Mixed-Integer Nonlinear Programming

Size: px
Start display at page:

Download "Mixed-Integer Nonlinear Programming"

Transcription

1 Mixed-Integer Nonlinear Programming Claudia D Ambrosio CNRS researcher LIX, École Polytechnique, France pictures taken from slides by Leo Liberti MPRO PMA

2 Motivating Applications

3 Nonlinear Knapsack Problem

4 Nonlinear Knapsack Problem We are given N objects and a container with capacity C. Every object j has a weight w j, a profit p j, and a max available quantity U j (j = 1,, N). Find for each object the quantity that has to be loaded in the container so as the total weight isn t greater than the capacity, and the total profit is maximized.

5 Nonlinear Knapsack Problem Variables: quantities x. Every variable x j must be 0 and U j. The profit is a nonlinear function of the the quantity. The total weight should be less or equal than the capacity C. Maximization of the total profit. MINLP problem.

6 Nonlinear Knapsack Problem max N f j (x j ) j=1 N w j x j C j=1 0 x j U j j = 1,, N. where f j (x j ) is any twice continuously differentiable and univariate function j = 1,, N (e.g., c j (1+b j exp( a j (x j +d j ))) ).

7 Nonlinear Knapsack Problem If a subset J of object can assume only integer value: x j integer j J {1,, N}. Real-world interpretation: Given a budget C we want to decide how to invest our money so that our profit is maximized. We can buy by choosing among N items, each of which is available for a maximum quantity U j and each unit of item j costs w j. Some of the items have to be bought in lots.

8 Nonlinear KP problem: Citations 1. C. D Ambrosio, S. Martello. Heuristic algorithms for the general nonlinear separable knapsack problems, Computers and Operations Research, 38 (2), pp , H. Kellerer, U. Pferschy, D. Pisinger. Knapsack Problems. Springer (2004). 3. S. Martello, P. Toth. Knapsack problems: Algorithms and computer interpretations. Wiley-Interscience (1990).

9 Pooling Problem

10 The Pooling Problem Inputs I Pools L Outputs J Nodes N = I L J Arcs A (i, j) (I L) (L J) (I J) on which materials flow Material attributes: K Arc capacities: u ij, (i, j) A Node capacities: C i, i N Attribute requirements α kj, k K, j J

11 The Pooling Problem: Motivation refinery processes in the petroleum industry

12 The Pooling Problem: Motivation refinery processes in the petroleum industry different specifications: e.g., sulphur/carbon concentrations or physical properties such as density, octane number,...

13 The Pooling Problem: Motivation refinery processes in the petroleum industry different specifications: e.g., sulphur/carbon concentrations or physical properties such as density, octane number,... wastewater treatment, e.g., Karuppiah and Grossmann (2006)

14 The Pooling Problem: Motivation refinery processes in the petroleum industry different specifications: e.g., sulphur/carbon concentrations or physical properties such as density, octane number,... wastewater treatment, e.g., Karuppiah and Grossmann (2006) Formally introduced by Haverly (1978)

15 The Pooling Problem: Motivation refinery processes in the petroleum industry different specifications: e.g., sulphur/carbon concentrations or physical properties such as density, octane number,... wastewater treatment, e.g., Karuppiah and Grossmann (2006) Formally introduced by Haverly (1978) Alfaki and Haugland (2012) formally proved it is strongly NP-hard

16 The Pooling problem: Citations 1. Haverly, Studies of the behaviour of recursion for the pooling problem, ACM SIGMAP Bulletin, Adhya, Tawarmalani, Sahinidis, A Lagrangian approach to the pooling problem, Ind. Eng. Chem., Audet et al., Pooling Problem: Alternate Formulations and Solution Methods, Manag. Sci., Liberti, Pantelides, An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms, JOGO, Misener, Floudas, Advances for the pooling problem: modeling, global optimization, and computational studies, Appl. Comput. Math., D Ambrosio, Linderoth, Luedtke, Valid inequalities for the pooling problem with binary variables, IPCO, Tawarmalani and Sahinidis. Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications, Ch. 9. Kluwer Academic Publishers, 2002.

17 Mathematical Programming

18 Mathematical Programming MP: formal language for expressing optimization problems P Parameters p =problem input p also called an instance of P Decision variables x: encode problem output Objective function min f (p, x) Constraints i m g i (p, x) 0 f, g: explicit mathematical expressions involving symbols p, x If an instance p is given (i.e. an assignment of numbers to the symbols in p is known), write f (x), g i (x) This excludes black-box optimization

19 Main optimization problem classes

20 MP: Notation P: MP formulation with decision variables x = (x 1,..., x n ) Solution: assignment of values to decision variables, i.e. a vector v R n F(P) =set of feasible solutions x R n such that i m (g i (x) 0) G(P) =set of globally optimal solutions x R n s.t. x F(P) and y F(P) (f (x) f (y))

21 Exact reformulations The formulation Q is an exact reformulation of P if an efficiently computable surjective map φ : F(Q) F(P) s.t. φ G(Q) is onto G(P) Informally: any optimum of Q can be mapped easily to an optimum of P, and for any optimum of P there is a corresponding optimum of Q P Q G G phig F F Construct Q so that it is easier to solve than P phi

22 Exact reformulations: example xy when x is binary If bilinear term xy where x {0, 1}, y [0, 1] We can construct an exact reformulation: Replace each term xy by an added variable w Adjoin Fortet s reformulation constraints: w 0 w x + y 1 w x w y Get a MILP reformulation Solve reformulation using CPLEX: more effective than solving MINLP

23 Proof

24 Proof w 0 w x + y 1 w x w y x = 0 w 0 w y 1 w 0 w y w = 0 x = 1 w 0 w y w 1 w y w = y

25 Relaxations The formulation Q is a relaxation of P if min f Q (y) min f P (x) ( ) Relaxations are used to compute worst-case bounds to the optimum value of the original formulation Construct Q so that it is easy to solve Proving ( ) may not be easy in general The usual strategy: Make sure y x and F(Q) F(P) Make sure x F(P) (fq (y) f P (x)) Then it follows that Q is a relaxation of P Example: convex relaxation F(Q) a convex set containing F(P) fq a convex underestimator of f P Then Q is a cnlp and can be solved efficiently

26 Relaxations: example xy when x, y continuous Get bilinear term xy where x [x L, x U ], y [y L, y U ] We can construct a relaxation: Replace each term xy by an added variable w Adjoin following constraints: w x L y + y L x x L y L w x U y + y U x x U y U w x U y + y L x x U y L w x L y + y U x x L y U These are called McCormick s envelopes Get an LP relaxation (solvable in polynomial time)

27 Reformulations: Citations & Software McCormick, Computability of global solutions to factorable nonconvex programs: Part I Convex underestimating problems, Math. Prog Liberti, Reformulations in Mathematical Programming: definitions and systematics, RAIRO-RO 2009 Williams, Model building in mathematical programming, 2002 Liberti, Cafieri, Tarissan, Reformulations in Mathematical Programming: a computational approach, in Abraham et al. (eds.), Foundations of Comput. Intel., 2009 ROSE (

28 Example: the Pooling Problem Simple constraints Variables x ij for flow on arcs Inputs I Pools L Outputs J Flow balance constraints at pools: x il x lj = 0, l L i I l j J l

29 Example: the Pooling Problem Simple constraints Variables x ij for flow on arcs Flow balance constraints at pools: x il x lj = 0, l L i I l j J l Inputs I Pools L Outputs J Capacity constraints: x ij + x il C i, j J i l L i x il C l, i I l x ij + x lj C j, i I j l L j i I l L j J

30 Example: the Pooling Problem Complicating constraints Inputs have associated attribute concentrations λ ki, k K, i I Concentration of attribute in pool is the weighted average of the concentrations of its inputs. This results in bilinear constraints.

31 Example: the Pooling Problem Complicating constraints Inputs have associated attribute concentrations λ ki, k K, i I Concentration of attribute in pool is the weighted average of the concentrations of its inputs. This results in bilinear constraints. P-formulation (Haverly 78): Keep track of concentration p kl of attribute k in pool l

32 Example: the Pooling Problem Complicating constraints Inputs have associated attribute concentrations λ ki, k K, i I Concentration of attribute in pool is the weighted average of the concentrations of its inputs. This results in bilinear constraints. P-formulation (Haverly 78): Keep track of concentration p kl of attribute k in pool l Q-formulation (Ben-Tal et al. 94): Variables q il for proportion of flow into pool l coming from input i

33 Example: the Pooling Problem P-formulation x ij + x il C i, j J i l L i x il C l, i I l x ij + x lj C j, i I j l L j x il x lj = 0, i I l j J l p kl = i I l L j J l L i I l λ ki x il i J l x lj k K, l L i I j λ ki x ij + l L j p kl x lj i I j L j x ij α kj, k K, j J

34 Example: the Pooling Problem P-formulation x ij + x il C i, j J i l L i x il C l, i I l x ij + x lj C j, i I j l L j x il x lj = 0, i I l j J l p kl x lj = λ ki x il i J l i I l λ ki x ij + p kl x lj α kj x ij, i I j l L j i I j L j i I l L j J l L k K, l L k K, j J

35 Example: the Pooling Problem Q-formulation x il = q il q il = 1, i I l j J l x lj, i I, l L i l L

36 Example: the Pooling Problem Q-formulation x il = q il q il = 1, i I l j J l x lj, i I, l L i l L Attribute constraints ( ) λ ki x ij + x lj λ ki q il α kj x ij, i I j l L j i I l i I j L j k K, j J

37 Example: the Pooling Problem Q-formulation x ij + x il C i, j J i l L i x il C l, i I l x ij + x lj C j, i I j l L j x il q il x lj = 0 j J l q il = 1 i I l ( ) λ ki x ij + x lj λ ki q il α kj x ij, i I j l L j i I l i I j L j i I l L j J i I, l L i l L k K, j J

38 Example: the Pooling Problem with binary vars From NLP to MINLP Decide whether to install pipes or not (0/1 decision) Associate a binary variable z ij with each pipe (suppose for now on arcs from input to output) Extra constraints: x ij min(c i, C j )z ij z ij {0, 1} i I, j J i i I, j J i Objective Function Fixed cost for installing pipe min c i x il + x ij p j x ij + x lj + f ij z ij i I l Li j J i j J i Ij l L j i I j J i

39 Global optimization methods

40 Global Optimization methods: Deterministic / Stochastic subregion 1 discarded as h(c) > f(e) subregion 2 f(x) h(x) g(x) b c a d e objective function convex relaxation in whole space a: solution of convex relaxation in whole space b: local solution of objective function in whole space Exact = Deterministic Exact in continuous space: ε-approximate (find solution within pre-determined ε distance from optimum in obj. fun. value) Heuristic = Stochastic Find solution with probability 1 in infinite time For some problems, finite convergence to optimum (ε = 0)

41 GO: Multistart The easiest GO method 1: f = 2: x = (,..., ) 3: while termination do 4: x = (random(),..., random()) 5: x = localsolve(p, x ) 6: if f P (x) < f then 7: f f P (x) 8: x x 9: end if 10: end while Termination condition: e.g. repeat k times

42 Six-hump camelback function f (x, y) = 4x 2 2.1x x 6 + xy 4y 2 + 4y 4 Global optimum (Couenne)

43 Six-hump camelback function f (x, y) = 4x 2 2.1x x 6 + xy 4y 2 + 4y Multistart with IPOPT, k = 5

44 Six-hump camelback function f (x, y) = 4x 2 2.1x x 6 + xy 4y 2 + 4y Multistart with IPOPT, k = 10

45 Six-hump camelback function f (x, y) = 4x 2 2.1x x 6 + xy 4y 2 + 4y Multistart with IPOPT, k = 20

46 Six-hump camelback function f (x, y) = 4x 2 2.1x x 6 + xy 4y 2 + 4y Multistart with IPOPT, k = 50

47 Six-hump camelback function f (x, y) = 4x 2 2.1x x 6 + xy 4y 2 + 4y Multistart with SNOPT, k = 20

48 GO: Citations Schoen, Two-Phase Methods for Global Optimization, in Pardalos et al. (eds.), Handbook of Global Optimization 2, 2002 Liberti, Kucherenko, Comparison of deterministic and stochastic approaches to global optimization, ITOR 2005

Mixed Integer Non Linear Programming

Mixed Integer Non Linear Programming Mixed Integer Non Linear Programming Claudia D Ambrosio CNRS Research Scientist CNRS & LIX, École Polytechnique MPRO PMA 2016-2017 Outline What is a MINLP? Dealing with nonconvexities Global Optimization

More information

Computer Sciences Department

Computer Sciences Department Computer Sciences Department Valid Inequalities for the Pooling Problem with Binary Variables Claudia D Ambrosio Jeff Linderoth James Luedtke Technical Report #682 November 200 Valid Inequalities for the

More information

Relaxations of multilinear convex envelopes: dual is better than primal

Relaxations of multilinear convex envelopes: dual is better than primal of multilinear convex envelopes: dual is better than primal 1 LIX, École Polytechnique, Palaiseau, France June 7th, 2012 11 th International Symposium on Experimental Algorithms (SEA) 2012 - Bordeaux (France)

More information

The Pooling Problem - Applications, Complexity and Solution Methods

The Pooling Problem - Applications, Complexity and Solution Methods The Pooling Problem - Applications, Complexity and Solution Methods Dag Haugland Dept. of Informatics University of Bergen Norway EECS Seminar on Optimization and Computing NTNU, September 30, 2014 Outline

More information

GLOBAL OPTIMIZATION WITH GAMS/BARON

GLOBAL OPTIMIZATION WITH GAMS/BARON GLOBAL OPTIMIZATION WITH GAMS/BARON Nick Sahinidis Chemical and Biomolecular Engineering University of Illinois at Urbana Mohit Tawarmalani Krannert School of Management Purdue University MIXED-INTEGER

More information

Solving Mixed-Integer Nonlinear Programs

Solving Mixed-Integer Nonlinear Programs Solving Mixed-Integer Nonlinear Programs (with SCIP) Ambros M. Gleixner Zuse Institute Berlin MATHEON Berlin Mathematical School 5th Porto Meeting on Mathematics for Industry, April 10 11, 2014, Porto

More information

An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms

An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms Leo Liberti CNRS LIX, École Polytechnique, F-91128 Palaiseau, France. E-mail: liberti@lix.polytechnique.fr. Constantinos

More information

Heuristics and Upper Bounds for a Pooling Problem with Cubic Constraints

Heuristics and Upper Bounds for a Pooling Problem with Cubic Constraints Heuristics and Upper Bounds for a Pooling Problem with Cubic Constraints Matthew J. Real, Shabbir Ahmed, Helder Inàcio and Kevin Norwood School of Chemical & Biomolecular Engineering 311 Ferst Drive, N.W.

More information

Basic notions of Mixed Integer Non-Linear Programming

Basic notions of Mixed Integer Non-Linear Programming Basic notions of Mixed Integer Non-Linear Programming Claudia D Ambrosio CNRS & LIX, École Polytechnique 5th Porto Meeting on Mathematics for Industry, April 10, 2014 C. D Ambrosio (CNRS) April 10, 2014

More information

IBM Research Report. On Convex Relaxations of Quadrilinear Terms. Sonia Cafieri LIX École Polytechnique Palaiseau France

IBM Research Report. On Convex Relaxations of Quadrilinear Terms. Sonia Cafieri LIX École Polytechnique Palaiseau France RC24792 (W94-122 April 3, 29 Mathematics IBM Research Report On Convex Relaxations of Quadrilinear Terms Sonia Cafieri LIX École Polytechnique 91128 Palaiseau France Jon Lee IBM Research Division Thomas

More information

A Heuristic Algorithm for General Multiple Nonlinear Knapsack Problem

A Heuristic Algorithm for General Multiple Nonlinear Knapsack Problem A Heuristic Algorithm for General Multiple Nonlinear Knapsack Problem Luca Mencarelli mencarelli@lix.polytechnique.fr Poster Session: Oral Presentations Mixed-Integer Nonlinear Programming 2014 Carnegie

More information

Heuristics for nonconvex MINLP

Heuristics for nonconvex MINLP Heuristics for nonconvex MINLP Pietro Belotti, Timo Berthold FICO, Xpress Optimization Team, Birmingham, UK pietrobelotti@fico.com 18th Combinatorial Optimization Workshop, Aussois, 9 Jan 2014 ======This

More information

On mathematical programming with indicator constraints

On mathematical programming with indicator constraints On mathematical programming with indicator constraints Andrea Lodi joint work with P. Bonami & A. Tramontani (IBM), S. Wiese (Unibo) University of Bologna, Italy École Polytechnique de Montréal, Québec,

More information

Outline. 1 Introduction. 2 Modeling and Applications. 3 Algorithms Convex. 4 Algorithms Nonconvex. 5 The Future of MINLP? 2 / 126

Outline. 1 Introduction. 2 Modeling and Applications. 3 Algorithms Convex. 4 Algorithms Nonconvex. 5 The Future of MINLP? 2 / 126 Outline 1 Introduction 2 3 Algorithms Convex 4 Algorithms Nonconvex 5 The Future of MINLP? 2 / 126 Larry Leading Off 3 / 126 Introduction Outline 1 Introduction Software Tools and Online Resources Basic

More information

ADVANCES IN GLOBAL OPTIMIZATION FOR STANDARD, GENERALIZED, AND EXTENDED POOLING PROBLEMS WITH THE (EPA) COMPLEX EMISSIONS MODEL CONSTRAINTS

ADVANCES IN GLOBAL OPTIMIZATION FOR STANDARD, GENERALIZED, AND EXTENDED POOLING PROBLEMS WITH THE (EPA) COMPLEX EMISSIONS MODEL CONSTRAINTS ADVANCES IN GLOBAL OPTIMIZATION FOR STANDARD, GENERALIZED, AND EXTENDED POOLING PROBLEMS WITH THE (EPA) COMPLEX EMISSIONS MODEL CONSTRAINTS Ruth Misener, Chrysanthos E. Gounaris, and Christodoulos A. Floudas

More information

Applications and algorithms for mixed integer nonlinear programming

Applications and algorithms for mixed integer nonlinear programming Applications and algorithms for mixed integer nonlinear programming Sven Leyffer 1, Jeff Linderoth 2, James Luedtke 2, Andrew Miller 3, Todd Munson 1 1 Mathematics and Computer Science Division, Argonne

More information

REPORTS IN INFORMATICS

REPORTS IN INFORMATICS REPORTS IN INFORMATICS ISSN 0333-3590 Sensitivity Analysis Applied to the Pooling Problem Lennart Frimannslund, Geir Gundersen and Dag Haugland REPORT NO 380 December 2008 Department of Informatics UNIVERSITY

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

Analyzing the computational impact of individual MINLP solver components

Analyzing the computational impact of individual MINLP solver components Analyzing the computational impact of individual MINLP solver components Ambros M. Gleixner joint work with Stefan Vigerske Zuse Institute Berlin MATHEON Berlin Mathematical School MINLP 2014, June 4,

More information

Exact Computation of Global Minima of a Nonconvex Portfolio Optimization Problem

Exact Computation of Global Minima of a Nonconvex Portfolio Optimization Problem Frontiers In Global Optimization, pp. 1-2 C. A. Floudas and P. M. Pardalos, Editors c 2003 Kluwer Academic Publishers Exact Computation of Global Minima of a Nonconvex Portfolio Optimization Problem Josef

More information

Nonconvex Generalized Benders Decomposition Paul I. Barton

Nonconvex Generalized Benders Decomposition Paul I. Barton Nonconvex Generalized Benders Decomposition Paul I. Barton Process Systems Engineering Laboratory Massachusetts Institute of Technology Motivation Two-stage Stochastic MINLPs & MILPs Natural Gas Production

More information

Numerical Optimization. Review: Unconstrained Optimization

Numerical Optimization. Review: Unconstrained Optimization Numerical Optimization Finding the best feasible solution Edward P. Gatzke Department of Chemical Engineering University of South Carolina Ed Gatzke (USC CHE ) Numerical Optimization ECHE 589, Spring 2011

More information

Deterministic Global Optimization Algorithm and Nonlinear Dynamics

Deterministic Global Optimization Algorithm and Nonlinear Dynamics Deterministic Global Optimization Algorithm and Nonlinear Dynamics C. S. Adjiman and I. Papamichail Centre for Process Systems Engineering Department of Chemical Engineering and Chemical Technology Imperial

More information

A Branch-and-Refine Method for Nonconvex Mixed-Integer Optimization

A Branch-and-Refine Method for Nonconvex Mixed-Integer Optimization A Branch-and-Refine Method for Nonconvex Mixed-Integer Optimization Sven Leyffer 2 Annick Sartenaer 1 Emilie Wanufelle 1 1 University of Namur, Belgium 2 Argonne National Laboratory, USA IMA Workshop,

More information

Feasibility pump for aircraft deconfliction with speed regulation

Feasibility pump for aircraft deconfliction with speed regulation Feasibility pump for aircraft deconfliction with speed regulation Sonia Cafieri, Claudia D Ambrosio To cite this version: Sonia Cafieri, Claudia D Ambrosio. Feasibility pump for aircraft deconfliction

More information

Software for Integer and Nonlinear Optimization

Software for Integer and Nonlinear Optimization Software for Integer and Nonlinear Optimization Sven Leyffer, leyffer@mcs.anl.gov Mathematics & Computer Science Division Argonne National Laboratory Roger Fletcher & Jeff Linderoth Advanced Methods and

More information

Optimization of a Nonlinear Workload Balancing Problem

Optimization of a Nonlinear Workload Balancing Problem Optimization of a Nonlinear Workload Balancing Problem Stefan Emet Department of Mathematics and Statistics University of Turku Finland Outline of the talk Introduction Some notes on Mathematical Programming

More information

arxiv: v1 [math.oc] 3 Jan 2019

arxiv: v1 [math.oc] 3 Jan 2019 The Product Knapsack Problem: Approximation and Complexity arxiv:1901.00695v1 [math.oc] 3 Jan 2019 Ulrich Pferschy a, Joachim Schauer a, Clemens Thielen b a Department of Statistics and Operations Research,

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

Linear Programming. Leo Liberti. LIX, École Polytechnique. Operations research courses / LP theory p.

Linear Programming. Leo Liberti. LIX, École Polytechnique. Operations research courses / LP theory p. Operations research courses / LP theory p. 1/47 Linear Programming Leo Liberti LIX, École Polytechnique liberti@lix.polytechnique.fr Operations research courses / LP theory p. 2/47 Contents LP formulations

More information

STRONG VALID INEQUALITIES FOR MIXED-INTEGER NONLINEAR PROGRAMS VIA DISJUNCTIVE PROGRAMMING AND LIFTING

STRONG VALID INEQUALITIES FOR MIXED-INTEGER NONLINEAR PROGRAMS VIA DISJUNCTIVE PROGRAMMING AND LIFTING STRONG VALID INEQUALITIES FOR MIXED-INTEGER NONLINEAR PROGRAMS VIA DISJUNCTIVE PROGRAMMING AND LIFTING By KWANGHUN CHUNG A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN

More information

A Test Set of Semi-Infinite Programs

A Test Set of Semi-Infinite Programs A Test Set of Semi-Infinite Programs Alexander Mitsos, revised by Hatim Djelassi Process Systems Engineering (AVT.SVT), RWTH Aachen University, Aachen, Germany February 26, 2016 (first published August

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

A Decomposition-based MINLP Solution Method Using Piecewise Linear Relaxations

A Decomposition-based MINLP Solution Method Using Piecewise Linear Relaxations A Decomposition-based MINLP Solution Method Using Piecewise Linear Relaxations Pradeep K. Polisetty and Edward P. Gatzke 1 Department of Chemical Engineering University of South Carolina Columbia, SC 29208

More information

Implementation of an αbb-type underestimator in the SGO-algorithm

Implementation of an αbb-type underestimator in the SGO-algorithm Implementation of an αbb-type underestimator in the SGO-algorithm Process Design & Systems Engineering November 3, 2010 Refining without branching Could the αbb underestimator be used without an explicit

More information

From structures to heuristics to global solvers

From structures to heuristics to global solvers From structures to heuristics to global solvers Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies OR2013, 04/Sep/13, Rotterdam Outline From structures to

More information

A note on : A Superior Representation Method for Piecewise Linear Functions by Li, Lu, Huang and Hu

A note on : A Superior Representation Method for Piecewise Linear Functions by Li, Lu, Huang and Hu A note on : A Superior Representation Method for Piecewise Linear Functions by Li, Lu, Huang and Hu Juan Pablo Vielma, Shabbir Ahmed and George Nemhauser H. Milton Stewart School of Industrial and Systems

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Definition: An Integer Linear Programming problem is an optimization problem of the form (ILP) min

More information

Integer Linear Programming Modeling

Integer Linear Programming Modeling DM554/DM545 Linear and Lecture 9 Integer Linear Programming Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. Assignment Problem Knapsack Problem

More information

On the composition of convex envelopes for quadrilinear terms

On the composition of convex envelopes for quadrilinear terms Author manuscript, published in "Optimization, Simulation, and Control (2013) pp 1-16" DOI : 10.1007/978-1-4614-5131-0_1 On the composition of convex envelopes for quadrilinear terms Pietro Belotti, Sonia

More information

LP based heuristics for the multiple knapsack problem. with assignment restrictions

LP based heuristics for the multiple knapsack problem. with assignment restrictions LP based heuristics for the multiple knapsack problem with assignment restrictions Geir Dahl and Njål Foldnes Centre of Mathematics for Applications and Department of Informatics, University of Oslo, P.O.Box

More information

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Siqian Shen Dept. of Industrial and Operations Engineering University of Michigan Joint work with Yan Deng (UMich, Google)

More information

Solving nonconvex MINLP by quadratic approximation

Solving nonconvex MINLP by quadratic approximation Solving nonconvex MINLP by quadratic approximation Stefan Vigerske DFG Research Center MATHEON Mathematics for key technologies 21/11/2008 IMA Hot Topics Workshop: Mixed-Integer Nonlinear Optimization

More information

Scheduling and Optimization Course (MPRI)

Scheduling and Optimization Course (MPRI) MPRI Scheduling and optimization: lecture p. /6 Scheduling and Optimization Course (MPRI) Leo Liberti LIX, École Polytechnique, France MPRI Scheduling and optimization: lecture p. /6 Teachers Christoph

More information

Integer Linear Programming (ILP)

Integer Linear Programming (ILP) Integer Linear Programming (ILP) Zdeněk Hanzálek, Přemysl Šůcha hanzalek@fel.cvut.cz CTU in Prague March 8, 2017 Z. Hanzálek (CTU) Integer Linear Programming (ILP) March 8, 2017 1 / 43 Table of contents

More information

Online generation via offline selection - Low dimensional linear cuts from QP SDP relaxation -

Online generation via offline selection - Low dimensional linear cuts from QP SDP relaxation - Online generation via offline selection - Low dimensional linear cuts from QP SDP relaxation - Radu Baltean-Lugojan Ruth Misener Computational Optimisation Group Department of Computing Pierre Bonami Andrea

More information

A Storm of Feasibility Pumps for Nonconvex MINLP

A Storm of Feasibility Pumps for Nonconvex MINLP Mathematical Programming B manuscript No. (will be inserted by the editor) A Storm of Feasibility Pumps for Nonconvex MINLP Claudia D Ambrosio 1,2 Antonio Frangioni 3 Leo Liberti 4 Andrea Lodi 1 Received:?

More information

Convex Quadratic Relaxations of Nonconvex Quadratically Constrained Quadratic Progams

Convex Quadratic Relaxations of Nonconvex Quadratically Constrained Quadratic Progams Convex Quadratic Relaxations of Nonconvex Quadratically Constrained Quadratic Progams John E. Mitchell, Jong-Shi Pang, and Bin Yu Original: June 10, 2011 Abstract Nonconvex quadratic constraints can be

More information

A 0-1 KNAPSACK PROBLEM CONSIDERING RANDOMNESS OF FUTURE RETURNS AND FLEXIBLE GOALS OF AVAILABLE BUDGET AND TOTAL RETURN

A 0-1 KNAPSACK PROBLEM CONSIDERING RANDOMNESS OF FUTURE RETURNS AND FLEXIBLE GOALS OF AVAILABLE BUDGET AND TOTAL RETURN Scientiae Mathematicae Japonicae Online, e-2008, 273 283 273 A 0-1 KNAPSACK PROBLEM CONSIDERING RANDOMNESS OF FUTURE RETURNS AND FLEXIBLE GOALS OF AVAILABLE BUDGET AND TOTAL RETURN Takashi Hasuike and

More information

A Fast Heuristic for GO and MINLP

A Fast Heuristic for GO and MINLP A Fast Heuristic for GO and MINLP John W. Chinneck, M. Shafique, Systems and Computer Engineering Carleton University, Ottawa, Canada Introduction Goal: Find a good quality GO/MINLP solution quickly. Trade

More information

Some Recent Advances in Mixed-Integer Nonlinear Programming

Some Recent Advances in Mixed-Integer Nonlinear Programming Some Recent Advances in Mixed-Integer Nonlinear Programming Andreas Wächter IBM T.J. Watson Research Center Yorktown Heights, New York andreasw@us.ibm.com SIAM Conference on Optimization 2008 Boston, MA

More information

Valid Inequalities for Optimal Transmission Switching

Valid Inequalities for Optimal Transmission Switching Valid Inequalities for Optimal Transmission Switching Hyemin Jeon Jeff Linderoth Jim Luedtke Dept. of ISyE UW-Madison Burak Kocuk Santanu Dey Andy Sun Dept. of ISyE Georgia Tech 19th Combinatorial Optimization

More information

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming: models and applications; complexity Ann-Brith Strömberg 2011 04 01 Modelling with integer variables (Ch. 13.1) Variables Linear programming (LP) uses continuous

More information

Monomial-wise Optimal Separable Underestimators for Mixed-Integer Polynomial Optimization

Monomial-wise Optimal Separable Underestimators for Mixed-Integer Polynomial Optimization Monomial-wise Optimal Separable Underestimators for Mixed-Integer Polynomial Optimization Christoph Buchheim Claudia D Ambrosio Received: date / Accepted: date Abstract In this paper we introduce a new

More information

Development of the new MINLP Solver Decogo using SCIP - Status Report

Development of the new MINLP Solver Decogo using SCIP - Status Report Development of the new MINLP Solver Decogo using SCIP - Status Report Pavlo Muts with Norman Breitfeld, Vitali Gintner, Ivo Nowak SCIP Workshop 2018, Aachen Table of contents 1. Introduction 2. Automatic

More information

An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem

An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem Irene Lotero a, Francisco Trespalacios a, Myun-Seok Cheon b, Dimitri J. Papageorgiou

More information

Mixed Integer Nonlinear Programs Theory, Algorithms & Applications

Mixed Integer Nonlinear Programs Theory, Algorithms & Applications Mixed Integer Nonlinear Programs Theory, Algorithms & Applications Mohit Tawarmalani tawarmal@uiuc.edu Department of Mechanical and Industrial Engineering Nick Sahinidis nikos@uiuc.edu Department of Chemical

More information

On Solving Aircraft Conflict Avoidance Using Deterministic Global Optimization (sbb) Codes

On Solving Aircraft Conflict Avoidance Using Deterministic Global Optimization (sbb) Codes On Solving Aircraft Conflict Avoidance Using Deterministic Global Optimization (sbb) Codes Sonia Cafieri, Frédéric Messine, Ahmed Touhami To cite this version: Sonia Cafieri, Frédéric Messine, Ahmed Touhami.

More information

PART 4 INTEGER PROGRAMMING

PART 4 INTEGER PROGRAMMING PART 4 INTEGER PROGRAMMING 102 Read Chapters 11 and 12 in textbook 103 A capital budgeting problem We want to invest $19 000 Four investment opportunities which cannot be split (take it or leave it) 1.

More information

IBM Research Report. Branching and Bounds Tightening Techniques for Non-Convex MINLP

IBM Research Report. Branching and Bounds Tightening Techniques for Non-Convex MINLP RC24620 (W0808-031) August 13, 2008 Mathematics IBM Research Report Branching and Bounds Tightening Techniques for Non-Convex MINLP Pietro Belotti 1, Jon Lee 2, Leo Liberti 3, François Margot 1, Andreas

More information

4y Springer NONLINEAR INTEGER PROGRAMMING

4y Springer NONLINEAR INTEGER PROGRAMMING NONLINEAR INTEGER PROGRAMMING DUAN LI Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Shatin, N. T. Hong Kong XIAOLING SUN Department of Mathematics Shanghai

More information

A Binarisation Approach to Non-Convex Quadratically Constrained Quadratic Programs

A Binarisation Approach to Non-Convex Quadratically Constrained Quadratic Programs A Binarisation Approach to Non-Convex Quadratically Constrained Quadratic Programs Laura Galli Adam N. Letchford February 2015 Abstract The global optimisation of non-convex quadratically constrained quadratic

More information

Improved Fully Polynomial time Approximation Scheme for the 0-1 Multiple-choice Knapsack Problem

Improved Fully Polynomial time Approximation Scheme for the 0-1 Multiple-choice Knapsack Problem Improved Fully Polynomial time Approximation Scheme for the 0-1 Multiple-choice Knapsack Problem Mukul Subodh Bansal V.Ch.Venkaiah International Institute of Information Technology Hyderabad, India Abstract

More information

Bilinear Programming: Applications in the Supply Chain Management

Bilinear Programming: Applications in the Supply Chain Management Bilinear Programming: Applications in the Supply Chain Management Artyom G. Nahapetyan Center for Applied Optimization Industrial and Systems Engineering Department University of Florida Gainesville, Florida

More information

A Note on Representations of Linear Inequalities in Non-Convex Mixed-Integer Quadratic Programs

A Note on Representations of Linear Inequalities in Non-Convex Mixed-Integer Quadratic Programs A Note on Representations of Linear Inequalities in Non-Convex Mixed-Integer Quadratic Programs Adam N. Letchford Daniel J. Grainger To appear in Operations Research Letters Abstract In the literature

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

Development of an algorithm for solving mixed integer and nonconvex problems arising in electrical supply networks

Development of an algorithm for solving mixed integer and nonconvex problems arising in electrical supply networks Development of an algorithm for solving mixed integer and nonconvex problems arising in electrical supply networks E. Wanufelle 1 S. Leyffer 2 A. Sartenaer 1 Ph. Toint 1 1 FUNDP, University of Namur 2

More information

Tightening a Discrete Formulation of the Quadratic Assignment Problem

Tightening a Discrete Formulation of the Quadratic Assignment Problem A publication of 1309 CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

NP-problems continued

NP-problems continued NP-problems continued Page 1 Since SAT and INDEPENDENT SET can be reduced to each other we might think that there would be some similarities between the two problems. In fact, there is one such similarity.

More information

The Knapsack Problem. 28. April /44

The Knapsack Problem. 28. April /44 The Knapsack Problem 20 10 15 20 W n items with weight w i N and profit p i N Choose a subset x of items Capacity constraint i x w i W wlog assume i w i > W, i : w i < W Maximize profit i x p i 28. April

More information

Global Optimization of Non-convex Generalized Disjunctive Programs: A Review on Relaxations and Solution Methods

Global Optimization of Non-convex Generalized Disjunctive Programs: A Review on Relaxations and Solution Methods Noname manuscript No. (will be inserted by the editor) Global Optimization of Non-convex Generalized Disjunctive Programs: A Review on Relaxations and Solution Methods Juan P. Ruiz Ignacio E. Grossmann

More information

Introduction to integer programming II

Introduction to integer programming II Introduction to integer programming II Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects of Optimization

More information

Cyclic short-term scheduling of multiproduct batch plants using continuous-time representation

Cyclic short-term scheduling of multiproduct batch plants using continuous-time representation Computers and Chemical Engineering (00) Cyclic short-term scheduling of multiproduct batch plants using continuous-time representation D. Wu, M. Ierapetritou Department of Chemical and Biochemical Engineering,

More information

Valid Inequalities and Convex Hulls for Multilinear Functions

Valid Inequalities and Convex Hulls for Multilinear Functions Electronic Notes in Discrete Mathematics 36 (2010) 805 812 www.elsevier.com/locate/endm Valid Inequalities and Convex Hulls for Multilinear Functions Pietro Belotti Department of Industrial and Systems

More information

A note on : A Superior Representation Method for Piecewise Linear Functions

A note on : A Superior Representation Method for Piecewise Linear Functions A note on : A Superior Representation Method for Piecewise Linear Functions Juan Pablo Vielma Business Analytics and Mathematical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights,

More information

Inferring Update Sequences in Boolean Gene Regulatory Networks

Inferring Update Sequences in Boolean Gene Regulatory Networks Inferring Update Sequences in Boolean Gene Regulatory Networks Fabien Tarissan a Camilo La Rota b a Complex System Institute (ISC) & CNRS, Palaiseau, France b Complex System Institute (IXXI), Lyon, France

More information

Quadratic Multiple Knapsack Problem with Setups and a Solution Approach

Quadratic Multiple Knapsack Problem with Setups and a Solution Approach Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul, Turkey, July 3 6, 2012 Quadratic Multiple Knapsack Problem with Setups and a Solution Approach

More information

MINLP: Theory, Algorithms, Applications: Lecture 3, Basics of Algorothms

MINLP: Theory, Algorithms, Applications: Lecture 3, Basics of Algorothms MINLP: Theory, Algorithms, Applications: Lecture 3, Basics of Algorothms Jeff Linderoth Industrial and Systems Engineering University of Wisconsin-Madison Jonas Schweiger Friedrich-Alexander-Universität

More information

What is an integer program? Modelling with Integer Variables. Mixed Integer Program. Let us start with a linear program: max cx s.t.

What is an integer program? Modelling with Integer Variables. Mixed Integer Program. Let us start with a linear program: max cx s.t. Modelling with Integer Variables jesla@mandtudk Department of Management Engineering Technical University of Denmark What is an integer program? Let us start with a linear program: st Ax b x 0 where A

More information

Recoverable Robust Knapsacks: Γ -Scenarios

Recoverable Robust Knapsacks: Γ -Scenarios Recoverable Robust Knapsacks: Γ -Scenarios Christina Büsing, Arie M. C. A. Koster, and Manuel Kutschka Abstract In this paper, we investigate the recoverable robust knapsack problem, where the uncertainty

More information

Feasibility Pump for Mixed Integer Nonlinear Programs 1

Feasibility Pump for Mixed Integer Nonlinear Programs 1 Feasibility Pump for Mixed Integer Nonlinear Programs 1 Presenter: 1 by Pierre Bonami, Gerard Cornuejols, Andrea Lodi and Francois Margot Mixed Integer Linear or Nonlinear Programs (MILP/MINLP) Optimize

More information

Process Integration Methods

Process Integration Methods Process Integration Methods Expert Systems automatic Knowledge Based Systems Optimization Methods qualitative Hierarchical Analysis Heuristic Methods Thermodynamic Methods Rules of Thumb interactive Stochastic

More information

A robust approach to the chance-constrained knapsack problem

A robust approach to the chance-constrained knapsack problem A robust approach to the chance-constrained knapsack problem Olivier Klopfenstein 1,2, Dritan Nace 2 1 France Télécom R&D, 38-40 rue du gl Leclerc, 92794 Issy-les-Moux cedex 9, France 2 Université de Technologie

More information

Branch-and-Bound. Leo Liberti. LIX, École Polytechnique, France. INF , Lecture p. 1

Branch-and-Bound. Leo Liberti. LIX, École Polytechnique, France. INF , Lecture p. 1 Branch-and-Bound Leo Liberti LIX, École Polytechnique, France INF431 2011, Lecture p. 1 Reminders INF431 2011, Lecture p. 2 Problems Decision problem: a question admitting a YES/NO answer Example HAMILTONIAN

More information

Mixed-Integer Nonlinear Decomposition Toolbox for Pyomo (MindtPy)

Mixed-Integer Nonlinear Decomposition Toolbox for Pyomo (MindtPy) Mario R. Eden, Marianthi Ierapetritou and Gavin P. Towler (Editors) Proceedings of the 13 th International Symposium on Process Systems Engineering PSE 2018 July 1-5, 2018, San Diego, California, USA 2018

More information

Network Flow Interdiction Models and Algorithms with Resource Synergy Considerations

Network Flow Interdiction Models and Algorithms with Resource Synergy Considerations Network Flow Interdiction Models and Algorithms with Resource Synergy Considerations Brian J. Lunday 1 Hanif D. Sherali 2 1 Department of Mathematical Sciences, United States Military Academy at West Point

More information

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION Part I: Short Questions August 12, 2008 9:00 am - 12 pm General Instructions This examination is

More information

Integer programming: an introduction. Alessandro Astolfi

Integer programming: an introduction. Alessandro Astolfi Integer programming: an introduction Alessandro Astolfi Outline Introduction Examples Methods for solving ILP Optimization on graphs LP problems with integer solutions Summary Introduction Integer programming

More information

OPTIMIZATION. joint course with. Ottimizzazione Discreta and Complementi di R.O. Edoardo Amaldi. DEIB Politecnico di Milano

OPTIMIZATION. joint course with. Ottimizzazione Discreta and Complementi di R.O. Edoardo Amaldi. DEIB Politecnico di Milano OPTIMIZATION joint course with Ottimizzazione Discreta and Complementi di R.O. Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-15-16.shtml

More information

Improved Big-M Reformulation for Generalized Disjunctive Programs

Improved Big-M Reformulation for Generalized Disjunctive Programs Improved Big-M Reformulation for Generalized Disjunctive Programs Francisco Trespalacios and Ignacio E. Grossmann Department of Chemical Engineering Carnegie Mellon University, Pittsburgh, PA 15213 Author

More information

Operations Research Letters

Operations Research Letters Operations Research Letters 38 (2010) 328 333 Contents lists available at ScienceDirect Operations Research Letters journal homepage: www.elsevier.com/locate/orl The bilevel knapsack problem with stochastic

More information

0-1 Reformulations of the Network Loading Problem

0-1 Reformulations of the Network Loading Problem 0-1 Reformulations of the Network Loading Problem Antonio Frangioni 1 frangio@di.unipi.it Bernard Gendron 2 bernard@crt.umontreal.ca 1 Dipartimento di Informatica Università di Pisa Via Buonarroti, 2 56127

More information

Analysis of Algorithms. Unit 5 - Intractable Problems

Analysis of Algorithms. Unit 5 - Intractable Problems Analysis of Algorithms Unit 5 - Intractable Problems 1 Intractable Problems Tractable Problems vs. Intractable Problems Polynomial Problems NP Problems NP Complete and NP Hard Problems 2 In this unit we

More information

arxiv: v2 [cs.gt] 12 Nov 2018

arxiv: v2 [cs.gt] 12 Nov 2018 A new exact approach for the Bilevel Knapsack with Interdiction Constraints Federico Della Croce a,b, Rosario Scatamacchia a arxiv:1811.02822v2 [cs.gt] 12 Nov 2018 a Dipartimento di Ingegneria Gestionale

More information

Optimization Exercise Set n.5 :

Optimization Exercise Set n.5 : Optimization Exercise Set n.5 : Prepared by S. Coniglio translated by O. Jabali 2016/2017 1 5.1 Airport location In air transportation, usually there is not a direct connection between every pair of airports.

More information

Introduction to Bin Packing Problems

Introduction to Bin Packing Problems Introduction to Bin Packing Problems Fabio Furini March 13, 2015 Outline Origins and applications Applications: Definition: Bin Packing Problem (BPP) Solution techniques for the BPP Heuristic Algorithms

More information

Can Li a, Ignacio E. Grossmann a,

Can Li a, Ignacio E. Grossmann a, A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables Can Li a, Ignacio E. Grossmann

More information

Math 300: Final Exam Practice Solutions

Math 300: Final Exam Practice Solutions Math 300: Final Exam Practice Solutions 1 Let A be the set of all real numbers which are zeros of polynomials with integer coefficients: A := {α R there exists p(x) = a n x n + + a 1 x + a 0 with all a

More information

ILP Formulations for the Lazy Bureaucrat Problem

ILP Formulations for the Lazy Bureaucrat Problem the the PSL, Université Paris-Dauphine, 75775 Paris Cedex 16, France, CNRS, LAMSADE UMR 7243 Department of Statistics and Operations Research, University of Vienna, Vienna, Austria EURO 2015, 12-15 July,

More information