Structure preserving Krylov-subspace methods for Lyapunov equations

Size: px
Start display at page:

Download "Structure preserving Krylov-subspace methods for Lyapunov equations"

Transcription

1 Structure preserving Krylov-subspace methods for Lyapunov equations Matthias Bollhöfer, André Eppler Institute Computational Mathematics TU Braunschweig MoRePas Workshop, Münster September 17, 2009 System Reduction for Nanoscale IC Design

2 2 / 26 Overview 1 Introduction 2 3 4

3 3 / 26 Overview Introduction 1 Introduction 2 3 4

4 SyreNe-Project Goals Develop and compare methods for system reduction in the design of high dimensional nanoelectronic ICs. (Integrated Circuits) Test these methods in the practice of semiconductor development. Two complementary approaches: reduction of the whole system by a global method creation of reduced order models for single devices and large linear sub-circuits 4 / 26

5 5 / 26 Generalized projected Lyapunov-equations EXA T + AXE T = P l BB T P T l, X = P T r XP r (1) E T YA + A T YE = P T r C T CP r, Y = P l YP T l (2) E, A R n n B, C T R n ns equations arising from the work group of T. Stykel E singular, n s n existence and uniqueness of solution proved

6 5 / 26 Generalized Lyapunov-equations EXA T + AXE T = B B T (1) E T YA + A T YE = C T (2) E, A R n n B, CT R n ns equations arising from the work group of T. Stykel E singular, n s n existence and uniqueness of solution proved

7 5 / 26 Generalized Lyapunov-equations EXA T + AXE T = B B T (1) E T YA + A T YE = C T (2) E, A R n n B, CT R n ns equations arising from the work group of T. Stykel E singular, n s n existence and uniqueness of solution proved

8 6 / 26 Definitions Let A := E A + A E be the Lyapunov operator and vec be the operator R n n R n n which puts the columns of a matrix as column vector X = vec(x). Rewrite the Lyapunov equations (1), (2) as linear systems AX = B with B = vec( B B T ) and C = vec( C T C). Problem: Dimension n 2 AY = C Good news: E, A are usually sparse when dealing with circuit equations.

9 6 / 26 Definitions Let A := E A + A E be the Lyapunov operator and vec be the operator R n n R n n which puts the columns of a matrix as column vector X = vec(x). Rewrite the Lyapunov equations (1), (2) as linear systems AX = B with B = vec( B B T ) and C = vec( C T C). Problem: Dimension n 2 AY = C Good news: E, A are usually sparse when dealing with circuit equations.

10 Structure preservation principle 7 / 26 right hand side is low rank and symmetric these properties transfer to the solution X of (1) iterative solver has to keep that structure in each step possible: Krylov-subspace methods, only need linear combination of vectors and applying the Lyapunov-operator use factorization X = VZV T =

11 Structure preservation - linear combination 8 / 26 Let X 1 = V 1 Z 1 V T 1, X 2 = V 2 Z 2 V T 2 be low rank matrices, then X 3 = α 1 X 1 + α 2 X 2 = α 1 V 1 Z 1 V1 T + α 2V 2 Z 2 V2 T ( α1 Z = (V 1 V 2 ) 1 0 }{{} 0 α 2 Z 2 V 3 has again a low rank factorization. Rank estimation rank(x 3 ) rank(x 1 ) + rank(x 2 ) } {{ } Z 3 ) (V 1 V 2 ) T }{{} V3 T

12 Structure preservation - apply Lyapunov operator 9 / 26 Let X = VZV T be a low rank matrix, then again X a = AX = E VZV T A T + A VZV T E T ( ) 0 Z = (EV AV ) (EV AV ) T }{{} Z 0 }{{} V a }{{} Va T Z a a low rank factorization exists. Rank estimation rank(x a ) 2 rank(x)

13 10 / 26 Overview Introduction 1 Introduction 2 3 4

14 11 / 26 ADI general Introduction properties iterative method for solving AX = B need shift parameters τ j, essential for convergence behavior, difficult to compute can be applied to solve Lyapunov equations X 0 = 0

15 11 / 26 ADI general Introduction properties iterative method for solving AX = B (E + τ j A)X j 1 = B B T X j 1 (E τ j A) T 2 (E + τ j A)X j = B B T X T (E τ j 1 j A) T 2 need shift parameters τ j, essential for convergence behavior, difficult to compute can be applied to solve Lyapunov equations X 0 = 0

16 ADI general Introduction properties iterative method for solving AX = B need shift parameters τ j, essential for convergence behavior, difficult to compute can be applied to solve Lyapunov equations E, A R n n B, CT R n ns X 0 = 0 EXA T + AXE T = B B T E T YA + A T YE = C T C 11 / 26

17 ADI for gen. Lyapunov 12 / 26 Standard ADI recursion (E + τ j A)X j 1 = B B T X j 1 (E τ j A) T (3) 2 (E + τ j A)X j = B B T X T (E τ j 1 j A) T (4) 2 Use (3) and (4) to obtain X j = 2τ j (E + τ j A) 1 B BT (E + τ j A) T (5) + (E + τ j A) 1 (E τ j A)X j 1 (E τ j A) T (E + τ j A) T. This symmetric sum can be factored X j = Z j Z T j.

18 ADI for gen. Lyapunov 12 / 26 Standard ADI recursion (E + τ j A)X j 1 = B B T X j 1 (E τ j A) T (3) 2 (E + τ j A)X j = B B T X T (E τ j 1 j A) T (4) 2 Use (3) and (4) to obtain X j = 2τ j (E + τ j A) 1 B BT (E + τ j A) T (5) + (E + τ j A) 1 (E τ j A)X j 1 (E τ j A) T (E + τ j A) T. This symmetric sum can be factored X j = Z j Z T j.

19 CF-ADI [Li,White 04] 13 / 26 Cholesky Factor Alternating Direct Implicit Iteration computes the Cholesky-Factor Z of the solution X = ZZ T Algorithm 1 compute shift parameters τ 1,...τ j 2 z 1 = 2τ 1 (E + τ 1 A) 1 B Z = [z 1 ] 3 For i=2..j z i = P i 1 z i 1, with 2τi+1 P i = [I (τ i+1 + τ i )(E + τ i+1 A) 1 ] 2τi Z = [Z z i ]

20 14 / 26 Overview Introduction 1 Introduction 2 3 4

21 15 / 26 Introduction iterative method for solving AX = B allows flexible preconditioning in each step calculates an orthonormal basis of m-dimensional Krylov space K m (R 0, A) = span(r 0, AR 0,..., A m 1 R 0 )

22 algorithm [Saad 92] Initialize: choose X 0 and dimension m Arnoldi process: 1 compute R 0 = B AX 0, h 1,0 = R 0, V 1 = R 0 h 1,0 2 for j = 1... m a) compute W j = M 1 V j b) compute V j+1 = AW j c) compute i = 1... j MGS h i,j = (V j+1, V i ), V j+1 = V j+1 h i,j V i h j+1,j = V j+1, V j+1 = V j+1 h j+1,j 3 Let W m := [W 1... W m ] Compute solution X m = X 0 + W m Y m with Y m minimizes h 1,0 e 1 H m Y Restart : If not converged X 0 = X m 16 / 26

23 Rank truncation strategy 1 obtain starting factorization VZV T 2 compute QR factorization of V = QR 3 compute EVD of RZR T = UΣU T 4 truncate rank to given relative tolerance (tol p, tol r ), keep only first r columns Û = U(r), ˆΣ = Σ(r) V Z V T X = V Z V T 17 / 26

24 Rank truncation strategy 1 obtain starting factorization VZV T 2 compute QR factorization of V = QR 3 compute EVD of RZR T = UΣU T 4 truncate rank to given relative tolerance (tol p, tol r ), keep only first r columns Û = U(r), ˆΣ = Σ(r) V Z V T X = QR Z R T Q T 17 / 26

25 Rank truncation strategy 1 obtain starting factorization VZV T 2 compute QR factorization of V = QR 3 compute EVD of RZR T = UΣU T 4 truncate rank to given relative tolerance (tol p, tol r ), keep only first r columns Û = U(r), ˆΣ = Σ(r) V Z V T X = Q UΣU T Q T 17 / 26

26 Rank truncation strategy 1 obtain starting factorization VZV T 2 compute QR factorization of V = QR 3 compute EVD of RZR T = UΣU T 4 truncate rank to given relative tolerance (tol p, tol r ), keep only first r columns Û = U(r), ˆΣ = Σ(r) V Z V T X = Q Û ˆΣ ÛT Q T 17 / 26

27 Rank truncation strategy 17 / 26 1 obtain starting factorization VZV T 2 compute QR factorization of V = QR 3 compute EVD of RZR T = UΣU T 4 truncate rank to given relative tolerance (tol p, tol r ), keep only first r columns Û = U(r), ˆΣ = Σ(r) ˆV ˆΣ ˆV T X = ˆV ˆΣ ˆV T Result X = ˆV ˆΣ ˆV T with ˆV = QÛ ˆV unitary matrix ˆΣ diagonal matrix

28 Preconditioning 18 / 26 Properties must preserve structure (important fact) may vary in each step should increase convergence rate possible candidate: CF-ADI Apply 1 cycle of CF-ADI to EW j A T + AW j E T = V j.

29 Preconditioning 18 / 26 Properties must preserve structure (important fact) may vary in each step should increase convergence rate possible candidate: CF-ADI Apply 1 cycle of CF-ADI to EW j A T + AW j E T = V j.

30 Preconditioning 18 / 26 Properties must preserve structure (important fact) may vary in each step should increase convergence rate possible candidate: CF-ADI Apply 1 cycle of CF-ADI to EW j A T + AW j E T = V j.

31 19 / 26 Overview Introduction Number of shifts Perturbed shifts Rank truncation 1 Introduction Number of shifts Perturbed shifts Rank truncation

32 20 / 26 Number of shifts Introduction Number of shifts Perturbed shifts Rank truncation rank X = 18 CF-ADI more sensitive to number of shift parameters

33 21 / 26 Number of shifts Introduction Number of shifts Perturbed shifts Rank truncation minimum number of shifts necessary increasing the number does not result in further profit convenient range from 10 to 30 optimal number? (problem dependend) is less sensitive to specific number Conjecture A lower number of shifts is sufficient compared to pure CF-ADI.

34 21 / 26 Number of shifts Introduction Number of shifts Perturbed shifts Rank truncation minimum number of shifts necessary increasing the number does not result in further profit convenient range from 10 to 30 optimal number? (problem dependend) is less sensitive to specific number Conjecture A lower number of shifts is sufficient compared to pure CF-ADI.

35 22 / 26 Introduction Number of shifts Perturbed shifts Rank truncation Perturbed shifts τ i δ [0.99, 1.01] randomly chosen,12 shifts CF-ADI much more sensitive to perturbation of shift parameters

36 Rank truncation Introduction Number of shifts Perturbed shifts Rank truncation rank X = 18, tolr r = 1e 12, 12 shifts certain accuracy of tol p needed for convergence problem depended similar results for tol r 23 / 26

37 Summary Introduction Benefits structure preservation (low rank, symmetry) is fulfilled algorithm is less sensitive to perturbations and number of ADI shift parameters τ j Problems convergence strongly depends on CF-ADI number of columns of CF-ADI iterates increases in each step but rank only increases slightly expensive rank truncation Remedy: need rank compression or stopping criteria within CF-ADI 24 / 26

38 25 / 26 Outlook Introduction Possible improvements compress ranks within ADI compute faster low rank factorization improve rank truncation strategy (parameters tol p and tol r ) use different Krylov-subspace methods

39 25 / 26 Outlook Introduction Possible improvements compress ranks within ADI compute faster low rank factorization improve rank truncation strategy (parameters tol p and tol r ) use different Krylov-subspace methods

40 } { z Dipl.-Math. techn. Thomas Mach Prof. Dr. Michael Hinze Dipl.Technomath. Martin Kunkel Prof. Dr. Heike Faßbender Juan Amorocho M.Sc. Dr. Patrick Lang Dipl.-Math. Oliver Schmidt Dr. Tatjana Stykel Dr. Andreas Steinbrecher } } Dipl.-Math. techn. André Eppler TU Berlin Prof. Dr. Matthias Bollhöfer { z { z } } Dipl.-Math. techn. André Schneider { z { z TU Chemnitz } ITWM Kaiserslautern TU Braunschweig z Prof. Dr. Peter Benner Universität Hamburg TU Braunschweig { BMBF Verbundprojekt SyreNe

ADI-preconditioned FGMRES for solving large generalized Lyapunov equations - A case study

ADI-preconditioned FGMRES for solving large generalized Lyapunov equations - A case study -preconditioned for large - A case study Matthias Bollhöfer, André Eppler TU Braunschweig Institute Computational Mathematics Syrene-MOR Workshop, TU Hamburg October 30, 2008 2 / 20 Outline 1 2 Overview

More information

SyreNe System Reduction for Nanoscale IC Design

SyreNe System Reduction for Nanoscale IC Design System Reduction for Nanoscale Max Planck Institute for Dynamics of Complex Technical Systeme Computational Methods in Systems and Control Theory Group Magdeburg Technische Universität Chemnitz Fakultät

More information

System Reduction for Nanoscale IC Design (SyreNe)

System Reduction for Nanoscale IC Design (SyreNe) System Reduction for Nanoscale IC Design (SyreNe) Peter Benner February 26, 2009 1 Introduction Since 1993, the German Federal Ministry of Education and Research (BMBF Bundesministerium füa Bildung und

More information

A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations

A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations Peter Benner Max-Planck-Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory

More information

Model reduction of coupled systems

Model reduction of coupled systems Model reduction of coupled systems Tatjana Stykel Technische Universität Berlin ( joint work with Timo Reis, TU Kaiserslautern ) Model order reduction, coupled problems and optimization Lorentz Center,

More information

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES 48 Arnoldi Iteration, Krylov Subspaces and GMRES We start with the problem of using a similarity transformation to convert an n n matrix A to upper Hessenberg form H, ie, A = QHQ, (30) with an appropriate

More information

Krylov subspace methods for projected Lyapunov equations

Krylov subspace methods for projected Lyapunov equations Krylov subspace methods for projected Lyapunov equations Tatjana Stykel and Valeria Simoncini Technical Report 735-2010 DFG Research Center Matheon Mathematics for key technologies http://www.matheon.de

More information

Model Order Reduction of Electrical Circuits with Nonlinear Elements

Model Order Reduction of Electrical Circuits with Nonlinear Elements Model Order Reduction of Electrical Circuits with Nonlinear Elements Tatjana Stykel and Technische Universität Berlin July, 21 Model Order Reduction of Electrical Circuits with Nonlinear Elements Contents:

More information

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS BALANCING-RELATED Peter Benner Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität Chemnitz Computational Methods with Applications Harrachov, 19 25 August 2007

More information

MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS

MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS Ulrike Baur joint work with Peter Benner Mathematics in Industry and Technology Faculty of Mathematics Chemnitz University of Technology

More information

Solving large Hamiltonian eigenvalue problems

Solving large Hamiltonian eigenvalue problems Solving large Hamiltonian eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State University Adaptivity and Beyond, Vancouver, August 2005 p.1 Some Collaborators

More information

Model order reduction of electrical circuits with nonlinear elements

Model order reduction of electrical circuits with nonlinear elements Model order reduction of electrical circuits with nonlinear elements Andreas Steinbrecher and Tatjana Stykel 1 Introduction The efficient and robust numerical simulation of electrical circuits plays a

More information

Model reduction of nonlinear circuit equations

Model reduction of nonlinear circuit equations Model reduction of nonlinear circuit equations Tatjana Stykel Technische Universität Berlin Joint work with T. Reis and A. Steinbrecher BIRS Workshop, Banff, Canada, October 25-29, 2010 T. Stykel. Model

More information

Algorithms that use the Arnoldi Basis

Algorithms that use the Arnoldi Basis AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis Fall 2007 Arnoldi Methods Dianne P. O Leary c 2006, 2007 Algorithms that use the Arnoldi Basis Reference: Chapter 6 of Saad The Arnoldi Basis How to

More information

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Preliminaries Eigenvalue problems 2012 1 / 14

More information

Low Rank Approximation Lecture 7. Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL

Low Rank Approximation Lecture 7. Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL Low Rank Approximation Lecture 7 Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL daniel.kressner@epfl.ch 1 Alternating least-squares / linear scheme General setting:

More information

Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries

Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries Fakultät für Mathematik TU Chemnitz, Germany Peter Benner benner@mathematik.tu-chemnitz.de joint work with Heike Faßbender

More information

Parametrische Modellreduktion mit dünnen Gittern

Parametrische Modellreduktion mit dünnen Gittern Parametrische Modellreduktion mit dünnen Gittern (Parametric model reduction with sparse grids) Ulrike Baur Peter Benner Mathematik in Industrie und Technik, Fakultät für Mathematik Technische Universität

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

Numerical Methods I Non-Square and Sparse Linear Systems

Numerical Methods I Non-Square and Sparse Linear Systems Numerical Methods I Non-Square and Sparse Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 25th, 2014 A. Donev (Courant

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information

KRYLOV SUBSPACE METHODS FOR PROJECTED LYAPUNOV EQUATIONS. 1. Introduction. Consider the projected continuous-time algebraic Lyapunov equation (PCALE)

KRYLOV SUBSPACE METHODS FOR PROJECTED LYAPUNOV EQUATIONS. 1. Introduction. Consider the projected continuous-time algebraic Lyapunov equation (PCALE) KRYLOV SUBSPACE METHODS FOR PROJECTED LYAPUNOV EQUATIONS TATJANA STYKEL AND VALERIA SIMONCINI Abstract. We consider the numerical solution of projected Lyapunov equations using Krylov subspace iterative

More information

Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems

Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems Jos M. Badía 1, Peter Benner 2, Rafael Mayo 1, Enrique S. Quintana-Ortí 1, Gregorio Quintana-Ortí 1, A. Remón 1 1 Depto.

More information

Model Order Reduction of Continuous LTI Large Descriptor System Using LRCF-ADI and Square Root Balanced Truncation

Model Order Reduction of Continuous LTI Large Descriptor System Using LRCF-ADI and Square Root Balanced Truncation , July 1-3, 15, London, U.K. Model Order Reduction of Continuous LI Large Descriptor System Using LRCF-ADI and Square Root Balanced runcation Mehrab Hossain Likhon, Shamsil Arifeen, and Mohammad Sahadet

More information

PROJECTED GMRES AND ITS VARIANTS

PROJECTED GMRES AND ITS VARIANTS PROJECTED GMRES AND ITS VARIANTS Reinaldo Astudillo Brígida Molina rastudillo@kuaimare.ciens.ucv.ve bmolina@kuaimare.ciens.ucv.ve Centro de Cálculo Científico y Tecnológico (CCCT), Facultad de Ciencias,

More information

The Newton-ADI Method for Large-Scale Algebraic Riccati Equations. Peter Benner.

The Newton-ADI Method for Large-Scale Algebraic Riccati Equations. Peter Benner. The Newton-ADI Method for Large-Scale Algebraic Riccati Equations Mathematik in Industrie und Technik Fakultät für Mathematik Peter Benner benner@mathematik.tu-chemnitz.de Sonderforschungsbereich 393 S

More information

Krylov Subspace Methods that Are Based on the Minimization of the Residual

Krylov Subspace Methods that Are Based on the Minimization of the Residual Chapter 5 Krylov Subspace Methods that Are Based on the Minimization of the Residual Remark 51 Goal he goal of these methods consists in determining x k x 0 +K k r 0,A such that the corresponding Euclidean

More information

Efficient Implementation of Large Scale Lyapunov and Riccati Equation Solvers

Efficient Implementation of Large Scale Lyapunov and Riccati Equation Solvers Efficient Implementation of Large Scale Lyapunov and Riccati Equation Solvers Jens Saak joint work with Peter Benner (MiIT) Professur Mathematik in Industrie und Technik (MiIT) Fakultät für Mathematik

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

S N. hochdimensionaler Lyapunov- und Sylvestergleichungen. Peter Benner. Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz

S N. hochdimensionaler Lyapunov- und Sylvestergleichungen. Peter Benner. Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz Ansätze zur numerischen Lösung hochdimensionaler Lyapunov- und Sylvestergleichungen Peter Benner Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz S N SIMULATION www.tu-chemnitz.de/~benner

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 4 Eigenvalue Problems Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Data Mining Lecture 4: Covariance, EVD, PCA & SVD

Data Mining Lecture 4: Covariance, EVD, PCA & SVD Data Mining Lecture 4: Covariance, EVD, PCA & SVD Jo Houghton ECS Southampton February 25, 2019 1 / 28 Variance and Covariance - Expectation A random variable takes on different values due to chance The

More information

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems Topics The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems What about non-spd systems? Methods requiring small history Methods requiring large history Summary of solvers 1 / 52 Conjugate

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

A POD Projection Method for Large-Scale Algebraic Riccati Equations

A POD Projection Method for Large-Scale Algebraic Riccati Equations A POD Projection Method for Large-Scale Algebraic Riccati Equations Boris Kramer Department of Mathematics Virginia Tech Blacksburg, VA 24061-0123 Email: bokr@vt.edu John R. Singler Department of Mathematics

More information

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University Lecture 17 Methods for System of Linear Equations: Part 2 Songting Luo Department of Mathematics Iowa State University MATH 481 Numerical Methods for Differential Equations Songting Luo ( Department of

More information

Krylov Subspace Type Methods for Solving Projected Generalized Continuous-Time Lyapunov Equations

Krylov Subspace Type Methods for Solving Projected Generalized Continuous-Time Lyapunov Equations Krylov Subspace Type Methods for Solving Proected Generalized Continuous-Time Lyapunov Equations YUIAN ZHOU YIQIN LIN Hunan University of Science and Engineering Institute of Computational Mathematics

More information

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering A short course on: Preconditioned Krylov subspace methods Yousef Saad University of Minnesota Dept. of Computer Science and Engineering Universite du Littoral, Jan 19-3, 25 Outline Part 1 Introd., discretization

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9 Spring 2015 Lecture 9 REVIEW Lecture 8: Direct Methods for solving (linear) algebraic equations Gauss Elimination LU decomposition/factorization Error Analysis for Linear Systems and Condition Numbers

More information

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294)

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294) Conjugate gradient method Descent method Hestenes, Stiefel 1952 For A N N SPD In exact arithmetic, solves in N steps In real arithmetic No guaranteed stopping Often converges in many fewer than N steps

More information

KRYLOV SUBSPACE ITERATION

KRYLOV SUBSPACE ITERATION KRYLOV SUBSPACE ITERATION Presented by: Nab Raj Roshyara Master and Ph.D. Student Supervisors: Prof. Dr. Peter Benner, Department of Mathematics, TU Chemnitz and Dipl.-Geophys. Thomas Günther 1. Februar

More information

Krylov Subspaces. Lab 1. The Arnoldi Iteration

Krylov Subspaces. Lab 1. The Arnoldi Iteration Lab 1 Krylov Subspaces Lab Objective: Discuss simple Krylov Subspace Methods for finding eigenvalues and show some interesting applications. One of the biggest difficulties in computational linear algebra

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 4: Iterative Methods PD

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.4: Krylov Subspace Methods 2 / 51 Krylov Subspace Methods In this chapter we give

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 5: Projectors and QR Factorization Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 14 Outline 1 Projectors 2 QR Factorization

More information

ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH

ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH V. FABER, J. LIESEN, AND P. TICHÝ Abstract. Numerous algorithms in numerical linear algebra are based on the reduction of a given matrix

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

ITERATIVE PROJECTION METHODS FOR SPARSE LINEAR SYSTEMS AND EIGENPROBLEMS CHAPTER 11 : JACOBI DAVIDSON METHOD

ITERATIVE PROJECTION METHODS FOR SPARSE LINEAR SYSTEMS AND EIGENPROBLEMS CHAPTER 11 : JACOBI DAVIDSON METHOD ITERATIVE PROJECTION METHODS FOR SPARSE LINEAR SYSTEMS AND EIGENPROBLEMS CHAPTER 11 : JACOBI DAVIDSON METHOD Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Numerical Simulation

More information

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers MAX PLANCK INSTITUTE International Conference on Communications, Computing and Control Applications March 3-5, 2011, Hammamet, Tunisia. Model order reduction of large-scale dynamical systems with Jacobi-Davidson

More information

Passivity Preserving Model Reduction for Large-Scale Systems. Peter Benner.

Passivity Preserving Model Reduction for Large-Scale Systems. Peter Benner. Passivity Preserving Model Reduction for Large-Scale Systems Peter Benner Mathematik in Industrie und Technik Fakultät für Mathematik Sonderforschungsbereich 393 S N benner@mathematik.tu-chemnitz.de SIMULATION

More information

Iterative methods for Linear System

Iterative methods for Linear System Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline Basics: Matrices and their properties Eigenvalues, Condition Number Iterative Methods Direct and

More information

Model Reduction for Dynamical Systems

Model Reduction for Dynamical Systems Otto-von-Guericke Universität Magdeburg Faculty of Mathematics Summer term 2015 Model Reduction for Dynamical Systems Lecture 8 Peter Benner Lihong Feng Max Planck Institute for Dynamics of Complex Technical

More information

A Continuation Approach to a Quadratic Matrix Equation

A Continuation Approach to a Quadratic Matrix Equation A Continuation Approach to a Quadratic Matrix Equation Nils Wagner nwagner@mecha.uni-stuttgart.de Institut A für Mechanik, Universität Stuttgart GAMM Workshop Applied and Numerical Linear Algebra September

More information

Davidson Method CHAPTER 3 : JACOBI DAVIDSON METHOD

Davidson Method CHAPTER 3 : JACOBI DAVIDSON METHOD Davidson Method CHAPTER 3 : JACOBI DAVIDSON METHOD Heinrich Voss voss@tu-harburg.de Hamburg University of Technology The Davidson method is a popular technique to compute a few of the smallest (or largest)

More information

FEM and sparse linear system solving

FEM and sparse linear system solving FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 1/36 Lecture 9, Nov 17, 2017: Krylov space methods http://people.inf.ethz.ch/arbenz/fem17 Peter Arbenz Computer Science Department, ETH Zürich

More information

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Leslie Foster 11-5-2012 We will discuss the FOM (full orthogonalization method), CG,

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 5: Numerical Linear Algebra Cho-Jui Hsieh UC Davis April 20, 2017 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

Matrix Theory, Math6304 Lecture Notes from September 27, 2012 taken by Tasadduk Chowdhury

Matrix Theory, Math6304 Lecture Notes from September 27, 2012 taken by Tasadduk Chowdhury Matrix Theory, Math634 Lecture Notes from September 27, 212 taken by Tasadduk Chowdhury Last Time (9/25/12): QR factorization: any matrix A M n has a QR factorization: A = QR, whereq is unitary and R is

More information

Simple iteration procedure

Simple iteration procedure Simple iteration procedure Solve Known approximate solution Preconditionning: Jacobi Gauss-Seidel Lower triangle residue use of pre-conditionner correction residue use of pre-conditionner Convergence Spectral

More information

Order reduction numerical methods for the algebraic Riccati equation. V. Simoncini

Order reduction numerical methods for the algebraic Riccati equation. V. Simoncini Order reduction numerical methods for the algebraic Riccati equation V. Simoncini Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it 1 The problem Find X

More information

Matrix Equations and and Bivariate Function Approximation

Matrix Equations and and Bivariate Function Approximation Matrix Equations and and Bivariate Function Approximation D. Kressner Joint work with L. Grasedyck, C. Tobler, N. Truhar. ETH Zurich, Seminar for Applied Mathematics Manchester, 17.06.2009 Sylvester matrix

More information

arxiv: v3 [math.na] 6 Jul 2018

arxiv: v3 [math.na] 6 Jul 2018 A Connection Between Time Domain Model Order Reduction and Moment Matching for LTI Systems arxiv:181.785v3 [math.na] 6 Jul 218 Manuela Hund a and Jens Saak a a Max Planck Institute for Dynamics of Complex

More information

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A.

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A. AMSC/CMSC 661 Scientific Computing II Spring 2005 Solution of Sparse Linear Systems Part 2: Iterative methods Dianne P. O Leary c 2005 Solving Sparse Linear Systems: Iterative methods The plan: Iterative

More information

Moving Frontiers in Model Reduction Using Numerical Linear Algebra

Moving Frontiers in Model Reduction Using Numerical Linear Algebra Using Numerical Linear Algebra Max-Planck-Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Group Magdeburg, Germany Technische Universität Chemnitz

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems

A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems Mario Arioli m.arioli@rl.ac.uk CCLRC-Rutherford Appleton Laboratory with Daniel Ruiz (E.N.S.E.E.I.H.T)

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Numerical Linear Algebra Background Cho-Jui Hsieh UC Davis May 15, 2018 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

SYSTEM-THEORETIC METHODS FOR MODEL REDUCTION OF LARGE-SCALE SYSTEMS: SIMULATION, CONTROL, AND INVERSE PROBLEMS. Peter Benner

SYSTEM-THEORETIC METHODS FOR MODEL REDUCTION OF LARGE-SCALE SYSTEMS: SIMULATION, CONTROL, AND INVERSE PROBLEMS. Peter Benner SYSTEM-THEORETIC METHODS FOR MODEL REDUCTION OF LARGE-SCALE SYSTEMS: SIMULATION, CONTROL, AND INVERSE PROBLEMS Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität

More information

Lecture 8: Fast Linear Solvers (Part 7)

Lecture 8: Fast Linear Solvers (Part 7) Lecture 8: Fast Linear Solvers (Part 7) 1 Modified Gram-Schmidt Process with Reorthogonalization Test Reorthogonalization If Av k 2 + δ v k+1 2 = Av k 2 to working precision. δ = 10 3 2 Householder Arnoldi

More information

COMP6237 Data Mining Covariance, EVD, PCA & SVD. Jonathon Hare

COMP6237 Data Mining Covariance, EVD, PCA & SVD. Jonathon Hare COMP6237 Data Mining Covariance, EVD, PCA & SVD Jonathon Hare jsh2@ecs.soton.ac.uk Variance and Covariance Random Variables and Expected Values Mathematicians talk variance (and covariance) in terms of

More information

University of Maryland Department of Computer Science TR-5009 University of Maryland Institute for Advanced Computer Studies TR April 2012

University of Maryland Department of Computer Science TR-5009 University of Maryland Institute for Advanced Computer Studies TR April 2012 University of Maryland Department of Computer Science TR-5009 University of Maryland Institute for Advanced Computer Studies TR-202-07 April 202 LYAPUNOV INVERSE ITERATION FOR COMPUTING A FEW RIGHTMOST

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

Towards high performance IRKA on hybrid CPU-GPU systems

Towards high performance IRKA on hybrid CPU-GPU systems Towards high performance IRKA on hybrid CPU-GPU systems Jens Saak in collaboration with Georg Pauer (OVGU/MPI Magdeburg) Kapil Ahuja, Ruchir Garg (IIT Indore) Hartwig Anzt, Jack Dongarra (ICL Uni Tennessee

More information

Accelerating Model Reduction of Large Linear Systems with Graphics Processors

Accelerating Model Reduction of Large Linear Systems with Graphics Processors Accelerating Model Reduction of Large Linear Systems with Graphics Processors P. Benner 1, P. Ezzatti 2, D. Kressner 3, E.S. Quintana-Ortí 4, Alfredo Remón 4 1 Max-Plank-Institute for Dynamics of Complex

More information

A Comparison of Adaptive Algebraic Multigrid and Lüscher s Inexact Deflation

A Comparison of Adaptive Algebraic Multigrid and Lüscher s Inexact Deflation A Comparison of Adaptive Algebraic Multigrid and Lüscher s Inexact Deflation Andreas Frommer, Karsten Kahl, Stefan Krieg, Björn Leder and Matthias Rottmann Bergische Universität Wuppertal April 11, 2013

More information

6.4 Krylov Subspaces and Conjugate Gradients

6.4 Krylov Subspaces and Conjugate Gradients 6.4 Krylov Subspaces and Conjugate Gradients Our original equation is Ax = b. The preconditioned equation is P Ax = P b. When we write P, we never intend that an inverse will be explicitly computed. P

More information

Approximating the matrix exponential of an advection-diffusion operator using the incomplete orthogonalization method

Approximating the matrix exponential of an advection-diffusion operator using the incomplete orthogonalization method Approximating the matrix exponential of an advection-diffusion operator using the incomplete orthogonalization method Antti Koskela KTH Royal Institute of Technology, Lindstedtvägen 25, 10044 Stockholm,

More information

On the Ritz values of normal matrices

On the Ritz values of normal matrices On the Ritz values of normal matrices Zvonimir Bujanović Faculty of Science Department of Mathematics University of Zagreb June 13, 2011 ApplMath11 7th Conference on Applied Mathematics and Scientific

More information

On solving linear systems arising from Shishkin mesh discretizations

On solving linear systems arising from Shishkin mesh discretizations On solving linear systems arising from Shishkin mesh discretizations Petr Tichý Faculty of Mathematics and Physics, Charles University joint work with Carlos Echeverría, Jörg Liesen, and Daniel Szyld October

More information

Numerical Methods for Solving Large Scale Eigenvalue Problems

Numerical Methods for Solving Large Scale Eigenvalue Problems Peter Arbenz Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch arge scale eigenvalue problems, Lecture 2, February 28, 2018 1/46 Numerical Methods for Solving Large Scale Eigenvalue Problems

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Block Krylov Space Solvers: a Survey

Block Krylov Space Solvers: a Survey Seminar for Applied Mathematics ETH Zurich Nagoya University 8 Dec. 2005 Partly joint work with Thomas Schmelzer, Oxford University Systems with multiple RHSs Given is a nonsingular linear system with

More information

Linear and Nonlinear Matrix Equations Arising in Model Reduction

Linear and Nonlinear Matrix Equations Arising in Model Reduction International Conference on Numerical Linear Algebra and its Applications Guwahati, January 15 18, 2013 Linear and Nonlinear Matrix Equations Arising in Model Reduction Peter Benner Tobias Breiten Max

More information

Key words. conjugate gradients, normwise backward error, incremental norm estimation.

Key words. conjugate gradients, normwise backward error, incremental norm estimation. Proceedings of ALGORITMY 2016 pp. 323 332 ON ERROR ESTIMATION IN THE CONJUGATE GRADIENT METHOD: NORMWISE BACKWARD ERROR PETR TICHÝ Abstract. Using an idea of Duff and Vömel [BIT, 42 (2002), pp. 300 322

More information

Model Reduction for Unstable Systems

Model Reduction for Unstable Systems Model Reduction for Unstable Systems Klajdi Sinani Virginia Tech klajdi@vt.edu Advisor: Serkan Gugercin October 22, 2015 (VT) SIAM October 22, 2015 1 / 26 Overview 1 Introduction 2 Interpolatory Model

More information

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg Linear Algebra, part 3 Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2010 Going back to least squares (Sections 1.7 and 2.3 from Strang). We know from before: The vector

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition An Important topic in NLA Radu Tiberiu Trîmbiţaş Babeş-Bolyai University February 23, 2009 Radu Tiberiu Trîmbiţaş ( Babeş-Bolyai University)The Singular Value Decomposition

More information

Max Planck Institute Magdeburg Preprints

Max Planck Institute Magdeburg Preprints Peter Benner Patrick Kürschner Jens Saak Real versions of low-rank ADI methods with complex shifts MAXPLANCKINSTITUT FÜR DYNAMIK KOMPLEXER TECHNISCHER SYSTEME MAGDEBURG Max Planck Institute Magdeburg Preprints

More information

Principal Component Analysis

Principal Component Analysis Machine Learning Michaelmas 2017 James Worrell Principal Component Analysis 1 Introduction 1.1 Goals of PCA Principal components analysis (PCA) is a dimensionality reduction technique that can be used

More information

Towards parametric model order reduction for nonlinear PDE systems in networks

Towards parametric model order reduction for nonlinear PDE systems in networks Towards parametric model order reduction for nonlinear PDE systems in networks MoRePas II 2012 Michael Hinze Martin Kunkel Ulrich Matthes Morten Vierling Andreas Steinbrecher Tatjana Stykel Fachbereich

More information

ITERATIVE METHODS BASED ON KRYLOV SUBSPACES

ITERATIVE METHODS BASED ON KRYLOV SUBSPACES ITERATIVE METHODS BASED ON KRYLOV SUBSPACES LONG CHEN We shall present iterative methods for solving linear algebraic equation Au = b based on Krylov subspaces We derive conjugate gradient (CG) method

More information

Chemnitz Scientific Computing Preprints

Chemnitz Scientific Computing Preprints Peter Benner, Mohammad-Sahadet Hossain, Tatjana Styel Low-ran iterative methods of periodic projected Lyapunov equations and their application in model reduction of periodic descriptor systems CSC/11-01

More information

Model reduction of large-scale dynamical systems

Model reduction of large-scale dynamical systems Model reduction of large-scale dynamical systems Lecture III: Krylov approximation and rational interpolation Thanos Antoulas Rice University and Jacobs University email: aca@rice.edu URL: www.ece.rice.edu/

More information

Arnoldi Methods in SLEPc

Arnoldi Methods in SLEPc Scalable Library for Eigenvalue Problem Computations SLEPc Technical Report STR-4 Available at http://slepc.upv.es Arnoldi Methods in SLEPc V. Hernández J. E. Román A. Tomás V. Vidal Last update: October,

More information

Numerical Solution of Matrix Equations Arising in Control of Bilinear and Stochastic Systems

Numerical Solution of Matrix Equations Arising in Control of Bilinear and Stochastic Systems MatTriad 2015 Coimbra September 7 11, 2015 Numerical Solution of Matrix Equations Arising in Control of Bilinear and Stochastic Systems Peter Benner Max Planck Institute for Dynamics of Complex Technical

More information

Adaptive rational Krylov subspaces for large-scale dynamical systems. V. Simoncini

Adaptive rational Krylov subspaces for large-scale dynamical systems. V. Simoncini Adaptive rational Krylov subspaces for large-scale dynamical systems V. Simoncini Dipartimento di Matematica, Università di Bologna valeria@dm.unibo.it joint work with Vladimir Druskin, Schlumberger Doll

More information

On Solving Large Algebraic. Riccati Matrix Equations

On Solving Large Algebraic. Riccati Matrix Equations International Mathematical Forum, 5, 2010, no. 33, 1637-1644 On Solving Large Algebraic Riccati Matrix Equations Amer Kaabi Department of Basic Science Khoramshahr Marine Science and Technology University

More information

The rational Krylov subspace for parameter dependent systems. V. Simoncini

The rational Krylov subspace for parameter dependent systems. V. Simoncini The rational Krylov subspace for parameter dependent systems V. Simoncini Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it 1 Given the continuous-time system Motivation. Model

More information