EPI Bildgebung. German Chapter of ISMRM. Doktorantentraining. Freiburg 30 Mai - 1 Juni 2001

Size: px
Start display at page:

Download "EPI Bildgebung. German Chapter of ISMRM. Doktorantentraining. Freiburg 30 Mai - 1 Juni 2001"

Transcription

1 EPI Bildgebung German Chapter of ISMRM Doktorantentraining Freiburg 30 Mai - 1 Juni 2001

2 Review of k-space and FT The EPI sequence Technical requirements Choice of the readout waveform ramp sampling regridding trajectory measurement The N/2 ghost phase correction with reference image-based correction regridding effects Off-resonance effects (distortions) field inhomogeneity and Maxwell shifts unwarping methods Slowing down interleaving ghosting and phase correction echo-time shifting Speeding up half-ft paralell methods Application examples

3 MRI: FOURIER ENCODING ACQUI- SITION FT RAW DATA (k - space) IMAGE (r - space)

4 MRI: SCANNING STRATEGIES RF sample k y G x G y k x k y k y RF k y G x k x G y

5 RF STANDARD MRI: LOW DUTY CYCLE TR GS GR GP ACQ

6 Echo-Planar Imaging (EPI) RF G z G x G y TR ACQ k x High duty cycle Instantaneous Mz sampling k y

7 Some useful maths

8 CONVOLUTION TAPE RECORD f g f g HEAD PROFILE ( + f g)( x) = f ( z) g( x z) dz CONVOLUTION THEOREM [ f g] [ f ] FT[ g] FT =FT

9 SAMPLING DISTRIBUTIONS Single sample - Dirac's delta: + δ( x a) f( x) dx= f( a) a f(x) x Equidistant sampling Bracewell's "shah" III( x ) = δ( x n) + n= + III( x ) f( x) dx= f( n) n= Correct notation: (x)

10 Properties of (x) III( k ) III(x) k x x 1 [ III( x ) III ( x 1) ] III( + 1 2) FT k x 1 a III k a = δ ( k na) III(ax) k a 1/a x

11 DISCRETE FT dk e k s ld k Nd kn i l / 2 ) ( ) ( π δ = Π = Nd n k s Nd k d k ) ( ) III( FT "sampled signal" = = 1 2 / 2 / / 2 ~ N N l N n l i l n e s s π s l = s(ld) x x s(k) Π ( ) d k III =

12 DISCRETE FT(2) k k FT III( ) Π s( k) = d Nd III( d x) sinc( Nd x) ~ s ( x) FOV = 1/d RESOLUTION = 1/Nd

13 TECHNICAL REQUIREMENTS Goal: EPI 128x128, 2x2mm resolution total time 82ms, without ramp sampling. Example of a whole-body gradient coil:* efficiency: mt/m/a L = 170 µh R = 40 mω ms signal bandwidth: (0.32ms/128) -1 = 400 khz gradient: 1/(2mm * 0.32ms) = 15.6 khz/cm = 36 mt/m current: 36/0.075 = 480 A voltage: 170uH*480A/0.16ms = 510V peak heating power: (480A) 2 * 40mΩ = 9.2 kw * Bruker BGA55 (55 cm)

14 READOUT SHAPE G amplitude t = 2G/slew + 1/(G*resol) duration t FASTEST WAVEFORM: plateau = 2*ramp

15 RAMP SAMPLING G +50% k-space range r 2r r G -25% time G 2-30% time

16 EFFECT of NON-EQUIDISTANT SAMPLING G(t) k FFT: ALL POINTS WITHOUT RAMPS

17 REGRIDDING S l CONVOLUTION KERNEL W ~ S = S W ( k k ) k k l l l l Needed: k l distribution (trajectory)

18 REGRIDDING - A CLOSER LOOK non-equidistant distribution: W ( k) ( k kl ) / D( k) l sampled signal: W ( k) s( k) = δ sampling density regridded signal: image: convolution kernel [ K( k) ( W ( k) s( ))] III( k / k0) k ~ ~ III( xk0) x [ K( x) ( W ( x) ~ s ( ))] FOV depends on initial sampling density image intensity needs correction

19 REGRIDDING - NYQUIST CONDITION GRADIENT n samples k-space FT IMAGE DOMAIN ~ W (k) W ( x ) G Gp/2 Gp/2 nπ /2 samples sampling rate >= G max / FOV FIELD OF VIEW

20 MEASUREMENT OF k-space TRAJECTORY Onodera et al. J. Phys. E 20, 416 (1987) k k 0 Echo centre: k = -k 0 time k 0 k(t) plot

21 REGRIDDING WITH A MEASURED TRAJECTORY 50 g(t) k(t) RAW REGRID (TRAPEZE) REGRID (MEASURED)

22 THE GHOST N/2 GHOST EVEN ODD G x (t) DATA db(x,y) 2DFT p + Q(x,y+N/2) Q(x,y) 2DFT Q(x,y) = A + Bx + CAN BE CORRECTED f(x) + Cy + CAN BE ADJUSTED g(x,y)? IMAGE

23 The N/2 ghost - linear case READOUT GRADIENT TRAJECTORY IMAGE

24 REFERENCE SCAN METHOD CALIBRATION PROCESSING G read 1. FT in readread 2. Apply exp(iφ(x)) to odd lines 3. FT phase direction S (k) e FT S (k) o R (x) e R (x) o Phase -1 Correction: exp(iφ(x)) = arg( R e(x) R o(x) )

25 IMAGE-BASED METHOD 1. FT in read direction 2. Split even and odd lines 3. FT in phase direction (even and odd): 4. Select a ghost-only line [ FOV 2 ] [ FOV 2 ] R ( x, y) = R( x, y) + R( x, y ± / ) e R ( x, y) = R( x, y) R( x, y ± / ) e o iφ( x) y : R( x, y ) = 0 & R( x, y ± FOV / 2) 0 5. Phase correction: g g g [ Ro ( x, yg) Re( x, y ) 1] φ( x) = arg g

26 GHOST CORRECTION - RESULTS ORIGINAL NON-LINEAR PHASE CORRECTION LINEAR PHASE CORRECTION

27 PERSISTENT GHOSTS LINEAR 1D PHASE CORRECTION

28 PHASE-SHIFT MAP Q (deg) f (rad) FIT: A + Bx + Cy + D(x 2 -y 2 ) + E 2xy

29 CORRECTION: LINEAR 1D 2nd ORDER 2D

30 CONTOUR GHOST EFFECT OF GRIDDING ERRORS simple regrid even-odd regrid

31 OFF-RESONANCE EFFECT - SPIN WARP time frequency SPIN DENSITY: FAT WATER k x k y x y IMAGE

32 OFF-RESONANCE EFFECT - EPI time frequency SPIN DENSITY: FAT WATER k x k y x y IMAGE

33 EPI: SUSCEPTIBILITY EFFECTS 5 mt/m 250 ms 10 mt/m 130 ms 16 mt/m 80 ms

34 MAXWELL SHIFTS (concomitant gradients) B x z = B z x because, without el. fields or currents: B = 0 field generated by "x-grad coil": xg zˆ + zgxˆ zg B B + xg 0 B = 0 2 ( B + xg) + ( zg) B + xg z G 2B 0 2 Maxwell shift at 1T, 20mT/m, z=10cm: 85 Hz

35 UNWARPING field map methods reference scan methods

36 UNWARPING CORRECTION ORIGINAL EPI 64x64 100kHz 3T

37 UNWARPING ORIGINAL CORRECTION REFERENCE EPI 256x256, 200kHz, 3T

38 EPI: SEQUENCE single shot multi-shot (interleaved)

39 INTERLEAVING t k y kx SINGLE SHOT MULTI SHOT

40 NUMBER OF INTERLEAVES:

41 EVEN-ODD ECHO SHIFT READOUT GRADIENT TRAJECTORIES SINGLE SHOT INTERLEAVED

42 ECHO-SHIFT ARTEFACT 1 SHOT 9 SHOTS

43 GHOSTING in Multi-Shot EPI image from even echoes: d = FOV/(2*n_shots) R ( x, y) = R( x, y) + A R( x, y + md) + B R( x, y + md) e m even m image from odd echoes: m odd m Re ( x, y) = R( x, y) + Am R( x, y + md) Bm R( x, y + md) e even m odd m iφ( x) Deriving φ(x) from the image? There should be no even ghosts - stability required! Only high order (week) ghosts can be used - high SNR required!

44 IMAGE BASED DEGHOSTING - ATTEMPT STABLE SIGNAL: only odd ghosts UNSTABLE SIGNAL: even and odd ghosts

45 SOLUTION: ALTERNATING TRAJECTORIES

46 IMAGE-BASED DEGHOSTING A STANDARD INTERLEAVING raw non-linear correction linear correction D ALTERNATING INTERLEAVING

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229.

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229. Background II Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging 1 SNR: Signal-to-Noise Ratio Signal: Desired voltage in coil Noise: Thermal, electronic Noise Thermal

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

Principles of MRI EE225E / BIO265. Name That Artifact. RF Interference During Readout. RF Interference During Readout. Lecture 19

Principles of MRI EE225E / BIO265. Name That Artifact. RF Interference During Readout. RF Interference During Readout. Lecture 19 Name That Artifact Principles of MRI EE225E / BIO265 Lecture 19 Instructor: Miki Lustig UC Berkeley, EECS 1 http://mri-info.net 2 RF Interference During Readout RF Interference During Readout 1D FFT 1D

More information

FREQUENCY SELECTIVE EXCITATION

FREQUENCY SELECTIVE EXCITATION PULSE SEQUENCES FREQUENCY SELECTIVE EXCITATION RF Grad 0 Sir Peter Mansfield A 1D IMAGE Field Strength / Frequency Position FOURIER PROJECTIONS MR Image Raw Data FFT of Raw Data BACK PROJECTION Image Domain

More information

Velocity k-space analysis of Flow Effects in Echo-Planar, Spiral and Projection Reconstruction Imaging. Sangeetha Somayajula

Velocity k-space analysis of Flow Effects in Echo-Planar, Spiral and Projection Reconstruction Imaging. Sangeetha Somayajula Velocity k-space analysis of Flow Effects in Echo-Planar, Spiral and Projection Reconstruction Imaging Sangeetha Somayajula Introduction Flow and motion in the object causes distortion in the MRI signal

More information

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

RAD229: Final Exam 2014/ SOLUTIONS You will have 3 hours to complete this Exam

RAD229: Final Exam 2014/ SOLUTIONS You will have 3 hours to complete this Exam RAD229: Final Exam 2014/2015 - SOLUTIONS You will have 3 hours to complete this Exam Solutions are given in Blue. In some cases, different interpretations may have led to different, but reasonable answers,

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Jeffrey A. Fessler EECS Department The University of Michigan NSS-MIC: Fundamentals of Medical Imaging Oct. 20, 2003 NMR-0 Background Basic physics 4 magnetic fields

More information

Spin Echo Imaging Sequence

Spin Echo Imaging Sequence 1 MRI In Stereotactic Procedures Edward F. Jackson, Ph.D. The University of Texas M.D. Anderson Cancer Center Houston, Texas 2 RF G slice G phase G freq Signal k-space Spin Echo Imaging Sequence TE 1st

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

MRI beyond Fourier Encoding: From array detection to higher-order field dynamics

MRI beyond Fourier Encoding: From array detection to higher-order field dynamics MRI beyond Fourier Encoding: From array detection to higher-order field dynamics K. Pruessmann Institute for Biomedical Engineering ETH Zurich and University of Zurich Parallel MRI Signal sample: m γκ,

More information

Introduction to MRI Acquisition

Introduction to MRI Acquisition Introduction to MRI Acquisition James Meakin FMRIB Physics Group FSL Course, Bristol, September 2012 1 What are we trying to achieve? 2 What are we trying to achieve? Informed decision making: Protocols

More information

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal What is this? ` Principles of MRI Lecture 05 EE225E / BIO265 Instructor: Miki Lustig UC Berkeley, EECS The first NMR spectrum of ethanol 1951. 1 2 Today Last time: Linear systems, Fourier Transforms, Sampling

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

Part II: Magnetic Resonance Imaging (MRI)

Part II: Magnetic Resonance Imaging (MRI) Part II: Magnetic Resonance Imaging (MRI) Contents Magnetic Field Gradients Selective Excitation Spatially Resolved Reception k-space Gradient Echo Sequence Spin Echo Sequence Magnetic Resonance Imaging

More information

Lab 2: Magnetic Resonance Imaging

Lab 2: Magnetic Resonance Imaging EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Developed by: Galen Reed and Miki Lustig Lab 2: Magnetic Resonance Imaging Introduction In this lab, we will get some hands-on experience with an

More information

Optimized Gradient Waveforms for Spiral Scanning

Optimized Gradient Waveforms for Spiral Scanning Optimized Gradient Waveforms for Spiral Scanning Kevin F. King, Thomas K. F. Foo, Carl R. Crawford Spiral scanning gradient waveforms can be optimized with respect to blurring from off-resonance effects

More information

NMR and MRI : an introduction

NMR and MRI : an introduction Intensive Programme 2011 Design, Synthesis and Validation of Imaging Probes NMR and MRI : an introduction Walter Dastrù Università di Torino walter.dastru@unito.it \ Introduction Magnetic Resonance Imaging

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013 EE5E/BIOE65 Spring 013 Principles of MRI Miki Lustig This is the last homework in class. Enjoy it. Assignment 9 Solutions Due April 9th, 013 1) In class when we presented the spin-echo saturation recovery

More information

Correction Gradients. Nov7, Reference: Handbook of pulse sequence

Correction Gradients. Nov7, Reference: Handbook of pulse sequence Correction Gradients Nov7, 2005 Reference: Handbook of pulse sequence Correction Gradients 1. Concomitant-Field Correction Gradients 2. Crusher Gradients 3. Eddy-Current Compensation 4. Spoiler Gradients

More information

Spiral. B.Hargreaves - RAD 229. Section E3

Spiral. B.Hargreaves - RAD 229. Section E3 Spiral Flexible duration/coverage trade-off Like radial, center-out, TE~0 Low first-moments Longer readouts maximize acq window Archimedean, TWIRL, WHIRL Variable-density 1 Section E3 Archimedean Spiral

More information

Advanced Topics and Diffusion MRI

Advanced Topics and Diffusion MRI Advanced Topics and Diffusion MRI Slides originally by Karla Miller, FMRIB Centre Modified by Mark Chiew (mark.chiew@ndcn.ox.ac.uk) Slides available at: http://users.fmrib.ox.ac.uk/~mchiew/teaching/ MRI

More information

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

Pulse Sequences: RARE and Simulations

Pulse Sequences: RARE and Simulations Pulse Sequences: RARE and Simulations M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.04.19 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Final project

More information

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging BMB 601 MRI Ari Borthakur, PhD Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging University of Pennsylvania School of Medicine A brief history

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

Exam 8N080 - Introduction to MRI

Exam 8N080 - Introduction to MRI Exam 8N080 - Introduction to MRI Friday April 10 2015, 18.00-21.00 h For this exam you may use an ordinary calculator (not a graphical one). In total there are 5 assignments and a total of 50 points can

More information

Tissue Parametric Mapping:

Tissue Parametric Mapping: Tissue Parametric Mapping: Contrast Mechanisms Using SSFP Sequences Jongho Lee Department of Radiology University of Pennsylvania Tissue Parametric Mapping: Contrast Mechanisms Using bssfp Sequences Jongho

More information

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Spin Echo Imaging Hahn Spin Echo

More information

Course Review. Midterm Review: EE369B Concepts Simulations with Bloch Matrices, EPG SNR. B.Hargreaves - RAD 229. Section F1

Course Review. Midterm Review: EE369B Concepts Simulations with Bloch Matrices, EPG SNR. B.Hargreaves - RAD 229. Section F1 Course Review Midterm Review: EE369B Concepts Simulations with Bloch Matrices, EPG SNR 1 Section F1 Bloch/Matrix Simulations M = [Mx My Mz] T RF and precession ~ 3x3 rotation matrices Relaxation ~ 3x3

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

Midterm Review. EE369B Concepts Simulations with Bloch Matrices, EPG Gradient-Echo Methods. B.Hargreaves - RAD 229

Midterm Review. EE369B Concepts Simulations with Bloch Matrices, EPG Gradient-Echo Methods. B.Hargreaves - RAD 229 Midterm Review EE369B Concepts Simulations with Bloch Matrices, EPG Gradient-Echo Methods 292 Fourier Encoding and Reconstruction Encoding k y x Sum over image k x Reconstruction k y Gradient-induced Phase

More information

Post-Midterm Course Review

Post-Midterm Course Review Post-Midterm Course Review EE 396B, Bloch & EPG, Gradient Echo Methods After Midterm: Spin-Echo Methods Sampling Radial, Spiral, EPI Measurement and Mapping Motion Diffusion 37 Spin Echo Sequences 2D Interleaved:

More information

M. Lustig, EECS UC Berkeley. Principles of MRI EE225E / BIO265

M. Lustig, EECS UC Berkeley. Principles of MRI EE225E / BIO265 Principles of MRI EE225E / BIO265 RF Excitation (Chap. 6) Energy is deposited into the system RF pulses used for: Excitation Contrast manipulation Refocussing (...more later) Saturation Tagging Transfer

More information

On Signal to Noise Ratio Tradeoffs in fmri

On Signal to Noise Ratio Tradeoffs in fmri On Signal to Noise Ratio Tradeoffs in fmri G. H. Glover April 11, 1999 This monograph addresses the question of signal to noise ratio (SNR) in fmri scanning, when parameters are changed under conditions

More information

On the Use of Complementary Encoding Techniques to Improve MR Imaging

On the Use of Complementary Encoding Techniques to Improve MR Imaging On the Use of Complementary Encoding Techniques to Improve MR Imaging W. Scott Hoge shoge@bwh.harvard.edu Dept. of Radiology, Brigham and Women s Hospital and Harvard Medical School, Boston, MA Graz, Austria

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

BNG/ECE 487 FINAL (W16)

BNG/ECE 487 FINAL (W16) BNG/ECE 487 FINAL (W16) NAME: 4 Problems for 100 pts This exam is closed-everything (no notes, books, etc.). Calculators are permitted. Possibly useful formulas and tables are provided on this page. Fourier

More information

Principles of MRI EE225E / BIO265. Lecture 14. Instructor: Miki Lustig UC Berkeley, EECS. M. Lustig, EECS UC Berkeley

Principles of MRI EE225E / BIO265. Lecture 14. Instructor: Miki Lustig UC Berkeley, EECS. M. Lustig, EECS UC Berkeley Principles of MRI Lecture 14 EE225E / BIO265 Instructor: Miki Lustig UC Berkeley, EECS Overview Last-Time: Non-Selective Excitation Excitation, inversion, spin-echo ~G ~r =0 Today: Selective Excitation

More information

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 B 1,94-96 M,94-96 B oro!' 94-96 BIro!' 94-96 I/r, 79 2D linear system, 56 2D FFT, 119 2D Fourier transform, 1, 12, 18,91 2D sinc, 107, 112

More information

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229 Sequence Overview Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging 75 Pulse Sequences and k-space RF k y G z k x G x 3D k-space G y k y k z Acq. k x 76 Gradient

More information

Homework #2 Due date: 2/19/2013 (Tuesday) Translate the slice Two Main Paths in Lecture Part II: Neurophysiology and BOLD to words.

Homework #2 Due date: 2/19/2013 (Tuesday) Translate the slice Two Main Paths in Lecture Part II: Neurophysiology and BOLD to words. Homework #2 Due date: 2/19/2013 (Tuesday) 1. What is BOLD? In your own words, fully explain the mechanism of BOLD fmri (from stimulus input to image voxel signal). (20 points) Translate the slice Two Main

More information

} B 1 } Coil } Gradients } FFT

} B 1 } Coil } Gradients } FFT Introduction to MRI Daniel B. Ennis, Ph.D. Requirements for MRI UCLA DCVI Requirements for MRI Dipoles to Images MR Active uclei e.g. 1 H in H20 Cryogen Liquid He and 2 Magnetic Field (B0) Polarizer ystem

More information

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Chunlei Liu, PhD Department of Electrical Engineering & Computer Sciences and Helen Wills Neuroscience Institute University

More information

RF Pulse Design. Multi-dimensional Excitation I. M229 Advanced Topics in MRI Kyung Sung, Ph.D Class Business

RF Pulse Design. Multi-dimensional Excitation I. M229 Advanced Topics in MRI Kyung Sung, Ph.D Class Business RF Pulse Design Multi-dimensional Excitation I M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2018.04.10 Class Business Office hours - Instructors: Fri 10-12pm TAs: Xinran Zhong and Zhaohuan Zhang (time:

More information

MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS

MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS 1. A MR spectrum can identify many metabolites other than water by: Locating the peak(s) determined by a characteristic chemical shift (ppm) resulting from

More information

MRI in Review: Simple Steps to Cutting Edge Part I

MRI in Review: Simple Steps to Cutting Edge Part I MRI in Review: Simple Steps to Cutting Edge Part I DWI is now 2 years old... Mike Moseley Radiology Stanford DWI, b = 1413 T2wt, 28/16 ASN 21 San Francisco + Disclosures: Funding NINDS, NCRR, NCI 45 minutes

More information

EE591 Project Report December 2 nd, 2005

EE591 Project Report December 2 nd, 2005 EE591 Project Report December 2 nd, 2005 Amrita Rajagopalan Department of Biomedical Engineering. arajagop@usc.edu Two Dimensional Spatially Selective RF Pulse Design Using Spiral Trajectory Abstract In

More information

A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging

A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging Phys. Med. Biol. 45 (2000) 3809 3820. Printed in the UK PII: S0031-9155(00)14109-0 A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging Devesh Raj,

More information

Fundamentals of MR Imaging

Fundamentals of MR Imaging Fundamentals of MR Imaging Shantanu Sinha. Department of Radiology UCSD School of Medicine, San Diego, CA-92103. E-mail: shsinha@ucsd.edu Background References: R.B.Lufkin, The MRI Manual (2nd Edition).

More information

2.1.1 A Brief History of NMR The conception of NMR sprouted after the Pauli s prediction of nuclear spin in

2.1.1 A Brief History of NMR The conception of NMR sprouted after the Pauli s prediction of nuclear spin in CHAPTER--2 BASICS OF NMR IMAGING AND SPECTROSCOPY 2.1 Introduction 2.1.1 A Brief History of NMR The conception of NMR sprouted after the Pauli s prediction of nuclear spin in 1924. Later Gorter (1936)

More information

Biophysics 230: Nuclear Magnetic Resonance Haacke Chapter 11

Biophysics 230: Nuclear Magnetic Resonance Haacke Chapter 11 Biophysics 230: Nuclear Magnetic Resonance Haacke Chapter 11 Daniel B. Rowe, Ph.D. daniel.rowe@marquette.edu Department of Math, Stat, Comp Sci Marquette University dbrowe@mcw.edu Department of Biophysics

More information

Diffusion Tensor Imaging (DTI): An overview of key concepts

Diffusion Tensor Imaging (DTI): An overview of key concepts Diffusion Tensor Imaging (DTI): An overview of key concepts (Supplemental material for presentation) Prepared by: Nadia Barakat BMB 601 Chris Conklin Thursday, April 8 th 2010 Diffusion Concept [1,2]:

More information

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Enseignant-chercheur Equipe IMAGES - Télécom ParisTech pietro.gori@telecom-paristech.fr September 20, 2017 P. Gori BIOMED 20/09/2017 1 / 76

More information

Spin-Echo MRI Using /2 and Hyperbolic Secant Pulses

Spin-Echo MRI Using /2 and Hyperbolic Secant Pulses Magnetic Resonance in Medicine 6:75 87 (2009) Spin-Echo MRI Using /2 and Hyperbolic Secant Pulses Jang-Yeon Park* and Michael Garwood Frequency-modulated (FM) pulses have practical advantages for spin-echo

More information

Introduction to Phase Encoding in MRI. By Henrik BW Larsson

Introduction to Phase Encoding in MRI. By Henrik BW Larsson Introduction to Phase Encoding in MRI B Henrik BW Larsson November 28, version 1 Content 1. Phase encoding 2. Dimension 3. The phase encoding table 4. Aliasing in the phase encoding direction 5. Increasing

More information

NMR/MRI examination (8N080 / 3F240)

NMR/MRI examination (8N080 / 3F240) NMR/MRI examination (8N080 / 3F240) Remarks: 1. This test consists of 3 problems with at total of 26 sub-questions. 2. Questions are in English. You are allowed to answer them in English or Dutch. 3. Please

More information

Outlines: (June 11, 1996) Instructor:

Outlines: (June 11, 1996) Instructor: Magnetic Resonance Imaging (June 11, 1996) Instructor: Tai-huang Huang Institute of Biomedical Sciences Academia Sinica Tel. (02) 2652-3036; Fax. (02) 2788-7641 E. mail: bmthh@ibms.sinica.edu.tw Reference:

More information

Spin-Warp Pulse Sequence

Spin-Warp Pulse Sequence Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 25 Linear Systems Lecture Spin-Warp Pulse Sequence RF G x (t G y (t k y k x K-space trajectories EPI Spiral k y k y k x k x Credit: Larry

More information

Introduction to the Physics of NMR, MRI, BOLD fmri

Introduction to the Physics of NMR, MRI, BOLD fmri Pittsburgh, June 13-17, 2011 Introduction to the Physics of NMR, MRI, BOLD fmri (with an orientation toward the practical aspects of data acquisition) Pittsburgh, June 13-17, 2001 Functional MRI in Clinical

More information

Signal Processing Signal and System Classifications. Chapter 13

Signal Processing Signal and System Classifications. Chapter 13 Chapter 3 Signal Processing 3.. Signal and System Classifications In general, electrical signals can represent either current or voltage, and may be classified into two main categories: energy signals

More information

Navigator Echoes. BioE 594 Advanced Topics in MRI Mauli. M. Modi. BioE /18/ What are Navigator Echoes?

Navigator Echoes. BioE 594 Advanced Topics in MRI Mauli. M. Modi. BioE /18/ What are Navigator Echoes? Navigator Echoes BioE 594 Advanced Topics in MRI Mauli. M. Modi. 1 What are Navigator Echoes? In order to correct the motional artifacts in Diffusion weighted MR images, a modified pulse sequence is proposed

More information

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees Rad Tech 4912 MRI Registry Review Outline of the Registry Exam: Category: # of questions: A. Patient Care 30 B. Imaging Procedures 62 C. Data Acquisition and Processing 65 D. Physical Principles of Image

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Signal Processing COS 323

Signal Processing COS 323 Signal Processing COS 323 Digital Signals D: functions of space or time e.g., sound 2D: often functions of 2 spatial dimensions e.g. images 3D: functions of 3 spatial dimensions CAT, MRI scans or 2 space,

More information

Rochester Institute of Technology Rochester, New York. COLLEGE of Science Department of Chemistry. NEW (or REVISED) COURSE:

Rochester Institute of Technology Rochester, New York. COLLEGE of Science Department of Chemistry. NEW (or REVISED) COURSE: Rochester Institute of Technology Rochester, New York COLLEGE of Science Department of Chemistry NEW (or REVISED) COURSE: 1014-730 1.0 Title: Magnetic Resonance Imaging (MRI) Date: July 2006 Credit Hours:

More information

7.3.A. The expression for signal recovery is similar to that derived under exercise 7.2 and is given by:

7.3.A. The expression for signal recovery is similar to that derived under exercise 7.2 and is given by: 7..A. Chemical shift difference 3..0. ppm, which equals 54.5 Hz at 3.0 T. Spatial displacement 54.5/00 0.87, which equals.03 cm along the 8 cm side and 0.77 cm along the 6 cm. The cm slice does not have

More information

Fourier Transforms For additional information, see the classic book The Fourier Transform and its Applications by Ronald N. Bracewell (which is on the shelves of most radio astronomers) and the Wikipedia

More information

EE225E/BIOE265 Spring 2016 Principles of MRI. Assignment 4. Due Friday Feb 19st, 2016, Self Grading Due Monday Feb 22nd, 2016

EE225E/BIOE265 Spring 2016 Principles of MRI. Assignment 4. Due Friday Feb 19st, 2016, Self Grading Due Monday Feb 22nd, 2016 EE225E/BIOE265 Spring 2016 Principles of MRI Miki Lustig Assignment 4 Due Friday Feb 19st, 2016, Self Grading Due Monday Feb 22nd, 2016 1. Finish reading Nishimura Ch.4 and Ch. 5. 2. The following pulse

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 9 Magnetic Resonance Imaging (imaging) Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ 1 Schedule 1. Introduction, Spatial Resolution,

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Field trip: Tuesday, Feb 5th

Field trip: Tuesday, Feb 5th Pulse Sequences Field trip: Tuesday, Feb 5th Hardware tour of VUIIIS Philips 3T Meet here at regular class time (11.15) Complete MRI screening form! Chuck Nockowski Philips Service Engineer Reminder: Project/Presentation

More information

Chapter 26 Sequence Design, Artifacts and Nomenclature. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University

Chapter 26 Sequence Design, Artifacts and Nomenclature. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Chapter 26 Sequence Design, Artifacts and Nomenclature Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Previous classes: RF pulse, Gradient, Signal Readout Gradient echo, spin echo,

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging 1, Chunlei Liu, Ph.D. 1 Brain Imaging and Analysis Center Department of Radiology Duke University, Durham, NC, USA 1 Magnetization

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials

Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials PIERS ONLINE, VOL. 5, NO. 1, 2009 81 Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials Eva Gescheidtova 1 and Karel Bartusek 2 1 Faculty of Electrical Engineering

More information

Quantitative/Mapping Methods

Quantitative/Mapping Methods Quantitative/Mapping Methods Gradient Measurement Fat/Water Separation B0 and B1 mapping T1, T2 and T2* mapping 426 Gradient Measurement Duyn method Modifications 427 Duyn Method - Pulse Sequence Excite

More information

June 16, Signal generation and gradient fields in MRI. Maximilian Oehm. Summary of physical fundamentals. Motivation. Complex representation

June 16, Signal generation and gradient fields in MRI. Maximilian Oehm. Summary of physical fundamentals. Motivation. Complex representation in MRI of Signal in MRI June 16, 2015 in MRI Contents of 1 of 2 3 4 5 6 7 in MRI of of Magnetic field B e z (few T) Splits up energy levels N+ N N ++N 1ppm M = m V B No measurement in z-direction possible

More information

Principles of Nuclear Magnetic Resonance Microscopy

Principles of Nuclear Magnetic Resonance Microscopy Principles of Nuclear Magnetic Resonance Microscopy Paul T. Callaghan Department of Physics and Biophysics Massey University New Zealand CLARENDON PRESS OXFORD CONTENTS 1 PRINCIPLES OF IMAGING 1 1.1 Introduction

More information

Topics. Example. Modulation. [ ] = G(k x. ] = 1 2 G ( k % k x 0) G ( k + k x 0) ] = 1 2 j G ( k x

Topics. Example. Modulation. [ ] = G(k x. ] = 1 2 G ( k % k x 0) G ( k + k x 0) ] = 1 2 j G ( k x Topics Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2008 CT/Fourier Lecture 3 Modulation Modulation Transfer Function Convolution/Multiplication Revisit Projection-Slice Theorem Filtered

More information

Basic MRI physics and Functional MRI

Basic MRI physics and Functional MRI Basic MRI physics and Functional MRI Gregory R. Lee, Ph.D Assistant Professor, Department of Radiology June 24, 2013 Pediatric Neuroimaging Research Consortium Objectives Neuroimaging Overview MR Physics

More information

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 CT/Fourier Lecture 2

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 CT/Fourier Lecture 2 Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 CT/Fourier Lecture 2 Topics Modulation Modulation Transfer Function Convolution/Multiplication Revisit Projection-Slice Theorem Filtered

More information

Biomedical Engineering Image Formation II

Biomedical Engineering Image Formation II Biomedical Engineering Image Formation II PD Dr. Frank G. Zöllner Computer Assisted Clinical Medicine Medical Faculty Mannheim Fourier Series - A Fourier series decomposes periodic functions or periodic

More information

Image Filtering, Edges and Image Representation

Image Filtering, Edges and Image Representation Image Filtering, Edges and Image Representation Capturing what s important Req reading: Chapter 7, 9 F&P Adelson, Simoncelli and Freeman (handout online) Opt reading: Horn 7 & 8 FP 8 February 19, 8 A nice

More information

Basic Concepts of MR Imaging, Diffusion MR Imaging, and Diffusion Tensor Imaging

Basic Concepts of MR Imaging, Diffusion MR Imaging, and Diffusion Tensor Imaging Basic Concepts of MR Imaging, Diffusion MR Imaging, and Diffusion Tensor Imaging Eduardo H.M.S.G. de Figueiredo, BSc a, *, Arthur F.N.G. Borgonovi, BSc b,c, Thomas M. Doring, MSc d,e KEYWORDS Magnetic

More information

BASIC MRI PHYSICS SPIN GYMNASTICS Don Plewes PhD, Walter Kucharczyk MD

BASIC MRI PHYSICS SPIN GYMNASTICS Don Plewes PhD, Walter Kucharczyk MD BASIC MRI PHYSICS SPIN GYMNASTICS Don Plewes PhD, Walter Kucharczyk MD Introduction To understand MRI, it is first necessary to understand the physics of proton Nuclear Magnetic Resonance (NMR). The most

More information

SE Sequence: 90º, 180º RF Pulses, Readout Gradient e.g., 256 voxels in a row

SE Sequence: 90º, 180º RF Pulses, Readout Gradient e.g., 256 voxels in a row Ouline for Today 1. 2. 3. Inroducion o MRI Quanum NMR and MRI in 0D Magneizaion, m(x,), in a Voxel Proon T1 Spin Relaxaion in a Voxel Proon Densiy MRI in 1D MRI Case Sudy, and Cavea Skech of he MRI Device

More information

MRI Physics I: Spins, Excitation, Relaxation

MRI Physics I: Spins, Excitation, Relaxation MRI Physics I: Spins, Excitation, Relaxation Douglas C. Noll Biomedical Engineering University of Michigan Michigan Functional MRI Laboratory Outline Introduction to Nuclear Magnetic Resonance Imaging

More information

A523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2011

A523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2011 A523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2011 Lecture 6 PDFs for Lecture 1-5 are on the web page Problem set 2 is on the web page Article on web page A Guided

More information

The Application of FROID in MR Image Reconstruction

The Application of FROID in MR Image Reconstruction The Application of FROID in MR Image Reconstruction by Linda Vu A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in

More information

RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES

RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES 1. What are potential consequences to patients and personnel should there be a release of gaseous

More information

Chapter 15:Magnetic Resonance Imaging

Chapter 15:Magnetic Resonance Imaging Chapter 15:Magnetic Resonance Imaging Slide set of 242 slides based on the chapter authored by Martin O. Leach of the publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for

More information

Voiced Speech. Unvoiced Speech

Voiced Speech. Unvoiced Speech Digital Speech Processing Lecture 2 Homomorphic Speech Processing General Discrete-Time Model of Speech Production p [ n] = p[ n] h [ n] Voiced Speech L h [ n] = A g[ n] v[ n] r[ n] V V V p [ n ] = u [

More information

In vivo multiple spin echoes imaging of trabecular bone on a clinical 1.5 T MR scanner

In vivo multiple spin echoes imaging of trabecular bone on a clinical 1.5 T MR scanner Magnetic Resonance Imaging 20 (2002) 623-629 In vivo multiple spin echoes imaging of trabecular bone on a clinical 1.5 T MR scanner S. Capuani a, G. Hagberg b, F. Fasano b, I. Indovina b, A. Castriota-Scanderbeg

More information

1 Curvilinear Coordinates

1 Curvilinear Coordinates MATHEMATICA PHYSICS PHYS-2106/3 Course Summary Gabor Kunstatter, University of Winnipeg April 2014 1 Curvilinear Coordinates 1. General curvilinear coordinates 3-D: given or conversely u i = u i (x, y,

More information