SE Sequence: 90º, 180º RF Pulses, Readout Gradient e.g., 256 voxels in a row

Size: px
Start display at page:

Download "SE Sequence: 90º, 180º RF Pulses, Readout Gradient e.g., 256 voxels in a row"

Transcription

1 Ouline for Today Inroducion o MRI Quanum NMR and MRI in 0D Magneizaion, m(x,), in a Voxel Proon T1 Spin Relaxaion in a Voxel Proon Densiy MRI in 1D MRI Case Sudy, and Cavea Skech of he MRI Device Classical NMR in a Voxel Free Inducion Decay in 1D T2 Spin-Relaxaion Spin-Echo Acquisiion Tissue Conras-Weighing in SE Spin-Echo / Spin-Warp in 2D

2 Spin-Echo

3 SE Sequence: 90º, 180º RF Pulses, Readou Gradien e.g., 256 voxels in a row RF pulses 90º 180º S() Echo G x v Larmor (B 0 ± G x ½ FOV) readou

4 Spin-Echo Generaes an Echo SE inroduces a 180º inversion pulse o refocus he spins and creae an echo. 90º z m z (=0 - ) = m 0 y x m xy () = 0 + Also resuls in higher SNR reducion of suscepibiliy conaminaion. 180º = ½ TE m xy (=TE) ~ m 0 e TE/T2 s() = TE

5 Kenucky Turle-Teleporaion Derby (illusraion of S-E) i = 0 ii iii = ½ TE iv v = TE

6 Muli-SE Pulse Sequence (e.g., wha happens o m z?) n n>1 RF 90º 180º 90º 180º G x readou

7 Spin-Echo Generaes an Echo n=1 A end of firs exciaion, magneizaion (m z ) may no have fully recovered. 90º z m z (=0 - ) = m 0 y x m xy () = 0 + Depends on he issue T1 and sequence TR. 180º = ½ TE This magneizaion is passed on o he nex exciaion (n>1). m z (=TR - ) ~ m 0 (1 - e TR/T1 ) = TR (TR>>½TE)

8 Spin-Echo Generaes an Echo n>1 Afer subsequen exciaion, longiudinal magneizaion ipped ino ransverse plane is a consan funcion of issue T1 & TR. 90º z m z (=0 - ) = m 0 (1 e TR/T1 ) y x m xy () = 0 + Addiional differences in he signal resul of issue T2-induced changes unil measuremen a TE. 180º = ½ TE m z (=0 - ) ~ m 0 (1 e TR/T1 ) m xy (=TE) ~ m z (=0 - ) e TE/T2 s() = TE

9 MRI Signal Srengh a = TE Depends on. s( = TE) ~ PD (1 e TR / T1 ) e TE / T2 proon densiy prior regrowh along z-axis curren dephasing in x-y plane Inheren Parameers T1 T2 PD Operaor Seings TR TE ime since previous exciaion

10 Tissue Conras-Weighing in SE T1-w, T2-w, and PD-w

11 Three Differen MRI Conras Weighings creaed by, and reflecing, hree quie differen physical processes T1 T2 PD

12 For T2-w imaging T2-w Long TR o Minimize T1 Differences Long TR: eliminae T1 impac TE a mid-t2: maximize conras S(~TE) ~ PD (1 e TR 1 / T1 ) e TE / T2 prior regrowh along z-axis curren de-phasing in x-y plane T2-w WM = Whie Maer CSF = Cerebral Spinal Fluid WM CSF Long-T2 issues brigh T2 long

13 T2-w Long TR o Minimize T1 Differences TE ~ mid-t2 o maximize T2 conras TR n m z () TR n+1 m xy () WM CSF WM CSF m xy (=TE) 90 TR 4000 ms WM CSF 90 TE ~ ms ime

14 T1-weighed Shor TE o Minimize T2 Changes TR ~ T1 av o maximize conras Shor TE o minimize T2 differences S(~TE) ~ PD (1 e TR / T1 ) e TE / T2 1 proon densiy prior regrowh along z-axis curren de-phasing in x-y plane T1-w WM CSF T1shor For T1-w: Shor-T1 issues are Brigh

15 T1-weighed Shor TE o Minimize T2 Changes TR ~ T1 avg o maximize T1 conras TR n m z () TR n+1 m xy () WM CSF m xy (=TE) T1-w: Shor T1 Brigh ime 90 TR 500 ms 90 TE CSF WM <20 ms

16 PD-, T1-, & T2-Weighed Spin-Echo Images (1.5 T) Conras T1-weighed T2-weighed PD-weighed TR (ms) TE (ms) Mid Shor < 20 ~T1 avg Long > 2,000 Mid ~T2 avg Long > 2,000 Shor < 20 Brigh Shor T1 Long T2 High PD SNR Middle Lower Bes

17 Spin-Echo / Spin-Warp in 2D

18 Signal Modulaion in 2D Spaial Encoding Signal in 2D plane afer slice exciaion (roaing frame) S S( x, y) dx dy Wha happens if we urn on our linear gradiens? S( G, G ) S( x, y) exp[ 2 i G x G y d ] dx dy This equaion can be expressed in he form of a 2D FT of S(x,y) x y x y S( k, k ) S( x, y) exp[ 2 i k x k y ] dx dy x y x y wih k ( ) G ( ) d and k ( ) G ( ) d x x y y

19 Fourier Transform of MRI Daa in k-space o Real Space S(k x,k y ) Complex k-space S(x,y) ~ FT{S(k x,k y )} Real-space F

20 2D Spaial Encoding So, wha does his mean? k ( ) G ( ) d and k ( ) G ( ) d x x y y Gradien ON: spins precess a differen raes as funcion of locaion Gradien OFF: accumulaed phase as a funcion of locaion encoded ino signal Received signal phase modulaed as funcion of spaial frequency sae Spaial frequency = area under gradien-ime curve. Careful coordinaion of how/when gradiens urn on/off faciliaes navigaion hrough k-space abiliy o sample S(k x,k y ) over necessary k-space domain Le s walk hrough an example

21 k G ( ) d and k G ( ) d 2D Spaial Encoding x x y y x y G x k y G y 0 T echo ro k x

22 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y x y G x phase encode k y G y 0 T echo ro k x

23 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y + x G y y - G x k y G y 0 T echo ro k x

24 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y + x G y y - G x k y G y 0 T echo ro k x

25 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y x y G x k y G y 0 T echo ro k x

26 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y x y G x prephaser k y G y 0 T echo ro k x

27 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y x y + G x - G x k y G y 0 T echo ro k x

28 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y x y + G x - G x k y G y 0 T echo ro k x

29 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y x frequency encode y - G x + G x k y G y 0 T echo ro (READOUT PERIOD) k x

30 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y x y - G x + G x k y G y 0 T echo ro (READOUT PERIOD) k x

31 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y x y - G x + G x k y G y 0 T echo ro (READOUT PERIOD) k x

32 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y x y - G x + G x k y G y 0 T echo ro (READOUT PERIOD) k x

33 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y x y - G x + G x k y G y 0 T echo ro (READOUT PERIOD) k x

34 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y x y G x k y G y 0 T echo ro k x

35 2D Spaial Encoding k G ( ) d and k G ( ) d x x y y x y G x k y G y 0 T echo ro k x

36 Fourier Transform of MRI Daa in k-space o Real Space S(k x,k y ) Complex k-space (e.g., marix) S(x,y) ~ FT{S(k x,k y )} Real-space 192 lines 256 poins k y y k x x F

37 2D Spin-Echo Sequence s( = TE) ~ PD (1 e TR / T1 ) e TE / T2 TE TR RF G z... G y... G x Signal spin echo ime......

38 Creaion of an MRI Image in 2D k-space each line in k-space from daa obained during one M xy (TE) readou; differen lines for differen phase-encode gradien srengh hen, 2D FT from k-space o real space G y #96 Ampliude G y #1 G y # 96 frequency (k x )

39 Fourier Transform from Pars of k-space o Real Space Fully sampled k-space Cener of k-space (SNR, conras) Ouer k-space (edges, resoluion) F

40 Fourier Transform from Pars of k-space o Real Space Spike in k-space (paern funcion of locaion & inensiy) spike RF Conaminaion (door seal, device in-room, ec) signal leakage Periodic k-space Errors (moion, gradien error, ec) N/2 PE errors F line arifacs RF arifacs FOV/2 ghoss

41 Some Imporan Topics No Addressed Today 3D, 4D Imaging Gradien-Recalled Echo Acquisiion Inversion Recovery (FLAIR and STIR) Fa Sauraion & Suppression Fas Imaging (e.g., EPI) Dynamic Conras Techniques MR Angiography & Flow MRI-Elasography Image SNR Consideraions Image QA, and ACR Accrediaion MRI Safey

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts)

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts) HW6: MRI Imaging Pulse Sequences (7 Problems for 100 ps) GOAL The overall goal of HW6 is o beer undersand pulse sequences for MRI image reconsrucion. OBJECTIVES 1) Design a spin echo pulse sequence o image

More information

Refocusing t. Small Tip Angle Example. Small Tip Angle Example. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2010 MRI Lecture 5

Refocusing t. Small Tip Angle Example. Small Tip Angle Example. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2010 MRI Lecture 5 Bioengineering 280A Principles of Biomedical Imaging Fall Quarer 2010 MRI Lecure 5 RF N random seps of lengh d Refocusing ' M xy (,) = jm 0 "B 1 ()exp( jk(,))d %& 100 seps This has he 2D form random of

More information

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. = " M z T 1. (1" e "t /T 1 ) M z. (t) = M 0

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. =  M z T 1. (1 e t /T 1 ) M z. (t) = M 0 Relaxaion Bioengineering 28A Principles of Biomedical Imaging Fall Quarer 21 MRI Lecure 2 An exciaion pulse roaes he magneiaion vecor away from is equilibrium sae (purely longiudinal). The resuling vecor

More information

[ ]e TE /T 2(x,y ) Saturation Recovery Sequence. T1-Weighted Scans. T1-Weighted Scans. I(x, y) ρ(x, y) 1 e TR /T 1

[ ]e TE /T 2(x,y ) Saturation Recovery Sequence. T1-Weighted Scans. T1-Weighted Scans. I(x, y) ρ(x, y) 1 e TR /T 1 Sauraion Recovery Sequence 90 TE 90 TE 90 Bioengineering 280A Principles of Biomedical Imaging Fall Quarer 2015 MRI Lecure 5 TR Gradien Echo TR [ ]e TE /T 2 * (x,y ) I(x, y) = ρ(x, y) 1 e TR /T 1 (x,y)

More information

Basic MR image encoding

Basic MR image encoding Basic MR image encoding HST.583: Funcional Magneic Resonance Imaging: Daa Acquisiion and Analysis Harvard-MIT Division of Healh Sciences and Technology Dr. Larry Wald Physical Foundaions of MRI Wha is

More information

' ' ' t. Moving Spins. Phase of a Moving Spin. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2007 MRI Lecture 6

' ' ' t. Moving Spins. Phase of a Moving Spin. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2007 MRI Lecture 6 Moving Spins Bioengineering 28A Principles of Biomedical Imaging Fall Quarer 27 MRI Lecure 6 So far we have assumed ha he spins are no moving (aside from hermal moion giving rise o relaxaion), and conras

More information

RF Excitation. Rotating Frame of Reference. RF Excitation. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2012 MRI Lecture 6

RF Excitation. Rotating Frame of Reference. RF Excitation. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2012 MRI Lecture 6 RF Exciaion Bioengineering 8A Principles of Biomedical Imaging Fall Quarer 1 MRI Lecure 6 hp://www.drcmr.dk/main/conen/view/13/74/ RF Exciaion Roaing Frame of Reference Reference everyhing o he magneic

More information

Exam 8NC20-8NC29 - Introduction to NMR and MRI

Exam 8NC20-8NC29 - Introduction to NMR and MRI Exam 8NC-8NC9 - Inroducion o NMR and MRI Friday April 5, 8.-. h For his exam you may use an ordinary calculaor (no a graphical one). In oal here are 6 assignmens and a oal of 64 poins can be earned. You

More information

' ' ' t. Moving Spins. Phase of a Moving Spin. Phase of Moving Spin. Bioengineering 280A Principles of Biomedical Imaging

' ' ' t. Moving Spins. Phase of a Moving Spin. Phase of Moving Spin. Bioengineering 280A Principles of Biomedical Imaging Moving Spins Bioengineering 28A Principles of Biomedical Imaging Fall Quarer 28 MRI Lecure 7 So far we have assumed ha he spins are no moving (aside from hermal moion giving rise o relaxaion), and conras

More information

RF Excitation. RF Excitation. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 4

RF Excitation. RF Excitation. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 4 Bioengineering 80A Principles of Biomedical Imaging Fall Quarer 013 MRI Lecure 4 TT. Liu, BE80A, UCSD Fall 01 Simplified Drawing of Basic Insrumenaion. Body lies on able encompassed by coils for saic field

More information

k B 2 Radiofrequency pulses and hardware

k B 2 Radiofrequency pulses and hardware 1 Exra MR Problems DC Medical Imaging course April, 214 he problems below are harder, more ime-consuming, and inended for hose wih a more mahemaical background. hey are enirely opional, bu hopefully will

More information

RF Excitation. RF Excitation. Bioengineering 280A Principles of Biomedical Imaging

RF Excitation. RF Excitation. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 280A Principles of Biomedical Imaging Fall Quarer 2010 MRI Lecure 4 Simplified Drawing of Basic Insrumenaion. Body lies on able encompassed by coils for saic field B o, gradien fields (wo

More information

Principles of MRI. Practical Issues in MRI T2 decay. Tissue is a combination of. Results are complex. Started talking about off-resonance

Principles of MRI. Practical Issues in MRI T2 decay. Tissue is a combination of. Results are complex. Started talking about off-resonance Projec Principles of MRI Lecure 18 EE225E / BIO265 Insrucor: Miki Lusig UC Berkeley, EECS No eams Oral presenaion (20min) Or, Repor as a wikepedia enry Level of presenaion -- assume exbook level of knowledge

More information

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

Moving Spins. Phase of a Moving Spin. Phase of Moving Spin. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2009 MRI Lecture 6

Moving Spins. Phase of a Moving Spin. Phase of Moving Spin. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2009 MRI Lecture 6 Moving Spins Bioengineering 28A Principles of Biomedical Imaging Fall Quarer 29 MRI Lecure 6 So far we have assumed ha he spins are no moving (aside from hermal moion giving rise o relaxaion), and conras

More information

' ' ' t. Moving Spins. Phase of Moving Spin. Phase of a Moving Spin. Bioengineering 280A Principles of Biomedical Imaging

' ' ' t. Moving Spins. Phase of Moving Spin. Phase of a Moving Spin. Bioengineering 280A Principles of Biomedical Imaging Moving Spins Bioengineering 8A Principles of Biomedical Imaging Fall Quarer 1 MRI Lecure 6 So far we have assumed ha he spins are no moving (aside from hermal moion giving rise o relaaion) and conras has

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

NMR Spectroscopy: Principles and Applications. Nagarajan Murali 1D - Methods Lecture 5

NMR Spectroscopy: Principles and Applications. Nagarajan Murali 1D - Methods Lecture 5 NMR pecroscop: Principles and Applicaions Nagarajan Murali D - Mehods Lecure 5 D-NMR To full appreciae he workings of D NMR eperimens we need o a leas consider wo coupled spins. omeimes we need o go up

More information

Advanced Imaging Techniques

Advanced Imaging Techniques Advanced Imaging Techniques Perfusion Imaging Prof. Dr. Frank G. Zöllner Compuer Assised Clinical Medicine Medical Faculy Mannheim Heidelberg Universiy Theodor-Kuzer-Ufer 1-3 D-68167 Mannheim, Germany

More information

Biomedical Imaging. Nuclear Magnetic Resonance. Patrícia Figueiredo IST,

Biomedical Imaging. Nuclear Magnetic Resonance. Patrícia Figueiredo IST, Biomedical Imaging Nuclear agneic Resonance Parícia Figueiredo IST, 213-214 The wide specrum of medical imaging echniques (F. Deconinck, Vrije Universi, Belgium). Overview Nuclear magneism Precession:

More information

Part III: Sequences and Contrast

Part III: Sequences and Contrast Part III: Sequences and Contrast Contents T1 and T2/T2* Relaxation Contrast of Imaging Sequences T1 weighting T2/T2* weighting Contrast Agents Saturation Inversion Recovery JUST WATER? (i.e., proton density

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Spin echo. ½πI x -t -πi y -t

Spin echo. ½πI x -t -πi y -t y Spin echo ½πI - -πi y - : as needed, no correlaed wih 1/J. Funcions: 1. refocusing; 2. decoupling. Chemical shif evoluion is refocused by he spin-echo. Heeronuclear J-couplings evoluion are refocused

More information

FREQUENCY SELECTIVE EXCITATION

FREQUENCY SELECTIVE EXCITATION PULSE SEQUENCES FREQUENCY SELECTIVE EXCITATION RF Grad 0 Sir Peter Mansfield A 1D IMAGE Field Strength / Frequency Position FOURIER PROJECTIONS MR Image Raw Data FFT of Raw Data BACK PROJECTION Image Domain

More information

Self-Diffusion Imaging by Spin Echo in Earth s Magnetic Field

Self-Diffusion Imaging by Spin Echo in Earth s Magnetic Field Journal of Magneic Resonance 136, 22 26 (1999) Aricle ID jmre.1998.1594, available online a hp://www.idealibrary.com on Self-Diffusion Imaging by Spin Echo in Earh s Magneic Field Aleš Mohorič, Janez Sepišnik,

More information

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013 EE5E/BIOE65 Spring 013 Principles of MRI Miki Lustig This is the last homework in class. Enjoy it. Assignment 9 Solutions Due April 9th, 013 1) In class when we presented the spin-echo saturation recovery

More information

NMR Spectroscopy: Principles and Applications. Nagarajan Murali 2D NMR Heteronuclear 2D Lecture 7

NMR Spectroscopy: Principles and Applications. Nagarajan Murali 2D NMR Heteronuclear 2D Lecture 7 NMR pecroscop: Principles and Applicaions Nagarajan Murali D NMR Heeronuclear D Lecure 7 Heero Nuclear D-NMR Two dimensional NMR can be used o correlae NMR signals arising from differen nuclei such as

More information

Product Operators. Fundamentals of MR Alec Ricciuti 3 March 2011

Product Operators. Fundamentals of MR Alec Ricciuti 3 March 2011 Produc Operaors Fundamenals of MR Alec Ricciui 3 March 2011 Ouline Review of he classical vecor model Operaors Mahemaical definiion Quanum mechanics Densiy operaors Produc operaors Spin sysems Single spin-1/2

More information

Get: Nuclear (equilibrium) magnetization M 0. (Magnitude dictated by Boltzmann distribution)

Get: Nuclear (equilibrium) magnetization M 0. (Magnitude dictated by Boltzmann distribution) 9: Relaaion of nuclear magneiaion. How is he R signal deeced?. Wha is he quanum-mechanical equivalen of he roaing frame? 3. Wha is he roaing frame descripion good for? 4. How can he reurn of he magneiaion

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Tissue Characteristics Module Three

Tissue Characteristics Module Three Tissue Characteristics Module Three 1 Equilibrium State Equilibrium State At equilibrium, the hydrogen vector is oriented in a direction parallel to the main magnetic field. Hydrogen atoms within the vector

More information

Field trip: Tuesday, Feb 5th

Field trip: Tuesday, Feb 5th Pulse Sequences Field trip: Tuesday, Feb 5th Hardware tour of VUIIIS Philips 3T Meet here at regular class time (11.15) Complete MRI screening form! Chuck Nockowski Philips Service Engineer Reminder: Project/Presentation

More information

( ) = b n ( t) n " (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2.

( ) = b n ( t) n  (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2. Andrei Tokmakoff, MIT Deparmen of Chemisry, 3/14/007-6.4 PERTURBATION THEORY Given a Hamilonian H = H 0 + V where we know he eigenkes for H 0 : H 0 n = E n n, we can calculae he evoluion of he wavefuncion

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229.

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229. Background II Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging 1 SNR: Signal-to-Noise Ratio Signal: Desired voltage in coil Noise: Thermal, electronic Noise Thermal

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

Summary of shear rate kinematics (part 1)

Summary of shear rate kinematics (part 1) InroToMaFuncions.pdf 4 CM465 To proceed o beer-designed consiuive equaions, we need o know more abou maerial behavior, i.e. we need more maerial funcions o predic, and we need measuremens of hese maerial

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

On Signal to Noise Ratio Tradeoffs in fmri

On Signal to Noise Ratio Tradeoffs in fmri On Signal to Noise Ratio Tradeoffs in fmri G. H. Glover April 11, 1999 This monograph addresses the question of signal to noise ratio (SNR) in fmri scanning, when parameters are changed under conditions

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

Math 105 Second Midterm March 16, 2017

Math 105 Second Midterm March 16, 2017 Mah 105 Second Miderm March 16, 2017 UMID: Insrucor: Iniials: Secion: 1. Do no open his exam unil you are old o do so. 2. Do no wrie your name anywhere on his exam. 3. This exam has 9 pages including his

More information

28 Basic Di usion Tensor Imaging

28 Basic Di usion Tensor Imaging 28 Basic Di usion Tensor Imaging 28.1 Inroducion 1 Le us pause here for a momen and review wha has been learned so far. In Chaper 14 we saw how an NMR signal can be generaed and deeced from a sample wihin

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Reliability of Technical Systems

Reliability of Technical Systems eliabiliy of Technical Sysems Main Topics Inroducion, Key erms, framing he problem eliabiliy parameers: Failure ae, Failure Probabiliy, Availabiliy, ec. Some imporan reliabiliy disribuions Componen reliabiliy

More information

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn MIT Deparmen of Chemisry 5.74, Spring 4: Inroducory Quanum Mechanics II p. 33 Insrucor: Prof. Andrei Tokmakoff PERTURBATION THEORY Given a Hamilonian H ( ) = H + V ( ) where we know he eigenkes for H H

More information

Notes 04 largely plagiarized by %khc

Notes 04 largely plagiarized by %khc Noes 04 largely plagiarized by %khc Convoluion Recap Some ricks: x() () =x() x() (, 0 )=x(, 0 ) R ț x() u() = x( )d x() () =ẋ() This hen ells us ha an inegraor has impulse response h() =u(), and ha a differeniaor

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel,

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel, Mechanical Faigue and Load-Induced Aging of Loudspeaker Suspension Wolfgang Klippel, Insiue of Acousics and Speech Communicaion Dresden Universiy of Technology presened a he ALMA Symposium 2012, Las Vegas

More information

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure Lab 4: Synchronous Sae Machine Design Summary: Design and implemen synchronous sae machine circuis and es hem wih simulaions in Cadence Viruoso. Learning Objecives: Pracice designing and simulaing digial

More information

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors Applicaion Noe Swiching losses for Phase Conrol and Bi- Direcionally Conrolled Thyrisors V AK () I T () Causing W on I TRM V AK( full area) () 1 Axial urn-on Plasma spread 2 Swiching losses for Phase Conrol

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018 MATH 5720: Gradien Mehods Hung Phan, UMass Lowell Ocober 4, 208 Descen Direcion Mehods Consider he problem min { f(x) x R n}. The general descen direcions mehod is x k+ = x k + k d k where x k is he curren

More information

Numerical Dispersion

Numerical Dispersion eview of Linear Numerical Sabiliy Numerical Dispersion n he previous lecure, we considered he linear numerical sabiliy of boh advecion and diffusion erms when approimaed wih several spaial and emporal

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229 Sequence Overview Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging 75 Pulse Sequences and k-space RF k y G z k x G x 3D k-space G y k y k z Acq. k x 76 Gradient

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 9 Magnetic Resonance Imaging (imaging) Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ 1 Schedule 1. Introduction, Spatial Resolution,

More information

Chapter 15 Lasers, Laser Spectroscopy, and Photochemistry

Chapter 15 Lasers, Laser Spectroscopy, and Photochemistry Chaper 15 Lasers, Laser Specroscopy, and Phoochemisry ackground: In his chaper we will alk abou ligh amplificaion by simulaed emission of radiaion (LASER), heir impac on specroscopy and ligh-iniiaed reacions

More information

MRI Physics I: Spins, Excitation, Relaxation

MRI Physics I: Spins, Excitation, Relaxation MRI Physics I: Spins, Excitation, Relaxation Douglas C. Noll Biomedical Engineering University of Michigan Michigan Functional MRI Laboratory Outline Introduction to Nuclear Magnetic Resonance Imaging

More information

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 RL Lecure 7: Eligibiliy Traces R. S. Suon and A. G. Baro: Reinforcemen Learning: An Inroducion 1 N-sep TD Predicion Idea: Look farher ino he fuure when you do TD backup (1, 2, 3,, n seps) R. S. Suon and

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

The equation to any straight line can be expressed in the form:

The equation to any straight line can be expressed in the form: Sring Graphs Par 1 Answers 1 TI-Nspire Invesigaion Suden min Aims Deermine a series of equaions of sraigh lines o form a paern similar o ha formed by he cables on he Jerusalem Chords Bridge. Deermine he

More information

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing.

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing. MECHANICS APPLICATIONS OF SECOND-ORDER ODES 7 Mechanics applicaions of second-order ODEs Second-order linear ODEs wih consan coefficiens arise in many physical applicaions. One physical sysems whose behaviour

More information

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9: EE65R: Reliabiliy Physics of anoelecronic Devices Lecure 9: Feaures of Time-Dependen BTI Degradaion Dae: Sep. 9, 6 Classnoe Lufe Siddique Review Animesh Daa 9. Background/Review: BTI is observed when he

More information

Lecture #2 Review of Classical MR

Lecture #2 Review of Classical MR Lecure #2 Review of Classical MR Topics Nuclear magneic momens Bloch Equaions Imaging Equaion Exensions Handous and Reading assignmens van de Ven: Chapers 1.1-1.9 de Graaf, Chapers 1, 4, 5, 1 (opional).

More information

NMR and MRI : an introduction

NMR and MRI : an introduction Intensive Programme 2011 Design, Synthesis and Validation of Imaging Probes NMR and MRI : an introduction Walter Dastrù Università di Torino walter.dastru@unito.it \ Introduction Magnetic Resonance Imaging

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x ) Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 5 GE Medical Systems 2003 Gibbs Artifact Apodization rect(k ) Hanning Window h(k )=1/2(1+cos(2πk ) 256256 image 256128

More information

V(z, t) t < L v. z = 0 z = vt z = L. I(z, t) z = L

V(z, t) t < L v. z = 0 z = vt z = L. I(z, t) z = L W.C.Chew ECE 35 Lecure Noes 12. Transiens on a Transmission Line. When we do no have a ime harmonic signal on a ransmission line, we have o use ransien analysis o undersand he waves on a ransmission line.

More information

Open loop vs Closed Loop. Example: Open Loop. Example: Feedforward Control. Advanced Control I

Open loop vs Closed Loop. Example: Open Loop. Example: Feedforward Control. Advanced Control I Open loop vs Closed Loop Advanced I Moor Command Movemen Overview Open Loop vs Closed Loop Some examples Useful Open Loop lers Dynamical sysems CPG (biologically inspired ), Force Fields Feedback conrol

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

The Brock-Mirman Stochastic Growth Model

The Brock-Mirman Stochastic Growth Model c December 3, 208, Chrisopher D. Carroll BrockMirman The Brock-Mirman Sochasic Growh Model Brock and Mirman (972) provided he firs opimizing growh model wih unpredicable (sochasic) shocks. The social planner

More information

Sampling in k-space. Aliasing. Aliasing. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2010 MRI Lecture 3. Slower B z (x)=g x x

Sampling in k-space. Aliasing. Aliasing. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2010 MRI Lecture 3. Slower B z (x)=g x x Sampling in k-space Bioengineering 80A Principles of Biomedical Imaging Fall Quarer 00 MRI Lecure 3 Thomas Liu, BE80A, UCSD, Fall 008 Aliasing Aliasing Slower B z (G Faser Inuiive view of Aliasing FOV

More information

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time BULLSEYE Lab Name: ANSWER KEY Dae: Pre-AP Physics Lab Projecile Moion Weigh = 1 DIRECTIONS: Follow he insrucions below, build he ramp, ake your measuremens, and use your measuremens o make he calculaions

More information

The average rate of change between two points on a function is d t

The average rate of change between two points on a function is d t SM Dae: Secion: Objecive: The average rae of change beween wo poins on a funcion is d. For example, if he funcion ( ) represens he disance in miles ha a car has raveled afer hours, hen finding he slope

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

MATHEMATICAL DESCRIPTION OF THEORETICAL METHODS OF RESERVE ECONOMY OF CONSIGNMENT STORES

MATHEMATICAL DESCRIPTION OF THEORETICAL METHODS OF RESERVE ECONOMY OF CONSIGNMENT STORES MAHEMAICAL DESCIPION OF HEOEICAL MEHODS OF ESEVE ECONOMY OF CONSIGNMEN SOES Péer elek, József Cselényi, György Demeer Universiy of Miskolc, Deparmen of Maerials Handling and Logisics Absrac: Opimizaion

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

Embedded Systems and Software. A Simple Introduction to Embedded Control Systems (PID Control)

Embedded Systems and Software. A Simple Introduction to Embedded Control Systems (PID Control) Embedded Sysems and Sofware A Simple Inroducion o Embedded Conrol Sysems (PID Conrol) Embedded Sysems and Sofware, ECE:3360. The Universiy of Iowa, 2016 Slide 1 Acknowledgemens The maerial in his lecure

More information

AP Chemistry--Chapter 12: Chemical Kinetics

AP Chemistry--Chapter 12: Chemical Kinetics AP Chemisry--Chaper 12: Chemical Kineics I. Reacion Raes A. The area of chemisry ha deals wih reacion raes, or how fas a reacion occurs, is called chemical kineics. B. The rae of reacion depends on he

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS Andrei Tokmakoff, MIT Deparmen of Chemisry, 2/22/2007 2-17 2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS The mahemaical formulaion of he dynamics of a quanum sysem is no unique. So far we have described

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3 Macroeconomic Theory Ph.D. Qualifying Examinaion Fall 2005 Comprehensive Examinaion UCLA Dep. of Economics You have 4 hours o complee he exam. There are hree pars o he exam. Answer all pars. Each par has

More information

CHEMICAL KINETICS: 1. Rate Order Rate law Rate constant Half-life Temperature Dependence

CHEMICAL KINETICS: 1. Rate Order Rate law Rate constant Half-life Temperature Dependence CHEMICL KINETICS: Rae Order Rae law Rae consan Half-life Temperaure Dependence Chemical Reacions Kineics Chemical ineics is he sudy of ime dependence of he change in he concenraion of reacans and producs.

More information

ψ ( t) = c n ( t ) n

ψ ( t) = c n ( t ) n p. 31 PERTURBATION THEORY Given a Hamilonian H ( ) = H + V( ) where we know he eigenkes for H H n = En n we ofen wan o calculae changes in he ampliudes of n induced by V( ) : where ψ ( ) = c n ( ) n n

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

Linear Time-invariant systems, Convolution, and Cross-correlation

Linear Time-invariant systems, Convolution, and Cross-correlation Linear Time-invarian sysems, Convoluion, and Cross-correlaion (1) Linear Time-invarian (LTI) sysem A sysem akes in an inpu funcion and reurns an oupu funcion. x() T y() Inpu Sysem Oupu y() = T[x()] An

More information