Regenerator Location Problem

The Generalized Regenerator Location Problem The Generalized Regenerator Location Problem Si Chen Ivana Ljubić S. Raghavan College of Business and Public Affairs, Murray State University Murray, KY 42071, USA Faculty of Business, Economics, and Statistics,

More information

Meta-heuristics for combinatorial optimisation

Meta-heuristics for combinatorial optimisation Meta-heuristics for combinatorial optimisation João Pedro Pedroso Centro de Investigação Operacional Faculdade de Ciências da Universidade de Lisboa and Departamento de Ciência de Computadores Faculdade

More information

Global optimization of minimum weight truss topology problems with stress, displacement, and local buckling constraints using branch-and-bound

Global optimization of minimum weight truss topology problems with stress, displacement, and local buckling constraints using branch-and-bound INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2004; 61:1270 1309 (DOI: 10.1002/nme.1112) Global optimization of minimum weight truss topology problems with stress,

More information

Adaptive Dynamic Cost Updating Procedure for Solving Fixed Charge Network Flow Problems.

Adaptive Dynamic Cost Updating Procedure for Solving Fixed Charge Network Flow Problems. Adaptive Dynamic Cost Updating Procedure for Solving Fixed Charge Network Flow Problems. Artyom Nahapetyan, Panos Pardalos Center for Applied Optimization Industrial and Systems Engineering Department

More information

K-Adaptability in Two-Stage Mixed-Integer Robust Optimization

K-Adaptability in Two-Stage Mixed-Integer Robust Optimization K-Adaptability in Two-Stage Mixed-Integer Robust Optimization Anirudh Subramanyam 1, Chrysanthos E. Gounaris 1, and Wolfram Wiesemann 2 asubramanyam@cmu.edu, gounaris@cmu.edu, ww@imperial.ac.uk 1 Department

More information

An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms

An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms Leo Liberti CNRS LIX, École Polytechnique, F-91128 Palaiseau, France. E-mail: liberti@lix.polytechnique.fr. Constantinos

More information

Software for Integer and Nonlinear Optimization

Software for Integer and Nonlinear Optimization Software for Integer and Nonlinear Optimization Sven Leyffer, leyffer@mcs.anl.gov Mathematics & Computer Science Division Argonne National Laboratory Roger Fletcher & Jeff Linderoth Advanced Methods and

More information

An Integrated Approach to Truss Structure Design

An Integrated Approach to Truss Structure Design Slide 1 An Integrated Approach to Truss Structure Design J. N. Hooker Tallys Yunes CPAIOR Workshop on Hybrid Methods for Nonlinear Combinatorial Problems Bologna, June 2010 How to Solve Nonlinear Combinatorial

More information

Nonconvex Quadratic Programming: Return of the Boolean Quadric Polytope

Nonconvex Quadratic Programming: Return of the Boolean Quadric Polytope Nonconvex Quadratic Programming: Return of the Boolean Quadric Polytope Kurt M. Anstreicher Dept. of Management Sciences University of Iowa Seminar, Chinese University of Hong Kong, October 2009 We consider

More information

Solving Box-Constrained Nonconvex Quadratic Programs

Solving Box-Constrained Nonconvex Quadratic Programs Noname manuscript No. (will be inserted by the editor) Solving Box-Constrained Nonconvex Quadratic Programs Pierre Bonami Oktay Günlük Jeff Linderoth June 13, 2016 Abstract We present effective computational

More information

Tightening a Discrete Formulation of the Quadratic Assignment Problem

Tightening a Discrete Formulation of the Quadratic Assignment Problem A publication of 1309 CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

Integer Linear Programs

Integer Linear Programs Lecture 2: Review, Linear Programming Relaxations Today we will talk about expressing combinatorial problems as mathematical programs, specifically Integer Linear Programs (ILPs). We then see what happens

More information

Perspective Envelopes for Bilinear Functions

Perspective Envelopes for Bilinear Functions Noname manuscript No. (will be inserted by the editor) Perspective Envelopes for Bilinear Functions Hassan Hijazi Received: date / Accepted: date Abstract We characterize the convex hull of the set S Ă

More information

Reconnect 04 Introduction to Integer Programming

Reconnect 04 Introduction to Integer Programming Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Reconnect 04 Introduction to Integer Programming Cynthia Phillips, Sandia National Laboratories Integer programming

More information

Outline. 1 Introduction. 2 Modeling and Applications. 3 Algorithms Convex. 4 Algorithms Nonconvex. 5 The Future of MINLP? 2 / 126

Outline. 1 Introduction. 2 Modeling and Applications. 3 Algorithms Convex. 4 Algorithms Nonconvex. 5 The Future of MINLP? 2 / 126 Outline 1 Introduction 2 3 Algorithms Convex 4 Algorithms Nonconvex 5 The Future of MINLP? 2 / 126 Larry Leading Off 3 / 126 Introduction Outline 1 Introduction Software Tools and Online Resources Basic

More information

Two-stage stochastic (and distributionally robust) p-order conic mixed integer programs: Tight second stage formulations

Two-stage stochastic (and distributionally robust) p-order conic mixed integer programs: Tight second stage formulations Two-stage stochastic (and distributionally robust p-order conic mixed integer programs: Tight second stage formulations Manish Bansal and Yingqiu Zhang Department of Industrial and Systems Engineering

More information

An RLT Approach for Solving Binary-Constrained Mixed Linear Complementarity Problems

An RLT Approach for Solving Binary-Constrained Mixed Linear Complementarity Problems An RLT Approach for Solving Binary-Constrained Mixed Linear Complementarity Problems Miguel F. Anjos Professor and Canada Research Chair Director, Trottier Institute for Energy TAI 2015 Washington, DC,

More information

A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem

A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem Yongpei Guan 1 Shabbir Ahmed 1 George L. Nemhauser 1 Andrew J. Miller 2 A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem December 12, 2004 Abstract. This paper addresses a

More information

Technische Universität Ilmenau Institut für Mathematik

Technische Universität Ilmenau Institut für Mathematik Technische Universität Ilmenau Institut für Mathematik Preprint No. M 14/05 Copositivity tests based on the linear complementarity problem Carmo Bras, Gabriele Eichfelder and Joaquim Judice 28. August

More information

Orbital Shrinking: A New Tool for Hybrid MIP/CP Methods

Orbital Shrinking: A New Tool for Hybrid MIP/CP Methods Orbital Shrinking: A New Tool for Hybrid MIP/CP Methods Domenico Salvagnin DEI, University of Padova salvagni@dei.unipd.it Abstract. Orbital shrinking is a newly developed technique in the MIP community

More information

Increasing Energy Efficiency in Industrial Plants: Optimising Heat Exchanger Networks

Increasing Energy Efficiency in Industrial Plants: Optimising Heat Exchanger Networks Increasing Energy Efficiency in Industrial Plants: Optimising Heat Exchanger Networks Author: Miten Mistry Supervisor: Dr Ruth Misener Second Marker: Dr Panos Parpas Abstract We live in a world where

More information

Advanced Mixed Integer Programming (MIP) Formulation Techniques

Advanced Mixed Integer Programming (MIP) Formulation Techniques Advanced Mixed Integer Programming (MIP) Formulation Techniques Juan Pablo Vielma Massachusetts Institute of Technology Center for Nonlinear Studies, Los Alamos National Laboratory. Los Alamos, New Mexico,

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

arxiv:math/ v1 [math.co] 23 May 2000

arxiv:math/ v1 [math.co] 23 May 2000 Some Fundamental Properties of Successive Convex Relaxation Methods on LCP and Related Problems arxiv:math/0005229v1 [math.co] 23 May 2000 Masakazu Kojima Department of Mathematical and Computing Sciences

More information

Preprocessing. Complements of Operations Research. Giovanni Righini. Università degli Studi di Milano

Preprocessing. Complements of Operations Research. Giovanni Righini. Università degli Studi di Milano Preprocessing Complements of Operations Research Giovanni Righini Università degli Studi di Milano Preprocessing Computational complexity theory classifies problems. However, when we run algorithms, this

More information

Operations Research Methods in Constraint Programming

Operations Research Methods in Constraint Programming Operations Research Methods in Constraint Programming John Hooker Carnegie Mellon University Prepared for Lloret de Mar, Spain June 2007 2007 Slide 1 CP and OR Have Complementary Strengths CP: Inference

More information

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA Gestion de la production Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA 1 Contents 1 Integer Linear Programming 3 1.1 Definitions and notations......................................

More information

BBM402-Lecture 20: LP Duality

BBM402-Lecture 20: LP Duality BBM402-Lecture 20: LP Duality Lecturer: Lale Özkahya Resources for the presentation: https://courses.engr.illinois.edu/cs473/fa2016/lectures.html An easy LP? which is compact form for max cx subject to

More information

Convex Quadratic Relaxations of Nonconvex Quadratically Constrained Quadratic Progams

Convex Quadratic Relaxations of Nonconvex Quadratically Constrained Quadratic Progams Convex Quadratic Relaxations of Nonconvex Quadratically Constrained Quadratic Progams John E. Mitchell, Jong-Shi Pang, and Bin Yu Original: June 10, 2011 Abstract Nonconvex quadratic constraints can be

More information

The 2 edge-disjoint 3-paths polyhedron

The 2 edge-disjoint 3-paths polyhedron The 2 edge-disjoint 3-paths polyhedron Quentin Botton, Bernard Fortz, Luis Gouveia To cite this version: Quentin Botton, Bernard Fortz, Luis Gouveia. The 2 edge-disjoint 3-paths polyhedron. Annals of Telecommunications

More information

A Bound Strengthening Method for Optimal Transmission Switching in Power Systems

A Bound Strengthening Method for Optimal Transmission Switching in Power Systems 1 A Bound Strengthening Method for Optimal Transmission Switching in Power Systems Salar Fattahi, Javad Lavaei,+, and Alper Atamtürk Industrial Engineering and Operations Research, University of California,

More information

CHAPTER 3: INTEGER PROGRAMMING

CHAPTER 3: INTEGER PROGRAMMING CHAPTER 3: INTEGER PROGRAMMING Overview To this point, we have considered optimization problems with continuous design variables. That is, the design variables can take any value within a continuous feasible

More information

An extended MIP formulation and dynamic cut generation approach for the stochastic lot sizing problem

An extended MIP formulation and dynamic cut generation approach for the stochastic lot sizing problem Submitted to INFORMS Journal on Computing manuscript (Please, provide the mansucript number!) Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

Analyzing the computational impact of individual MINLP solver components

Analyzing the computational impact of individual MINLP solver components Analyzing the computational impact of individual MINLP solver components Ambros M. Gleixner joint work with Stefan Vigerske Zuse Institute Berlin MATHEON Berlin Mathematical School MINLP 2014, June 4,

More information

Solving the Order-Preserving Submatrix Problem via Integer Programming

Solving the Order-Preserving Submatrix Problem via Integer Programming Solving the Order-Preserving Submatrix Problem via Integer Programming Andrew C. Trapp, Oleg A. Prokopyev Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261,

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Chapter 26 Semidefinite Programming Zacharias Pitouras 1 Introduction LP place a good lower bound on OPT for NP-hard problems Are there other ways of doing this? Vector programs

More information

The two-machine flowshop total completion time problem: A branch-and-bound based on network-flow formulation

The two-machine flowshop total completion time problem: A branch-and-bound based on network-flow formulation The two-machine flowshop total completion time problem: A branch-and-bound based on network-flow formulation Boris Detienne 1, Ruslan Sadykov 1, Shunji Tanaka 2 1 : Team Inria RealOpt, University of Bordeaux,

More information

Structured Problems and Algorithms

Structured Problems and Algorithms Integer and quadratic optimization problems Dept. of Engg. and Comp. Sci., Univ. of Cal., Davis Aug. 13, 2010 Table of contents Outline 1 2 3 Benefits of Structured Problems Optimization problems may become

More information

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs Juan Pablo Vielma, Shabbir Ahmed, George L. Nemhauser, H. Milton Stewart School of Industrial and Systems

More information

Implementation of an αbb-type underestimator in the SGO-algorithm

Implementation of an αbb-type underestimator in the SGO-algorithm Implementation of an αbb-type underestimator in the SGO-algorithm Process Design & Systems Engineering November 3, 2010 Refining without branching Could the αbb underestimator be used without an explicit

More information

Valid Inequalities and Restrictions for Stochastic Programming Problems with First Order Stochastic Dominance Constraints

Valid Inequalities and Restrictions for Stochastic Programming Problems with First Order Stochastic Dominance Constraints Valid Inequalities and Restrictions for Stochastic Programming Problems with First Order Stochastic Dominance Constraints Nilay Noyan Andrzej Ruszczyński March 21, 2006 Abstract Stochastic dominance relations

More information

A Scheme for Integrated Optimization

A Scheme for Integrated Optimization A Scheme for Integrated Optimization John Hooker ZIB November 2009 Slide 1 Outline Overview of integrated methods A taste of the underlying theory Eamples, with results from SIMPL Proposal for SCIP/SIMPL

More information

A Decomposition-based MINLP Solution Method Using Piecewise Linear Relaxations

A Decomposition-based MINLP Solution Method Using Piecewise Linear Relaxations A Decomposition-based MINLP Solution Method Using Piecewise Linear Relaxations Pradeep K. Polisetty and Edward P. Gatzke 1 Department of Chemical Engineering University of South Carolina Columbia, SC 29208

More information

Numerical Optimization. Review: Unconstrained Optimization

Numerical Optimization. Review: Unconstrained Optimization Numerical Optimization Finding the best feasible solution Edward P. Gatzke Department of Chemical Engineering University of South Carolina Ed Gatzke (USC CHE ) Numerical Optimization ECHE 589, Spring 2011

More information

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Merve Bodur 1, Sanjeeb Dash 2, Otay Günlü 2, and James Luedte 3 1 Department of Mechanical and Industrial Engineering,

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should

More information

Minimum Linear Arrangements

Minimum Linear Arrangements Minimum Linear Arrangements Rafael Andrade, Tibérius Bonates, Manoel Câmpelo, Mardson Ferreira ParGO - Research team in Parallel computing, Graph theory and Optimization Department of Statistics and Applied

More information