Second quantization and gauge invariance.

Size: px
Start display at page:

Download "Second quantization and gauge invariance."

Transcription

1 1 Second quanizaion and gauge invariance. Dan Solomon Rauland-Borg Corporaion Moun Prospec, IL June, 1. Absrac. I is well known ha he single paricle Dirac equaion is gauge invarian. This means ha observable quaniies, such as he curren densiy, are no affeced by a gauge ransformaion. However wha happens when he mehod of second quanizaion is applied o conver a single paricle heory ino a field heory? In his case i will be shown ha he heory is no longer gauge invarian. This will be shown by considering he second quanizaion of a zero mass Dirac field in 1+1 dimensions and examining he change of he curren densiy operaor due o a gauge ransformaion. 1. Inroducion. Quanum field heory is generally assumed o be gauge invarian [1,]. A change in he gauge is a change in he elecromagneic poenial ha doesn produce a change in he elecric or magneic field. Such a change should no produce any change in a physically observably quaniy such as he curren or charge densiy. However i is well known ha when he vacuum curren is calculaed using sandard perurbaion heory he resuls are no gauge invarian. Non-gauge invarian erms appear in he resuls which mus be removed o yield a physically correc resul. For an example of his consider Secion 14. of Greiner e al [] where he soluion for he vacuum polarizaion ensor is given by, where k and sp k k g k k k k g sp k (1.1) are defined in Ref. []. As discussed in [] he firs erm o he righ of he equals sign is gauge invarian however he second erm is no unless

2 sp k is zero. I is shown by Greiner e al ha his is no he case. Therefore his second erm mus be removed in order o ge a physically correc resul. Anoher insance of his ype of problem is provided in Secion 6.4 of Nishijima [] where an expression for he vacuum polarizaion ensor is derived and is shown o include non-gauge invarian erms which mus be dropped form he expression o obain he correc gauge invarian resul. A number of addiional examples and a deailed discussion of his problem is given in Ref [4,5]. The purpose of his paper is o show ha he failure of gauge invariance occurs during he process of second quanizaion of he quanum field. We will do his by examining he effec of a gauge ransformaion on he curren operaor of a second quanized Dirac field in 1+1 dimensions wih zero mass fermions.. Gauge invariance of he single paricle curren densiy. The Dirac equaion for a single massless fermion in 1+1 dimensions in he presence of an exernal elecric poenial,,,, where, and, A z A z, is, 1 z, i H z,,, 1 (.1) H H A z A z (.) H i z 1 where is he Pauli marix wih. 1 The elecric field is given by, A 1 A E z (.) (.4) A gauge ransformaion is a change in he elecric poenial ha does no produce a change in he elecric field. Such a change is given by, A, A A, A z. (.5) 1 1

3 where z, is an arbirary funcion. where z The soluion of (.1) can be easily shown o be,, and can be wrien as, The quaniy W z, where c1 z, and, and, Le, z, W z, z, (.6) is he soluion o he free field Dirac equaion, z, i H z, is given by, ih z, e z W z, (.7). (.8) e ic1 e ic c z saisfy he following differenial equaions, c c c A A1 z 1 1 z, A (.9) (.1) c A A1. (.11) z and z, A1 z (.1) Use his in (.4) o obain E. Therefore (.1) is a gauge ransformaion from zero elecric field. Use (.1) in (.1) and (.11) o obain,,,, c z c z z. (.1) 1 Use his in (.6) along wih (.9) and (.8) o obain, i z, ih The curren densiy for a single fermion is defined by, z, e e z. (.14),,, J z z z. (.15)

4 4 To deermine he impac of a gauge ransformaion on he curren densiy use (.14) ih i z, along wih z, e z e in he above expression for J z, ih ih, o obain, J z e z e z. (.16) We see ha he dependence on he funcion z, does no appear in he above expression. Therefore he gauge ransformaion does no change he curren densiy which proves ha he curren densiy for a single fermion is gauge invarian. This is, of course, a sandard resul.. Second quanizaion. As we have jus shown he curren densiy for a single fermion is gauge invarian. The nex sep is o apply he usual mehods of second quanizaion and o deermine wheher or no he resuling quanum field heory is gauge invarian. We will follow he approach of Ref [6] in which a second quanized formulaion for massless fermions ineracing wih an exernal field in a wo dimensional model was discussed. Le eigenvalues where,, p z, p be he eigenfuncions of he free field Hamilonian wih energy. They saisfy he relaionship,, p z, p, p, p H z z (.1) p 1 1 p e L p 1 p ipz ;, p p (.) and where is he sign of he energy, p is he momenum, and L is he 1 dimensional inegraion volume. We assume periodic boundary condiions so ha he momenum p r L quaniies where r is an ineger. According o he above definiions he, p z are negaive energy saes wih energy, p p and he quaniies, p z are posiive energy saes wih energy, p p. The, p z form an orhonormal basis se and saisfy,

5 5 z where inegraion from L o L, p, p z dz pp (.) is implied. Define he projec operaors P where P projecs ino he negaive energy saes and P projecs ino he posiive energy saes. The projecion operaors are defined by heir acion on a funcion f x : P f, k, k, k Following Ref. [6] define he field operaor, f. (.4) f bp f d P f The operaors bp f and d P f (CAR), b P f, b P g f, P g. (.5) saisfy he canonical anicommuaion relaionships, d P f, d P g f, P g. (.6) wih all oher CARs equal o zero. These operaors ac on a Fock space H. The vacuum sae H is annihilaed by b and d : b P f, d P f. (.7) Consider a uniary operaor V ha acs on he single paricle wave funcion ha V x V x x such. How does his uniary operaor impac he Fock space? If his V saisfies a cerain condiion hen he Fock space will be aced by he operaor V where V acs on he field operaor according o: Vf V f V I is has been shown ha in order for V. (.8) o exis he uniary operaor V mus be Hilber-Schmid [7]. In his case he operaor V is said o be uniary implemenable. 4. Failure of gauge invariance. In Ref [6] a generalized charge operaor Q A is defined, Q A b A b b A d d A b d A d (4.1) n nm m n nm m n nm m m nm n n, m

6 6 where A is a bounded operaor on he Hilber space and where, A, A, A,, A, nm, n, m nm n m, bn b, n, dn d, n If V is a uniary operaor acing on he Hilber space and V quanized operaor hen i is shown in [6] ha, V Q A V QVAV A (4.) is he associaed second (4.) where, A Tr P AP P Tr P AP P (4.4) wih, P. (4.5) V P V A formal expression for he curren densiy operaor smeared over a real-valued funcion f x is given in Ref [8] by, : : J f z z f z dz. (4.6) Using his relaionship as a model and referring o (4.1) we find ha he second quanized curren densiy operaor smeared over f z is given by Q f. The effec of he gauge ransformaion is o ac on he Hilber space wih he uniary operaor V i e. I has been shown ha his operaor is uniary implemenable [8, 9]. Use his in (4.) o show ha he effec of he gauge ransformaion on he curren operaor is, where, i i i i Q f e Q f e Q e fe f. (4.7) i i i i f Tr P fe P e P Tr P fe P e P. (4.8) The gauge ransformaion has aken curren operaor Q f operaor Q f ino he curren densiy. If he curren densiy operaor is gauge invarian hen he quaniy mus disappear from he righ hand side of (4.7).

7 7 i i Consider he erm Qe fe i i. Since e fe f i is eviden ha i i Q e fe Q f. Therefore his par of he expression is independen of. Nex we have o evaluae f. In he Appendix i is shown ha, Use his in (4.7) o obain, 1 d z f dzf z. (4.9) dz 1 d z Q f Q f dzf z. (4.1) dz The las erm in he above expression is, in general, non-zero and is dependen on Therefore he curren densiy operaor is no gauge invarian. 5. Conclusion. z. We have examined he effec of a gauge ransformaion on he curren densiy for zero mass Dirac field in 1+1 dimensions. This problem was moivaed by he fac ha sandard calculaions of he vacuum curren densiy in quanum field heory yield nongauge invarian resuls. I was shown ha for a single fermion he curren densiy is, indeed, gauge invarian. However when he mehod second quanizaion is used o produce a field heory hen he resul is no longer gauge invarian. This, hen, explains why calculaions of he vacuum curren using perurbaion heory do no produce gauge invarian resuls and mus be correced by removing he non-gauge invarian erms. Appendix. In he following we will evaluae f. Use (.4) and (4.5) o obain, This can be rewrien as, Tr P AP P, AV, V. (5.1), p, k, k, p p k Tr P AP P TR A z V z z z V z z z dzdz., k, k, p, p k p (5.) where TR is used o symbolize he race operaion over he spinnor indices only. Use (.) o obain,

8 8 and, 1 L ikzz ikzz, k z, k z e e (5.) k k L ipzz ipzz, p z, p z e e. (5.4) p Nex use A f p and V z 1 1 i z e along wih he above relaionships o obain, where, 1 i z i z (5.5) Tr P AP P dz dzf z e e B z z L i pk zz i pk zz. (5.6) B z z e e k, p Use p n L and k m L o obain, B z z exp i n m z z exp i n m z z n m L L. (5.7) Now ake L and use, in (5.7) o obain, n L L g g d (5.8) n L B z z d d exp i z z exp i z z (5.9) To evaluae his use s and s in he above o obain This yields, s 1 L B z z ds ds exp is z z exp is z z. (5.1) s L B z z sds exp is z z exp is z z. (5.11) This can be furher evaluaed o obain, Use, L d B z z i exp is z z ds dz. (5.1)

9 9 in (5.1) o obain, exp is z z ds z z (5.1) il d B z z z z dz. (5.14) Therefore, i d Tr P AP P dzdzf ze e z z dz This is evaluaed o obain, Similarly i can be shown ha, i z i z. (5.15) z 1 d Tr P AP P dzf z. (5.16) dz Tr P AP P Tr P AP P Use (5.16) and (5.17) along wih (4.4) o obain, which is Eq. (4.9) in he ex.. (5.17) f dzf z 1 d z dz

10 1 References. 1. J. Schwinger. On gauge invariance and vacuum polarizaion. Phys. Rev. 81: (1951).. W. Greiner, B. Muller, and T. Rafelski, Quanum Elecrodynamics of Srong Fields. Springer; Berlin (1985).. K. Nishijima, Fields and Paricles: Field heory and Disperion Relaions, W.A. Benjamin, New York: (1969). 4. D. Solomon, A new look a he problem of gauge invariance in quanum field heory, Phys. Scripa 76: (7). 5. D. Solomon, Gauge invariance and he vacuum sae. Can. J. Phys. 76: (1998). 6. P. Falkenseiner and H. Grosse. Fermions in ineracion wih ime-dependen fields Nucl. Phys. B5: (1988). 7. B. Thaller. The Dirac Equaion. Springer-Verlag; Berlin (1985). 8. A.L. Carey, C.A. Hurs, and D.M. O Brien. Fermion currens in 1+1 dimensions J. Mah. Phys. 4: 1-1 (198). 9. P. Falkenseiner and H. Grosse. Uniary implemenabiliy of gauge ransformaions for he Dirac operaor and he Schwinger erm. J. Mah. Phys. 8: (1987).

Dirac s hole theory versus field theory for a time dependent perturbation. Dan Solomon. Rauland-Borg Corporation 3450 W Oakton Skokie, IL USA

Dirac s hole theory versus field theory for a time dependent perturbation. Dan Solomon. Rauland-Borg Corporation 3450 W Oakton Skokie, IL USA 1 Dirac s hole heory versus field heory for a ime dependen perurbaion by Dan Solomon Rauland-Borg Corporaion 345 W Oakon Skokie, IL 676 USA Phone 1-847-34-8337 Email: dan.solomon@rauland.com ovember 3,

More information

The expectation value of the field operator.

The expectation value of the field operator. The expecaion value of he field operaor. Dan Solomon Universiy of Illinois Chicago, IL dsolom@uic.edu June, 04 Absrac. Much of he mahemaical developmen of quanum field heory has been in suppor of deermining

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Dirac s hole theory and the Pauli principle: clearing up the confusion.

Dirac s hole theory and the Pauli principle: clearing up the confusion. Dirac s hole heory and he Pauli rincile: clearing u he conusion. Dan Solomon Rauland-Borg Cororaion 8 W. Cenral Road Moun Prosec IL 656 USA Email: dan.solomon@rauland.com Absrac. In Dirac s hole heory

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS Andrei Tokmakoff, MIT Deparmen of Chemisry, 2/22/2007 2-17 2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS The mahemaical formulaion of he dynamics of a quanum sysem is no unique. So far we have described

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Exercises: Similarity Transformation

Exercises: Similarity Transformation Exercises: Similariy Transformaion Problem. Diagonalize he following marix: A [ 2 4 Soluion. Marix A has wo eigenvalues λ 3 and λ 2 2. Since (i) A is a 2 2 marix and (ii) i has 2 disinc eigenvalues, we

More information

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow KEY Mah 334 Miderm III Winer 008 secion 00 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

Non-equilibrium Green functions I

Non-equilibrium Green functions I Non-equilibrium Green funcions I Joachim Keller Lieraure: H. Haug, A.-P. Jauho, Quanum Kineics in Transpor and Opics of Semiconducors J. Rammer, H. Smih, Quanum field-heoreical mehod in ranspor heory of

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

The Quantum Theory of Atoms and Molecules: The Schrodinger equation. Hilary Term 2008 Dr Grant Ritchie

The Quantum Theory of Atoms and Molecules: The Schrodinger equation. Hilary Term 2008 Dr Grant Ritchie e Quanum eory of Aoms and Molecules: e Scrodinger equaion Hilary erm 008 Dr Gran Ricie An equaion for maer waves? De Broglie posulaed a every paricles as an associaed wave of waveleng: / p Wave naure of

More information

Lecture 9: Advanced DFT concepts: The Exchange-correlation functional and time-dependent DFT

Lecture 9: Advanced DFT concepts: The Exchange-correlation functional and time-dependent DFT Lecure 9: Advanced DFT conceps: The Exchange-correlaion funcional and ime-dependen DFT Marie Curie Tuorial Series: Modeling Biomolecules December 6-11, 2004 Mark Tuckerman Dep. of Chemisry and Couran Insiue

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

KEY. Math 334 Midterm III Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Fall 2008 sections 001 and 003 Instructor: Scott Glasgow KEY Mah 334 Miderm III Fall 28 secions and 3 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Scattering and Decays from Fermi s Golden Rule including all the s and c s

Scattering and Decays from Fermi s Golden Rule including all the s and c s PHY 362L Supplemenary Noe Scaering and Decays from Fermi s Golden Rule including all he s and c s (originally by Dirac & Fermi) References: Griffins, Inroducion o Quanum Mechanics, Prenice Hall, 1995.

More information

An Invariance for (2+1)-Extension of Burgers Equation and Formulae to Obtain Solutions of KP Equation

An Invariance for (2+1)-Extension of Burgers Equation and Formulae to Obtain Solutions of KP Equation Commun Theor Phys Beijing, China 43 2005 pp 591 596 c Inernaional Academic Publishers Vol 43, No 4, April 15, 2005 An Invariance for 2+1-Eension of Burgers Equaion Formulae o Obain Soluions of KP Equaion

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM Journal of elecrical sysems Special Issue N 01 : November 2009 pp: 48-52 Compuaion of he Effec of Space Harmonics on Saring Process of Inducion Moors Using TSFEM Youcef Ouazir USTHB Laboraoire des sysèmes

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

Waves are naturally found in plasmas and have to be dealt with. This includes instabilities, fluctuations, waveinduced

Waves are naturally found in plasmas and have to be dealt with. This includes instabilities, fluctuations, waveinduced Lecure 1 Inroducion Why is i imporan o sudy waves in plasma? Waves are naurally found in plasmas and have o be deal wih. This includes insabiliies, flucuaions, waveinduced ranspor... Waves can deliver

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Linear Time-invariant systems, Convolution, and Cross-correlation

Linear Time-invariant systems, Convolution, and Cross-correlation Linear Time-invarian sysems, Convoluion, and Cross-correlaion (1) Linear Time-invarian (LTI) sysem A sysem akes in an inpu funcion and reurns an oupu funcion. x() T y() Inpu Sysem Oupu y() = T[x()] An

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University THE MYSTERY OF STOCHASTIC MECHANICS Edward Nelson Deparmen of Mahemaics Princeon Universiy 1 Classical Hamilon-Jacobi heory N paricles of various masses on a Euclidean space. Incorporae he masses in he

More information

A New Perturbative Approach in Nonlinear Singularity Analysis

A New Perturbative Approach in Nonlinear Singularity Analysis Journal of Mahemaics and Saisics 7 (: 49-54, ISSN 549-644 Science Publicaions A New Perurbaive Approach in Nonlinear Singulariy Analysis Ta-Leung Yee Deparmen of Mahemaics and Informaion Technology, The

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term Applied Mahemaics E-Noes, 8(28), 4-44 c ISSN 67-25 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Properies Of Soluions To A Generalized Liénard Equaion Wih Forcing Term Allan Kroopnick

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations Second Order Linear Differenial Equaions Second order linear equaions wih consan coefficiens; Fundamenal soluions; Wronskian; Exisence and Uniqueness of soluions; he characerisic equaion; soluions of homogeneous

More information

Product Operators. Fundamentals of MR Alec Ricciuti 3 March 2011

Product Operators. Fundamentals of MR Alec Ricciuti 3 March 2011 Produc Operaors Fundamenals of MR Alec Ricciui 3 March 2011 Ouline Review of he classical vecor model Operaors Mahemaical definiion Quanum mechanics Densiy operaors Produc operaors Spin sysems Single spin-1/2

More information

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity ANNALES POLONICI MATHEMATICI LIV.2 99) L p -L q -Time decay esimae for soluion of he Cauchy problem for hyperbolic parial differenial equaions of linear hermoelasiciy by Jerzy Gawinecki Warszawa) Absrac.

More information

Many Electron Theory: Time dependent perturbations and propagation.

Many Electron Theory: Time dependent perturbations and propagation. Many Elecron Theory: Time dependen perurbaions and propagaion. Coninued noes for a workgroup Sepember-Ocober 00. Noes prepared by Jan Linderberg, Sepember 00 Hamilonians wih ime dependence. Evoluion in

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

( ) = b n ( t) n " (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2.

( ) = b n ( t) n  (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2. Andrei Tokmakoff, MIT Deparmen of Chemisry, 3/14/007-6.4 PERTURBATION THEORY Given a Hamilonian H = H 0 + V where we know he eigenkes for H 0 : H 0 n = E n n, we can calculae he evoluion of he wavefuncion

More information

4.1 - Logarithms and Their Properties

4.1 - Logarithms and Their Properties Chaper 4 Logarihmic Funcions 4.1 - Logarihms and Their Properies Wha is a Logarihm? We define he common logarihm funcion, simply he log funcion, wrien log 10 x log x, as follows: If x is a posiive number,

More information

Entanglement and complexity of many-body wavefunctions

Entanglement and complexity of many-body wavefunctions Enanglemen and complexiy of many-body wavefuncions Frank Versraee, Universiy of Vienna Norber Schuch, Calech Ignacio Cirac, Max Planck Insiue for Quanum Opics Tobias Osborne, Univ. Hannover Overview Compuaional

More information

ON THE DEGREES OF RATIONAL KNOTS

ON THE DEGREES OF RATIONAL KNOTS ON THE DEGREES OF RATIONAL KNOTS DONOVAN MCFERON, ALEXANDRA ZUSER Absrac. In his paper, we explore he issue of minimizing he degrees on raional knos. We se a bound on hese degrees using Bézou s heorem,

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

Multi-component Levi Hierarchy and Its Multi-component Integrable Coupling System

Multi-component Levi Hierarchy and Its Multi-component Integrable Coupling System Commun. Theor. Phys. (Beijing, China) 44 (2005) pp. 990 996 c Inernaional Academic Publishers Vol. 44, No. 6, December 5, 2005 uli-componen Levi Hierarchy and Is uli-componen Inegrable Coupling Sysem XIA

More information

11. The Top Quark and the Higgs Mechanism

11. The Top Quark and the Higgs Mechanism 11. The Top Quark and he Higgs Mechanism Paricle and Nuclear Physics Dr. Tina Poer Dr. Tina Poer 11. The Top Quark and he Higgs Mechanism 1 In his secion... Focus on he mos recen discoveries of fundamenal

More information

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively:

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively: XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

arxiv:cond-mat/ May 2002

arxiv:cond-mat/ May 2002 -- uadrupolar Glass Sae in para-hydrogen and orho-deuerium under pressure. T.I.Schelkacheva. arxiv:cond-ma/5538 6 May Insiue for High Pressure Physics, Russian Academy of Sciences, Troisk 49, Moscow Region,

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

The Contradiction within Equations of Motion with Constant Acceleration

The Contradiction within Equations of Motion with Constant Acceleration The Conradicion wihin Equaions of Moion wih Consan Acceleraion Louai Hassan Elzein Basheir (Daed: July 7, 0 This paper is prepared o demonsrae he violaion of rules of mahemaics in he algebraic derivaion

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Optimal Path Planning for Flexible Redundant Robot Manipulators

Optimal Path Planning for Flexible Redundant Robot Manipulators 25 WSEAS In. Conf. on DYNAMICAL SYSEMS and CONROL, Venice, Ialy, November 2-4, 25 (pp363-368) Opimal Pah Planning for Flexible Redundan Robo Manipulaors H. HOMAEI, M. KESHMIRI Deparmen of Mechanical Engineering

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in Circui Variables 1 Assessmen Problems AP 1.1 Use a produc of raios o conver wo-hirds he speed of ligh from meers per second o miles per second: ( ) 2 3 1 8 m 3 1 s 1 cm 1 m 1 in 2.54 cm 1 f 12 in 1 mile

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

A Note on Fractional Electrodynamics. Abstract

A Note on Fractional Electrodynamics. Abstract Commun Nonlinear Sci Numer Simula 8 (3 589 593 A Noe on Fracional lecrodynamics Hosein Nasrolahpour Absrac We invesigae he ime evoluion o he racional elecromagneic waves by using he ime racional Maxwell's

More information

Section 2.2 Charge and Current 2.6 b) The current direction is designated as the direction of the movement of positive charges.

Section 2.2 Charge and Current 2.6 b) The current direction is designated as the direction of the movement of positive charges. Chaper Soluions Secion. Inroducion. Curren source. Volage source. esisor.4 Capacior.5 Inducor Secion. Charge and Curren.6 b) The curren direcion is designaed as he direcion of he movemen of posiive charges..7

More information

The following report makes use of the process from Chapter 2 in Dr. Cumming s thesis.

The following report makes use of the process from Chapter 2 in Dr. Cumming s thesis. Zaleski 1 Joseph Zaleski Mah 451H Final Repor Conformal Mapping Mehods and ZST Hele Shaw Flow Inroducion The Hele Shaw problem has been sudied using linear sabiliy analysis and numerical mehods, bu a novel

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

t 2 B F x,t n dsdt t u x,t dxdt

t 2 B F x,t n dsdt t u x,t dxdt Evoluion Equaions For 0, fixed, le U U0, where U denoes a bounded open se in R n.suppose ha U is filled wih a maerial in which a conaminan is being ranspored by various means including diffusion and convecion.

More information

Physics 1402: Lecture 22 Today s Agenda

Physics 1402: Lecture 22 Today s Agenda Physics 142: ecure 22 Today s Agenda Announcemens: R - RV - R circuis Homework 6: due nex Wednesday Inducion / A curren Inducion Self-Inducance, R ircuis X X X X X X X X X long solenoid Energy and energy

More information

di Bernardo, M. (1995). A purely adaptive controller to synchronize and control chaotic systems.

di Bernardo, M. (1995). A purely adaptive controller to synchronize and control chaotic systems. di ernardo, M. (995). A purely adapive conroller o synchronize and conrol chaoic sysems. hps://doi.org/.6/375-96(96)8-x Early version, also known as pre-prin Link o published version (if available):.6/375-96(96)8-x

More information

The Miki-type identity for the Apostol-Bernoulli numbers

The Miki-type identity for the Apostol-Bernoulli numbers Annales Mahemaicae e Informaicae 46 6 pp. 97 4 hp://ami.ef.hu The Mii-ype ideniy for he Aposol-Bernoulli numbers Orli Herscovici, Toufi Mansour Deparmen of Mahemaics, Universiy of Haifa, 3498838 Haifa,

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Optimality Conditions for Unconstrained Problems

Optimality Conditions for Unconstrained Problems 62 CHAPTER 6 Opimaliy Condiions for Unconsrained Problems 1 Unconsrained Opimizaion 11 Exisence Consider he problem of minimizing he funcion f : R n R where f is coninuous on all of R n : P min f(x) x

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

AP Chemistry--Chapter 12: Chemical Kinetics

AP Chemistry--Chapter 12: Chemical Kinetics AP Chemisry--Chaper 12: Chemical Kineics I. Reacion Raes A. The area of chemisry ha deals wih reacion raes, or how fas a reacion occurs, is called chemical kineics. B. The rae of reacion depends on he

More information

The Maxwell Equations, the Lorentz Field and the Electromagnetic Nanofield with Regard to the Question of Relativity

The Maxwell Equations, the Lorentz Field and the Electromagnetic Nanofield with Regard to the Question of Relativity The Maxwell Equaions, he Lorenz Field and he Elecromagneic Nanofield wih Regard o he Quesion of Relaiviy Daniele Sasso * Absrac We discuss he Elecromagneic Theory in some main respecs and specifically

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Short Introduction to Fractional Calculus

Short Introduction to Fractional Calculus . Shor Inroducion o Fracional Calculus Mauro Bologna Deparameno de Física, Faculad de Ciencias Universidad de Tarapacá, Arica, Chile email: mbologna@ua.cl Absrac In he pas few years fracional calculus

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

arxiv: v1 [math.pr] 19 Feb 2011

arxiv: v1 [math.pr] 19 Feb 2011 A NOTE ON FELLER SEMIGROUPS AND RESOLVENTS VADIM KOSTRYKIN, JÜRGEN POTTHOFF, AND ROBERT SCHRADER ABSTRACT. Various equivalen condiions for a semigroup or a resolven generaed by a Markov process o be of

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Direc Curren Physics for Scieniss & Engineers 2 Spring Semeser 2005 Lecure 16 This week we will sudy charges in moion Elecric charge moving from one region o anoher is called elecric curren Curren is all

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

Math 2214 Solution Test 1A Spring 2016

Math 2214 Solution Test 1A Spring 2016 Mah 14 Soluion Tes 1A Spring 016 sec Problem 1: Wha is he larges -inerval for which ( 4) = has a guaraneed + unique soluion for iniial value (-1) = 3 according o he Exisence Uniqueness Theorem? Soluion

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type In. J. Conemp. Mah. Sci., Vol. 2, 27, no. 2, 89-2 Monoonic Soluions of a Class of Quadraic Singular Inegral Equaions of Volerra ype Mahmoud M. El Borai Deparmen of Mahemaics, Faculy of Science, Alexandria

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information