Get: Nuclear (equilibrium) magnetization M 0. (Magnitude dictated by Boltzmann distribution)

Size: px
Start display at page:

Download "Get: Nuclear (equilibrium) magnetization M 0. (Magnitude dictated by Boltzmann distribution)"

Transcription

1 9: Relaaion of nuclear magneiaion. How is he R signal deeced?. Wha is he quanum-mechanical equivalen of he roaing frame? 3. Wha is he roaing frame descripion good for? 4. How can he reurn of he magneiaion o hermodnamic equilibrium described? 5. How is he ime-dependen change of magneiaion described mahemaicall? Afer his course ou. Can describe he principle of R deecion and eciaion. Can eplain how R eciaion is frequenc selecive (resonance) 3. Undersand he principle of relaaion o he equilibrium magneiaion 4. Know wha are he major relaaion imes and how he phenomenologicall affec magneiaion in biological issue, in paricular ha of waer. 5. Can eplain he elemens of he Bloch equaions and FD 6. Undersand he R conras srongl depends on eperimenal parameers Fund Biomag 8 9- Wha do we know abou R so far? Need: Nucleus wih non-ero spin agneic field B Ge: Nuclear (equilibrium) magneiaion (agniude dicaed b Bolmann disribuion) increases wih. Number of spins in voel. agneic field B 3. Gromagneic raio maging H in H O is mos sensiive Thermodnamic equilibrium magneiaion is B d B = does no precess Fund Biomag 8 All his does no generae a measurable signal 9-4

2 9-. How is he R signal deeced? Farada s Law of nducion d da Fund Biomag 8 B B surface R: da=consan db/ B( r, ) da Len s Law induced volage curren magneic field opposes he change in he magneic flu ha produces he curren (Compleel analogous o power generaion!) Bio-avar Law magneic field falls off wih r - agneic flu B B( r ) dl r 4 r 3 agneic field of dipole decreases wih disance : decreases wih disance from magneiaion Roaing frame revisied Equaion of moion for (alwas valid in an reference frame) in presence of B Roaing frame: reference frame roaing abou a frequenc RF Case : non-roaing reference frame ( RF =) Fund Biomag 8 d magneiaion precesses in plane wih frequenc B / Case : roaing frame wih RF = L magneiaion is saionar ( precesses in wih ero frequenc) Equaion of moion is sill valid, i.e. precession frequenc B eff / B eff = B eff Larmor frequenc in he roaing frame: = B eff B o B eff = B o - RF / magneiaion precesses in plane wih frequenc B eff / RF / o L o sin 9-7

3 chrödinger represenaion: d i H ih f H =cons in : e NB. upplemen: Roaing frame Wha are he quanum-mechanical equivalencies? How o deermine < ()> ec? pli H ino ime-invarian and -dependen erms: neracion represenaion (Higher order perurbaion heor) i d e ih / V / Quanum mechanical equivalencies: < >, < >, < > For one spin-/ ( H), i.e. wo energ levels i i For spin: i d H V ( ) H B sin V B cos RF Wha is V () [ RF =B ]? RF V B Quanum mechanical equivalencies: Fund Biomag 8 V ih / / ih e V e B, B,, Wha is he moion of magneiaion when an RF field induces a flip angle? Laboraor frame of reference d B B Roaing frame of reference d B B B Fund Biomag 8 B radiofrequenc field a Larmor frequenc L applied in ransverse () plane for duraion nuaion (a L ) of as i ips awa from he -ais. RF field roaes owards plane Ampliude B deermines how quickl he magneiaion is roaed. cos flip angle = B [rad] sin n R picall B /~.-kh (~ms) 9-9

4 Wha is resonance? Wha range of frequencies can be ecied wih a given RF pulse? A = L - RF (from L ) magneiaion eperiences effecive field srengh B eff B eff B B eff B eff Roaion ais : iled b. on resonance : B >> effecive field B shor RF pulses (<ms) ( B ) ( ) RF field wih ampliude B can ecie a range of frequencies on he order of ±B B B eff agneiaion (ip) / B eff / / off resonance : B << B B eff Quanum mechanical resonance Transiion probabili highes : h = hb / Fund Biomag How is he reurn o equilibrium governed? Relaaion Thermodnamic equilibrium RF pulse(s) B Afer eciaion Relaaion T, T B B Transverse magneiaion: (along and -ais, on resonance) d T d T Eponenial deca of () e T Fund Biomag 8 Equaions formall equivalen o linear aenuaion coefficien (-ra) (same soluion) 9-

5 Wha are he mechanisms of relaaion? Tumbling of olecule (Brownian moion) Creaes local oscillaing/flucuaing magneic field Flucuaing magneic field depends on orienaion of he whole molecule & correlaion ime c (=ime for molecule o roae rad) ources of flucuaing magneic field: Dipolar coupling beween nuclei and solven ineracion beween nuclear magneic dipoles Fund Biomag 8 Correlaion funcion G Describes degree of correlaion of moion sec apar Correlaion ime c : : viscosi k: Bolmann consan r: sie of molecule G( ) e 4r c 3kT 3 / c 9- Wha is he cause of loss of ransverse agneiaion? flucuaing microscopic magneic fields B T : phenomenological ime consan Range μs (bone) several s (waer) ransverse relaaion, T relaaion Cause: olecular dnamics and spin-spin ineracions Hisoricall : spin-spin relaaion loss of signal in plane emor relaaion Rule of humb for issue waer: The less issue (bone, solues, proeins, membranes) is in conac wih bulk waer, he longer bulk waer T Afer eciaion () e T random precession of nuclei dephasing of spins wih ime consan T Phase accrued over c : =B ib( r, ) c c ( r ) e dv voel c large (immobile spins): large phase differences shor T Fund Biomag 8 bone, membranes, proeins are R- invisible 9-3

6 Fund Biomag 8 How does reurn o equilibrium? Longiudinal relaaion T Afer deca of b T : Afer T relaaion Longiudinal Relaaion (along -ais) d T / T / T ( e ) () e Afer 9 eciaion: = echanisms: ncoheren molecular flucuaions on populaion disribuion corresponds o T=: he order of he Larmor frequenc L m=-/ possibili of energ ransfer maching frequenc h E E B Hisoricall : spin-laice relaaion N kt e (hea los o he surroundings) N m=/ T ~.5-5s (waer) Rule of humb for waer: The less issue is in conac wih bulk waer (bone, solues, proeins, membranes), he longer bulk waer T Bolmann disribuion re-esablished b energ (phoon) ransfer from spins o ssem (laice). os efficien when energ levels of ssem and nuclear spins mach, i.e. c ~ T minimal (bone: c >> T ~ s o min) Wha equaions describe he change in magneiaion? Bloch Equaions add relaaion erms (T, T ) o he fundamenal Eq of moion of magneiaion: d [ B B ] d [ B B ] d [ B B ] Fund Biomag 8 - B ubsiuing =-B + RF (B =B is no ime-dependen) ields: T () T T () Roaing reference frame B B ( )] [ B B along along along B Feli Bloch Phsics 95 B : RF field in roaing frame 9-5

7 Wha characeries he basic R signal? Free inducion deca: Precession and relaaion (afer RF pulse) Transverse magneiaion () e i e / T T T Longiudinal magneiaion (afer 9 RF eciaion) / T ( e ) T Fund Biomag NB. can never eceed T T 9-6 How can T changes be measured? repeiive pulsing ulipulse eperimen wih RF pulses applied ever TR seconds TR =9 (signal) TR / T ( TR) ( e ) The effec of T (and T ) on he signal depends on how i is measured Convers o TR (ms) Fund Biomag 8 ( ) cos / T ( e ) () / T ( e ) e / T Opimal TR o deec changes in T? Use noise error propagaion calculaion (Lesson ) F=ma: T e / df / T / T F e e 3 T T T T / T e TR op = T =TR op : T T 9-7

8 ummar agneic resonance so far agneic field B Equilibrium magneiaion ncreases wih. number of spins in voel. aic magneic field B 3. gromagneic raio RF field B (applied on-resonance i.e. L ) ils magneiaion ino ransverse plane Precession of is deeced T and T relaaion eponenial deca of ep. reurn of o reflec molecular environmen source of conras. Onl mobile spins (e.g. waer) are deeced. reflecs amoun of nuclei and hus waer conen [Waer conen varies 7-ml/g in bod (poor conras)] 3. Effec of T and T changes on image conras depend srongl on eperimenal parameers (RF pulse iming and flip angle) Fund Biomag 8 9-9

Biomedical Imaging. Nuclear Magnetic Resonance. Patrícia Figueiredo IST,

Biomedical Imaging. Nuclear Magnetic Resonance. Patrícia Figueiredo IST, Biomedical Imaging Nuclear agneic Resonance Parícia Figueiredo IST, 213-214 The wide specrum of medical imaging echniques (F. Deconinck, Vrije Universi, Belgium). Overview Nuclear magneism Precession:

More information

NMR Spectroscopy: Principles and Applications. Nagarajan Murali 1D - Methods Lecture 5

NMR Spectroscopy: Principles and Applications. Nagarajan Murali 1D - Methods Lecture 5 NMR pecroscop: Principles and Applicaions Nagarajan Murali D - Mehods Lecure 5 D-NMR To full appreciae he workings of D NMR eperimens we need o a leas consider wo coupled spins. omeimes we need o go up

More information

Spin echo. ½πI x -t -πi y -t

Spin echo. ½πI x -t -πi y -t y Spin echo ½πI - -πi y - : as needed, no correlaed wih 1/J. Funcions: 1. refocusing; 2. decoupling. Chemical shif evoluion is refocused by he spin-echo. Heeronuclear J-couplings evoluion are refocused

More information

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. = " M z T 1. (1" e "t /T 1 ) M z. (t) = M 0

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. =  M z T 1. (1 e t /T 1 ) M z. (t) = M 0 Relaxaion Bioengineering 28A Principles of Biomedical Imaging Fall Quarer 21 MRI Lecure 2 An exciaion pulse roaes he magneiaion vecor away from is equilibrium sae (purely longiudinal). The resuling vecor

More information

NMR Spectroscopy: Principles and Applications. Nagarajan Murali 2D NMR Heteronuclear 2D Lecture 7

NMR Spectroscopy: Principles and Applications. Nagarajan Murali 2D NMR Heteronuclear 2D Lecture 7 NMR pecroscop: Principles and Applicaions Nagarajan Murali D NMR Heeronuclear D Lecure 7 Heero Nuclear D-NMR Two dimensional NMR can be used o correlae NMR signals arising from differen nuclei such as

More information

RF Excitation. RF Excitation. Bioengineering 280A Principles of Biomedical Imaging

RF Excitation. RF Excitation. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 280A Principles of Biomedical Imaging Fall Quarer 2010 MRI Lecure 4 Simplified Drawing of Basic Insrumenaion. Body lies on able encompassed by coils for saic field B o, gradien fields (wo

More information

Lecture 5: Bloch equation and detection of magnetic resonance

Lecture 5: Bloch equation and detection of magnetic resonance Lecture 5: Bloch equation and detection of magnetic resonance Lecture aims to eplain:. Bloch equations, transverse spin relaation time and *. Detection of agnetic Resonance: Free Induction Deca Bloch equations

More information

Basics of Magnetic Resonance Imaging (MRI)

Basics of Magnetic Resonance Imaging (MRI) Basics of Magneic Resonance MRI Shaoing HUANG, PhD Singapore Universi of Technolog and Design OUTLINE Medical imaging modaliies Hisor of MRI Working principles of MRI Medical Modaliies Creae images of

More information

Product Operators. Fundamentals of MR Alec Ricciuti 3 March 2011

Product Operators. Fundamentals of MR Alec Ricciuti 3 March 2011 Produc Operaors Fundamenals of MR Alec Ricciui 3 March 2011 Ouline Review of he classical vecor model Operaors Mahemaical definiion Quanum mechanics Densiy operaors Produc operaors Spin sysems Single spin-1/2

More information

Lecture 4 Excitation & Acquisition Lecture Notes by Assaf Tal. To Measure A Signal, Spins Must Be Excited

Lecture 4 Excitation & Acquisition Lecture Notes by Assaf Tal. To Measure A Signal, Spins Must Be Excited Lecure 4 Eciaion & Acquisiion Lecure Noes b Assaf Tal To easure A Signal, Spins us e Ecied The Saic Nuclear agneic Field Is Too Weak To e Reliabl Deeced We ve previousl calculaed he bulk magneic momen

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE373 : Digial Communicaions Week 6-7: Deecion Error Probabiliy Signal Space Orhogonal Signal Space MAJU-Digial Comm.-Week-6-7 Deecion Mached filer reduces he received signal o a single variable zt, afer

More information

SE Sequence: 90º, 180º RF Pulses, Readout Gradient e.g., 256 voxels in a row

SE Sequence: 90º, 180º RF Pulses, Readout Gradient e.g., 256 voxels in a row Ouline for Today 1. 2. 3. Inroducion o MRI Quanum NMR and MRI in 0D Magneizaion, m(x,), in a Voxel Proon T1 Spin Relaxaion in a Voxel Proon Densiy MRI in 1D MRI Case Sudy, and Cavea Skech of he MRI Device

More information

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180 Algebra Chapers & : Trigonomeric Funcions of Angles and Real Numbers Chapers & : Trigonomeric Funcions of Angles and Real Numbers - Angle Measures Radians: - a uni (rad o measure he size of an angle. rad

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Exam 8NC20-8NC29 - Introduction to NMR and MRI

Exam 8NC20-8NC29 - Introduction to NMR and MRI Exam 8NC-8NC9 - Inroducion o NMR and MRI Friday April 5, 8.-. h For his exam you may use an ordinary calculaor (no a graphical one). In oal here are 6 assignmens and a oal of 64 poins can be earned. You

More information

Chapter 4 AC Network Analysis

Chapter 4 AC Network Analysis haper 4 A Nework Analysis Jaesung Jang apaciance Inducance and Inducion Time-Varying Signals Sinusoidal Signals Reference: David K. heng, Field and Wave Elecromagneics. Energy Sorage ircui Elemens Energy

More information

Refocusing t. Small Tip Angle Example. Small Tip Angle Example. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2010 MRI Lecture 5

Refocusing t. Small Tip Angle Example. Small Tip Angle Example. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2010 MRI Lecture 5 Bioengineering 280A Principles of Biomedical Imaging Fall Quarer 2010 MRI Lecure 5 RF N random seps of lengh d Refocusing ' M xy (,) = jm 0 "B 1 ()exp( jk(,))d %& 100 seps This has he 2D form random of

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Wave Motion Sections 1,2,4,5, I. Outlook II. What is wave? III.Kinematics & Examples IV. Equation of motion Wave equations V.

Wave Motion Sections 1,2,4,5, I. Outlook II. What is wave? III.Kinematics & Examples IV. Equation of motion Wave equations V. Secions 1,,4,5, I. Oulook II. Wha is wave? III.Kinemaics & Eamples IV. Equaion of moion Wave equaions V. Eamples Oulook Translaional and Roaional Moions wih Several phsics quaniies Energ (E) Momenum (p)

More information

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information

k B 2 Radiofrequency pulses and hardware

k B 2 Radiofrequency pulses and hardware 1 Exra MR Problems DC Medical Imaging course April, 214 he problems below are harder, more ime-consuming, and inended for hose wih a more mahemaical background. hey are enirely opional, bu hopefully will

More information

Lecture #8 Redfield theory of NMR relaxation

Lecture #8 Redfield theory of NMR relaxation Lecure #8 Redfield heory of NMR relaxaion Topics The ineracion frame of reference Perurbaion heory The Maser Equaion Handous and Reading assignmens van de Ven, Chapers 6.2. Kowalewski, Chaper 4. Abragam

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

EE243 Advanced Electromagnetic Theory Lec # 13: Waveguides and sources

EE243 Advanced Electromagnetic Theory Lec # 13: Waveguides and sources Applied M Fall 6, Neureuher Lecure #3 er /8/6 43 Advanced lecromagneic Theor Lec # 3: Waveguides and sources Source Free Region: ecor Poenials A and F Single direcion componen of A and F Give TM and T

More information

ln 2 1 ln y x c y C x

ln 2 1 ln y x c y C x Lecure 14 Appendi B: Some sample problems from Boas Here are some soluions o he sample problems assigned for Chaper 8 8: 6 Soluion: We wan o find he soluion o he following firs order equaion using separaion

More information

RF Excitation. RF Excitation. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 4

RF Excitation. RF Excitation. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 4 Bioengineering 80A Principles of Biomedical Imaging Fall Quarer 013 MRI Lecure 4 TT. Liu, BE80A, UCSD Fall 01 Simplified Drawing of Basic Insrumenaion. Body lies on able encompassed by coils for saic field

More information

III Spins and their Thermodynamics

III Spins and their Thermodynamics III Spins and their hermodnamics On the menu:. Relaation & thermal equilibrium. Relaation: phenomenolog (, ) 3. Relaation: microscopic description 4. * dephasing 5. Measuring, and * We ve remarked: So:

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

Maxwell s Equations and Electromagnetic Waves

Maxwell s Equations and Electromagnetic Waves Phsics 36: Waves Lecure 3 /9/8 Maxwell s quaions and lecromagneic Waves Four Laws of lecromagneism. Gauss Law qenc all da ρdv Inegral From From he vecor ideni da dv Therefore, we ma wrie Gauss Law as ρ

More information

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts)

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts) HW6: MRI Imaging Pulse Sequences (7 Problems for 100 ps) GOAL The overall goal of HW6 is o beer undersand pulse sequences for MRI image reconsrucion. OBJECTIVES 1) Design a spin echo pulse sequence o image

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

Entanglement and complexity of many-body wavefunctions

Entanglement and complexity of many-body wavefunctions Enanglemen and complexiy of many-body wavefuncions Frank Versraee, Universiy of Vienna Norber Schuch, Calech Ignacio Cirac, Max Planck Insiue for Quanum Opics Tobias Osborne, Univ. Hannover Overview Compuaional

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

[ ]e TE /T 2(x,y ) Saturation Recovery Sequence. T1-Weighted Scans. T1-Weighted Scans. I(x, y) ρ(x, y) 1 e TR /T 1

[ ]e TE /T 2(x,y ) Saturation Recovery Sequence. T1-Weighted Scans. T1-Weighted Scans. I(x, y) ρ(x, y) 1 e TR /T 1 Sauraion Recovery Sequence 90 TE 90 TE 90 Bioengineering 280A Principles of Biomedical Imaging Fall Quarer 2015 MRI Lecure 5 TR Gradien Echo TR [ ]e TE /T 2 * (x,y ) I(x, y) = ρ(x, y) 1 e TR /T 1 (x,y)

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance Lecure 5 Time series: ECM Bernardina Algieri Deparmen Economics, Saisics and Finance Conens Time Series Modelling Coinegraion Error Correcion Model Two Seps, Engle-Granger procedure Error Correcion Model

More information

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water.

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water. Name Exam I 1) A hole is punched in a full milk caron, 10 cm below he op. Wha is he iniial veloci of ouflow? a. 1.4 m/s b. 2.0 m/s c. 2.8 m/s d. 3.9 m/s e. 2.8 m/s Answer: a 2) In a wind unnel he pressure

More information

This is an example to show you how SMath can calculate the movement of kinematic mechanisms.

This is an example to show you how SMath can calculate the movement of kinematic mechanisms. Dec :5:6 - Kinemaics model of Simple Arm.sm This file is provided for educaional purposes as guidance for he use of he sofware ool. I is no guaraeed o be free from errors or ommissions. The mehods and

More information

Introduction to Physical Oceanography Homework 5 - Solutions

Introduction to Physical Oceanography Homework 5 - Solutions Laure Zanna //5 Inroducion o Phsical Oceanograph Homework 5 - Soluions. Inerial oscillaions wih boom fricion non-selecive scale: The governing equaions for his problem are This ssem can be wrien as where

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Outline of Topics. Analysis of ODE models with MATLAB. What will we learn from this lecture. Aim of analysis: Why such analysis matters?

Outline of Topics. Analysis of ODE models with MATLAB. What will we learn from this lecture. Aim of analysis: Why such analysis matters? of Topics wih MATLAB Shan He School for Compuaional Science Universi of Birmingham Module 6-3836: Compuaional Modelling wih MATLAB Wha will we learn from his lecure Aim of analsis: Aim of analsis. Some

More information

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba THE INTEACTION OF ADIATION AND MATTE: SEMICLASSICAL THEOY PAGE 26 III. EVIEW OF BASIC QUANTUM MECHANICS : TWO -LEVEL QUANTUM SYSTEMS : The lieaue of quanum opics and lase specoscop abounds wih discussions

More information

Experiment 123 Determination of the sound wave velocity with the method of Lissajous figures

Experiment 123 Determination of the sound wave velocity with the method of Lissajous figures perimen 3 Deerminaion of he sound wave veloci wih he mehod of Lissajous figures The aim of he eercise To sud acousic wave propagaion in he air To deermine of he sound wave veloci in he air Mehodolog of

More information

Observing Fast Molecular Dynamics with a Coherent Raman Oscillator

Observing Fast Molecular Dynamics with a Coherent Raman Oscillator FRISNO 13 - March 19, 2015 Observing Fas Molecular Dynamics wih a Coheren Raman Oscillaor Igal Aharonovich, Avi Pe er Physics Dep. and BINA cener for nanoechnology, Bar Ilan Universiy ISF Unlocking he

More information

SINUSOIDAL WAVEFORMS

SINUSOIDAL WAVEFORMS SINUSOIDAL WAVEFORMS The sinusoidal waveform is he only waveform whose shape is no affeced by he response characerisics of R, L, and C elemens. Enzo Paerno CIRCUIT ELEMENTS R [ Ω ] Resisance: Ω: Ohms Georg

More information

Be able to sketch a function defined parametrically. (by hand and by calculator)

Be able to sketch a function defined parametrically. (by hand and by calculator) Pre Calculus Uni : Parameric and Polar Equaions (7) Te References: Pre Calculus wih Limis; Larson, Hoseler, Edwards. B he end of he uni, ou should be able o complee he problems below. The eacher ma provide

More information

Ultrafast Laser Spectroscopy

Ultrafast Laser Spectroscopy Ulrafas Laser Specroscopy How do we do ulrafas laser specroscopy? Generic ulrafas specroscopy experimen The excie-probe experimen Lock-in deecion Transien-graing specroscopy Ulrafas polarizaion specroscopy

More information

Electromagnetic Induction: The creation of an electric current by a changing magnetic field.

Electromagnetic Induction: The creation of an electric current by a changing magnetic field. Inducion 1. Inducion 1. Observaions 2. Flux 1. Inducion Elecromagneic Inducion: The creaion of an elecric curren by a changing magneic field. M. Faraday was he firs o really invesigae his phenomenon o

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

2. The following diagram shows a circular loop of wire in a uniform magnetic field that points out of the page.

2. The following diagram shows a circular loop of wire in a uniform magnetic field that points out of the page. 1. Two elecromagneic waves ravel hrough emp space. Wave A as a wavelengh of 700 nm (red ligh), while Wave B has a wavelengh of 400 nm (blue ligh). Which saemen is rue? A) Wave A ravels faser because i

More information

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing.

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing. MECHANICS APPLICATIONS OF SECOND-ORDER ODES 7 Mechanics applicaions of second-order ODEs Second-order linear ODEs wih consan coefficiens arise in many physical applicaions. One physical sysems whose behaviour

More information

( ) = b n ( t) n " (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2.

( ) = b n ( t) n  (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2. Andrei Tokmakoff, MIT Deparmen of Chemisry, 3/14/007-6.4 PERTURBATION THEORY Given a Hamilonian H = H 0 + V where we know he eigenkes for H 0 : H 0 n = E n n, we can calculae he evoluion of he wavefuncion

More information

Chapter 1 Rotational dynamics 1.1 Angular acceleration

Chapter 1 Rotational dynamics 1.1 Angular acceleration Chaper Roaional dynamics. Angular acceleraion Learning objecives: Wha do we mean by angular acceleraion? How can we calculae he angular acceleraion of a roaing objec when i speeds up or slows down? How

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

Instructor: Dr. Heba A. Shaban Lecture # 4

Instructor: Dr. Heba A. Shaban Lecture # 4 EC 4 STATISTICAL COMMUNICATION THEORY Insrucor: Dr. Heba A. Shaban Lecure # 4 RANDOM SIGNALS AND NOISE A random process is a process i.e. variaion in ime or one dimensional space whose behavior is no compleel

More information

Second-Order Differential Equations

Second-Order Differential Equations WWW Problems and Soluions 3.1 Chaper 3 Second-Order Differenial Equaions Secion 3.1 Springs: Linear and Nonlinear Models www m Problem 3. (NonlinearSprings). A bod of mass m is aached o a wall b means

More information

Chapter Q1. We need to understand Classical wave first. 3/28/2004 H133 Spring

Chapter Q1. We need to understand Classical wave first. 3/28/2004 H133 Spring Chaper Q1 Inroducion o Quanum Mechanics End of 19 h Cenury only a few loose ends o wrap up. Led o Relaiviy which you learned abou las quarer Led o Quanum Mechanics (1920 s-30 s and beyond) Behavior of

More information

UNIT #4 TEST REVIEW EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #4 TEST REVIEW EXPONENTIAL AND LOGARITHMIC FUNCTIONS Name: Par I Quesions UNIT #4 TEST REVIEW EXPONENTIAL AND LOGARITHMIC FUNCTIONS Dae: 1. The epression 1 is equivalen o 1 () () 6. The eponenial funcion y 16 could e rewrien as y () y 4 () y y. The epression

More information

Math 1b. Calculus, Series, and Differential Equations. Final Exam Solutions

Math 1b. Calculus, Series, and Differential Equations. Final Exam Solutions Mah b. Calculus, Series, and Differenial Equaions. Final Exam Soluions Spring 6. (9 poins) Evaluae he following inegrals. 5x + 7 (a) (x + )(x + ) dx. (b) (c) x arcan x dx x(ln x) dx Soluion. (a) Using

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Polymer Engineering (MM3POE)

Polymer Engineering (MM3POE) Polymer Engineering (MM3POE) VISCOELASTICITY hp://www.noingham.ac.uk/~eazacl/mm3poe Viscoelasiciy 1 Conens Wha is viscoelasiciy? Fundamenals Creep & creep recovery Sress relaxaion Modelling viscoelasic

More information

10.6 Parametric Equations

10.6 Parametric Equations 0_006.qd /8/05 9:05 AM Page 77 Secion 0.6 77 Parameric Equaions 0.6 Parameric Equaions Wha ou should learn Evaluae ses of parameric equaions for given values of he parameer. Skech curves ha are represened

More information

Polarization Quadrature Interferometer

Polarization Quadrature Interferometer Laboraor for dapive Opics Rev 1: 5/11/04 UCO Lic Observaor Rev : 9/1/04 Polarizaion Quadraure nerferomeer Donald Gavel, UCSC Laboraor for dapive Opics This memo describes a Mach-Zehnder inerferomeer seup

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Note: For all questions, answer (E) NOTA means none of the above answers is correct.

Note: For all questions, answer (E) NOTA means none of the above answers is correct. Thea Logarihms & Eponens 0 ΜΑΘ Naional Convenion Noe: For all quesions, answer means none of he above answers is correc.. The elemen C 4 has a half life of 70 ears. There is grams of C 4 in a paricular

More information

Elements of Stochastic Processes Lecture II Hamid R. Rabiee

Elements of Stochastic Processes Lecture II Hamid R. Rabiee Sochasic Processes Elemens of Sochasic Processes Lecure II Hamid R. Rabiee Overview Reading Assignmen Chaper 9 of exbook Furher Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A Firs Course

More information

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS Andrei Tokmakoff, MIT Deparmen of Chemisry, 2/22/2007 2-17 2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS The mahemaical formulaion of he dynamics of a quanum sysem is no unique. So far we have described

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

Multi-Frequency Sheath Dynamics

Multi-Frequency Sheath Dynamics Muli-Frequency Sheah Dynamics Seven Shannon, Alex Paerson, Theodoros Panagopoulos, Daniel Hoffman, John Holland, Dennis Grimard (Universiy of Michigan) Purpose of research RF plasmas wih muliple frequency

More information

Spintronics of Nanomechanical Shuttle

Spintronics of Nanomechanical Shuttle * Spinronics of Nanomechanical Shule Rober Shekher In collaboraion wih: D.Fedores,. Gorelik, M. Jonson Göeborg Universiy / Chalmers Universiy of Technology Elecromechanics of Coulomb Blockade srucures

More information

CHANGE IN THE RESISTANCE OF THE SEMICONDUCTOR IN THE VARIABLE DEFORMATION FIELD

CHANGE IN THE RESISTANCE OF THE SEMICONDUCTOR IN THE VARIABLE DEFORMATION FIELD CHANGE IN THE RESISTANCE OF THE SEMICONDUCTOR IN THE VARIABLE DEFORMATION FIELD M. AHMETOGLU (AFRAILOV) 1, G. GULYAMOV 2, S. H. SHAMIRZAEV 2, A. G. GULYAMOV 2, M. G. DADAMIRZAEV 2, N. APRAILOV 2, F. KOÇAK

More information

Examples of Dynamic Programming Problems

Examples of Dynamic Programming Problems M.I.T. 5.450-Fall 00 Sloan School of Managemen Professor Leonid Kogan Examples of Dynamic Programming Problems Problem A given quaniy X of a single resource is o be allocaed opimally among N producion

More information

Math 2214 Sol Test 2B Spring 2015

Math 2214 Sol Test 2B Spring 2015 Mah 14 Sol Tes B Sring 015 roblem 1: An objec weighing ounds sreches a verical sring 8 fee beond i naural lengh before coming o res a equilibrium The objec is ushed u 6 fee from i s equilibrium osiion

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution:

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution: Example: The inpu o each of he circuis shown in Figure 10-N1 is he volage source volage. The oupu of each circui is he curren i( ). Deermine he oupu of each of he circuis. (a) (b) (c) (d) (e) Figure 10-N1

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

Age (x) nx lx. Age (x) nx lx dx qx

Age (x) nx lx. Age (x) nx lx dx qx Life Tables Dynamic (horizonal) cohor= cohor followed hrough ime unil all members have died Saic (verical or curren) = one census period (day, season, ec.); only equivalen o dynamic if populaion does no

More information

UNIT # 01 (PART I) BASIC MATHEMATICS USED IN PHYSICS, UNIT & DIMENSIONS AND VECTORS. 8. Resultant = R P Q, R P 2Q

UNIT # 01 (PART I) BASIC MATHEMATICS USED IN PHYSICS, UNIT & DIMENSIONS AND VECTORS. 8. Resultant = R P Q, R P 2Q J-Phsics UNI # 0 (PAR I) ASIC MAHMAICS USD IN PHYSICS, UNI & DIMNSIONS AND VCORS XRCIS I. nclosed area : A r so da dr r Here r 8 cm, dr da 5 cm/s () (8) (5) 80 cm /s. Slope d d 6 9 if angen is parallel

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

Chapter 9 Sinusoidal Steady State Analysis

Chapter 9 Sinusoidal Steady State Analysis Chaper 9 Sinusoidal Seady Sae Analysis 9.-9. The Sinusoidal Source and Response 9.3 The Phasor 9.4 pedances of Passive Eleens 9.5-9.9 Circui Analysis Techniques in he Frequency Doain 9.0-9. The Transforer

More information

ψ ( t) = c n ( t ) n

ψ ( t) = c n ( t ) n p. 31 PERTURBATION THEORY Given a Hamilonian H ( ) = H + V( ) where we know he eigenkes for H H n = En n we ofen wan o calculae changes in he ampliudes of n induced by V( ) : where ψ ( ) = c n ( ) n n

More information

Second quantization and gauge invariance.

Second quantization and gauge invariance. 1 Second quanizaion and gauge invariance. Dan Solomon Rauland-Borg Corporaion Moun Prospec, IL Email: dsolom@uic.edu June, 1. Absrac. I is well known ha he single paricle Dirac equaion is gauge invarian.

More information

Inductor Energy Storage

Inductor Energy Storage School of Compuer Science and Elecrical Engineering 5/5/ nducor Energy Sorage Boh capaciors and inducors are energy sorage devices They do no dissipae energy like a resisor, bu sore and reurn i o he circui

More information

MA Study Guide #1

MA Study Guide #1 MA 66 Su Guide #1 (1) Special Tpes of Firs Order Equaions I. Firs Order Linear Equaion (FOL): + p() = g() Soluion : = 1 µ() [ ] µ()g() + C, where µ() = e p() II. Separable Equaion (SEP): dx = h(x) g()

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Exam 1 Solutions. 1 Question 1. February 10, Part (A) 1.2 Part (B) To find equilibrium solutions, set P (t) = C = dp

Exam 1 Solutions. 1 Question 1. February 10, Part (A) 1.2 Part (B) To find equilibrium solutions, set P (t) = C = dp Exam Soluions Februar 0, 05 Quesion. Par (A) To find equilibrium soluions, se P () = C = = 0. This implies: = P ( P ) P = P P P = P P = P ( + P ) = 0 The equilibrium soluion are hus P () = 0 and P () =..

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

Sterilization D Values

Sterilization D Values Seriliaion D Values Seriliaion by seam consis of he simple observaion ha baceria die over ime during exposure o hea. They do no all live for a finie period of hea exposure and hen suddenly die a once,

More information

8.022 (E&M) Lecture 16

8.022 (E&M) Lecture 16 8. (E&M) ecure 16 Topics: Inducors in circuis circuis circuis circuis as ime Our second lecure on elecromagneic inducance 3 ways of creaing emf using Faraday s law: hange area of circui S() hange angle

More information

ME 452 Fourier Series and Fourier Transform

ME 452 Fourier Series and Fourier Transform ME 452 Fourier Series and Fourier ransform Fourier series From Joseph Fourier in 87 as a resul of his sudy on he flow of hea. If f() is almos any periodic funcion i can be wrien as an infinie sum of sines

More information