PROJECTED GMRES AND ITS VARIANTS

Size: px
Start display at page:

Download "PROJECTED GMRES AND ITS VARIANTS"

Transcription

1 PROJECTED GMRES AND ITS VARIANTS Reinaldo Astudillo Brígida Molina Centro de Cálculo Científico y Tecnológico (CCCT), Facultad de Ciencias, Universidad Central de Venezuela (UCV), Ciudad Universitaria, Av. Los Estadios, Los Chaguaramos, Caracas-Venezuela. Abstract: In this work, we propose a new Krylov iterative method to solve systems of linear equations. This method is a variant of the well-known GMRES and is based on modifications over the constraints imposed on the residual vector, i.e., this vector is projected in another subspace and impose the constraints over this projection, because of this, we called the method: Projected GMRES (PRGMRES). Additionally, we develope two versions of PRGMRES: the PRGMRES with Biorthogonalization (BPRGMRES) and the Inexact PRGMRES (IPRGMRES). Experimental results are presented to show the good performances of the new methods, compared to FOM(m) and GMRES(m). Keywords: restarted GMRES, Krylov Subspace methods, Petrov-Galerkin conditions, unsymmetric linear systems. 1. INTRODUCTION In a variety of engineering and scientific applications we need to solve different systems of differential equations and these are solved numerically discretizing by mean of finite differences or finite element methods. The process of discretization, in general, leads to a linear system of the form: Ax = b (1) where A R n n is a sparse unsymmetric and nonsingular matrix, b R n the right hand side, and x R n is the unknown vector.

2 Due to computational and memory costs, compute x by factorization methods like: LU, QR, etc. can be very expensive for large values of n, besides these methods can be numerically unstable (see [1] and [2]). In this paper we will present a brief overview of general projection methods including the Krylov methods. At the same time, in section 3 we will discuss the modifications to restriction over general projection methods and how to produce the projected Krylov methods. We also present in section 4, preliminary numerical experiments and, finally, in section 5 we expose concluding remarks. 2. PROJECTION METHODS Definition: A projection method to solve (1) onto the subspace K (search subspace) and orthogonal to L (subspace of constraints) is a process which finds an approximate solution x by imposing the conditions that x belong to K and that the new residual vector is to be orthogonal to L (Petrov- Galerkin conditions). This can be written as : x K (2) b A x L. Let V =[v 1,...,v m ],an m matrix whose column-vectors form a basis of K and, similarly, W = [w 1,...,w m ] a n m matrix whose column-vectors form a basis of L, thus a prototype of projection method algorithm can be described as (see [3] and [4]): Algorithm 1 Prototype Projection Method 1: while no convergence do 2: choose V =[v 1,...,v m ] and W =[w 1,...,w m ] for K and L. 3: r b + A x 4: y (W T AV ) 1 W T r 5: x x 0 +Vy 6: end while 2.1 Krylov Methods The Krylov methods are projection methods where the search subspace K is the Krylov subspace: K m K m (A,r 0 )=Spanr 0,Ar 0,,A 2 r 0,...,,A m 1 r 0 } GMRES [5] is a Krylov method that computes an approximate solution x m at step k by doing an oblique projection onto the Krylov subspace K m (A,r 0 ) of size m, it means: x k K m (3) b Ax k AK m. Through the Arnoldi process [6], can be obtained a matrix V m =[v 1,...,v m ] whose columns are an orthonormal basis of K m (A,r 0 ) and an upper Hessenberg matrix H m.

3 These matrices satisfy the well-known relations given by: Then, the equation (3) can be written as: AV m = V m H m + h m+1,m v m+1 e T m = V m+1 H m, Vm T AV m = H m. x m = x 0 +V m y m where y m = arg min y R βe(m+1) m 1 H m y 2 (4) with β = r 0 2. FOM [7] on the other hand, is an orthogonal projection method where the equation (4) has been replaced by H m y m = βe (m) 1 while the rest of the algorithm remains unchanged. 3. A NEW PROTOTYPE PROJECTION METHOD If a subspace Z of dimension j contains the residual vector b A x, the expression (2) remain unchanged if we write: x k K T j Z (b Ax (5) k) L where T j Z is a orthogonal projector over Z. We propose to solve: x k K T j Z (b Ax (6) k) L. The main difference between the expressions (5) and (6) is T j Z which is a projector over a subspace Z where the residual vector b A x is not necessarily contained into this subspace. This is a generalization of (5). 3.1 Projected GMRES (PRGMRES) From (6), we choose K = K m (A,r k ), L = AK m (A,r k ) (such as GMRES) and Z = K m+1 (A,r k 1 ) (the previous Krylov subspace), which can be written as: x k = x 0 +V m y m (AV m ) T Z m+1 Zm+1 T r k = (7) 0 where V m is a matrix whose column-vectors represent the orthogonal Krylov basis, Z m+1 the previous Krylov basis and x 0 is an initial guess to the solution. Finally, using some algebraic manipulations, we rewrite (7) as: x k = x 0 +V m y m y m = min y R m Zm+1 T (r (8) 0 V m+1 H m y) 2 and together with the conditions (8), the PRGMRES algorithm is now described as:

4 Algorithm 2 PRGMRES(m) with Arnoldi modificated 1: Choose Z m+1 a orthogonal basis 2: r 0 b Ax 0, β r 0 2 y v 1 r 0 /β 3: for j 1,...,m do 4: w j Av j 5: for j 1,..., j do 6: h ij < w j,v i > 7: w j w j h ij v i 8: end for 9: h j+1, j w j 2 10: if h j+1, j = 0 then 11: Stop 12: end if 13: v j+1 w j /h j+1, j 14: end for 15: y m min y Zm+1 T (r 0 V m+1 H m y) 2 16: x m x 0 +V m y m 17: Z m+1 V m+1 18: x 0 x m go to PRGMRES(m) with biorthogonalization (BPRGMRES) In the previous algorithm 2, we have to solve: y m = min y R m Z T m+1 (r 0 V m+1 H m y) 2. An option is to make a process of biorthogonalization between the basis Z m+1 and V m+1 such as: < vi,z j > 0 if i = j < v i,z j >= 0 if i j then the expressions (8) can be written like: where D m+1 is a diagonal matrix. y m = min y Z T m+1 (βv 1 V m+1 H m y) 2 = min y βz T m+1 v 1 Z T m+1 V m+1 H m y 2 = min y βd 11 e 1 D m+1 H m y PRGMRES(m) Inexact (IPRGMRES) Another idea about the conditions (8) is to suppose that Z m+1 and V m+1 are biorthogonal bases, this is: Z T m+1 V m+1 = D m+1 Z T m+1r 0 = βd 11 e 1 where D m+1 is a diagonal matrix and d ii =< z i,v i > for i = 1,...,(m + 1).

5 4. NUMERICAL RESULTS We compare the classical restarted versions of FOM and GMRES with the projected versions presented in this work, on the following nonsymmetric matrices from the Harwell-Boeing library [8]: Matrix BCSSTK14 (n = 1806, cond(a)= ) Matrix FS (n = 680, cond(a)= ) Matrix Orsirr 1 (n = 1030, cond(a)= ) Matrix Sherman 1 (n = 1000, cond(a)= ). In all cases, we run experiments without preconditioning techniques. All experiments were run on Pentium IV 1.8 GHz, 256 Mb RAM, using MATLAB 7.0, and we stopped the process when: b Ax 2 b 2 < (9) Results are showed on tables 1 to 4 for each matrix studied. The parameter m is the positive integer used to restart the algorithms. For all cases, the initial guess was choosen as x 0 =(0,...,0) t. For each test matrix the rigth hand side vector is selected such that the solution vector is x =(1,1,...,1) t. A maximum of 3000 iterations were allowed for all methods. The symbol means that the associated method failed to satisfy (9) at the maximum number of iterations. Table 1. Number of iterations for the matrix BCSSTK14 m FOM GMRES PRGMRES BPRGMRES IPRGMRES 3 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** In general, we observe a very competitive behavior in the numerical tests between the proposed algorithms and classical restarted FOM and GMRES. However, we would like to point out some observations and conclusions about these numerical tests:

6 Table 2. Number of iterations for the matrix FS m FOM GMRES PRGMRES BPRGMRES IPRGMRES 9 **** **** **** 2636 **** 10 **** **** **** 2508 **** 15 **** **** **** **** Table 3. Number of iterations for the matrix Orsirr 1 m FOM GMRES PRGMRES BPRGMRES IPRGMRES 4 **** **** **** **** **** **** **** **** **** **** **** **** **** **** Table 4. Number of iterations for the matrix Sherman 1 m FOM GMRES PRGMRES BPRGMRES IPRGMRES 2 **** **** **** **** **** **** **** **** ****

7 The methods PRGMRES, BPRGMRES, IPRGMRES have a nonmonotone behavior (see figure 1). For small values of m, the proposed algorithms outperform the classic restarted versions of FOM and GMRES. This is certainly an interesting feature of the projected versions for very large problems when storage is crucial. For large values of m the new methods converges in the same number of iterations of GM- RES. In our experiments the classic versions failed to converge more frequently than the projected versions. We have no theoretical explanation for the interesting results reported in this section Matriz orsirr 1 = GMRES PRGMRES BPRGMRES IPRGMRES Figure 1. Evolution of the residual norm between the different methods with m = 15. Matrix Orsirr 1 5. FINAL REMARKS In this work we have proposed a new family of methods (projected methods) to solve systems of linear equations based on the equation (6), and developed three new Krylov methods that, in the numerical tests have a competitive behavior with FOM and GMRES. In the near future, we would like to study the performance of the new methods from a theoretical point of view, and to extend the projected approach to biorthogonal type methods like QMR and TFQMR. Acknowledgements This work was partially supported by FONACIT under the Programme of Human Resources Formation and by CDCH-UCV project

8 REFERENCES [1]. Biswa Nath Datta. Numerical Linear Algebra and Applications. Brooks/Cole Publishing Company, Pacific Grove, California, [2]. G. H. Golub and C. F. Van Loan, Matrix Computations, Third Edition, The Johns Hopkins University Press, Baltimore (1996). [3]. C. Brezinski. Multiparameter descent methods. Linear Algebra and Appl., 296: , [4]. Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM, Philadelphia, PA, [5]. Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7: , [6]. W.E. Arnoldi. The principle of minimized iteration in the solution of the matrix eigenvalue problem. Quart. Appl. Math., 9:17 19, [7]. Y. Saad. Krylov subspaces methods for solving large unsymmetric linear systems. Mathematics of Computation, 37: , [8]. I. Duff, R. Grimes and J. Lewis. User s guide for the Harwell-Boeing sparse matrix collection (release i). Technical Report TR-PA-92-86, CERFACS, Toulouse, France, 1992.

Residual iterative schemes for largescale linear systems

Residual iterative schemes for largescale linear systems Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Lecturas en Ciencias de la Computación ISSN 1316-6239 Residual iterative schemes for largescale linear systems William La Cruz

More information

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Leslie Foster 11-5-2012 We will discuss the FOM (full orthogonalization method), CG,

More information

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES 48 Arnoldi Iteration, Krylov Subspaces and GMRES We start with the problem of using a similarity transformation to convert an n n matrix A to upper Hessenberg form H, ie, A = QHQ, (30) with an appropriate

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 16-02 The Induced Dimension Reduction method applied to convection-diffusion-reaction problems R. Astudillo and M. B. van Gijzen ISSN 1389-6520 Reports of the Delft

More information

FEM and sparse linear system solving

FEM and sparse linear system solving FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 1/36 Lecture 9, Nov 17, 2017: Krylov space methods http://people.inf.ethz.ch/arbenz/fem17 Peter Arbenz Computer Science Department, ETH Zürich

More information

On the loss of orthogonality in the Gram-Schmidt orthogonalization process

On the loss of orthogonality in the Gram-Schmidt orthogonalization process CERFACS Technical Report No. TR/PA/03/25 Luc Giraud Julien Langou Miroslav Rozložník On the loss of orthogonality in the Gram-Schmidt orthogonalization process Abstract. In this paper we study numerical

More information

IDR(s) as a projection method

IDR(s) as a projection method Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics IDR(s) as a projection method A thesis submitted to the Delft Institute

More information

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering A short course on: Preconditioned Krylov subspace methods Yousef Saad University of Minnesota Dept. of Computer Science and Engineering Universite du Littoral, Jan 19-3, 25 Outline Part 1 Introd., discretization

More information

On Solving Large Algebraic. Riccati Matrix Equations

On Solving Large Algebraic. Riccati Matrix Equations International Mathematical Forum, 5, 2010, no. 33, 1637-1644 On Solving Large Algebraic Riccati Matrix Equations Amer Kaabi Department of Basic Science Khoramshahr Marine Science and Technology University

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 4: Iterative Methods PD

More information

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR NONSYMMETRIC LINEAR SYSTEMS

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR NONSYMMETRIC LINEAR SYSTEMS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, SERIES B Volume 5, Number 1-2, Pages 21 30 c 2014 Institute for Scientific Computing and Information A SPARSE APPROXIMATE INVERSE PRECONDITIONER

More information

ON THE GLOBAL KRYLOV SUBSPACE METHODS FOR SOLVING GENERAL COUPLED MATRIX EQUATIONS

ON THE GLOBAL KRYLOV SUBSPACE METHODS FOR SOLVING GENERAL COUPLED MATRIX EQUATIONS ON THE GLOBAL KRYLOV SUBSPACE METHODS FOR SOLVING GENERAL COUPLED MATRIX EQUATIONS Fatemeh Panjeh Ali Beik and Davod Khojasteh Salkuyeh, Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan,

More information

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294)

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294) Conjugate gradient method Descent method Hestenes, Stiefel 1952 For A N N SPD In exact arithmetic, solves in N steps In real arithmetic No guaranteed stopping Often converges in many fewer than N steps

More information

Large scale continuation using a block eigensolver

Large scale continuation using a block eigensolver Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Lecturas en Ciencias de la Computación ISSN 1316-6239 Large scale continuation using a block eigensolver Z. Castillo RT 2006-03

More information

Arnoldi Methods in SLEPc

Arnoldi Methods in SLEPc Scalable Library for Eigenvalue Problem Computations SLEPc Technical Report STR-4 Available at http://slepc.upv.es Arnoldi Methods in SLEPc V. Hernández J. E. Román A. Tomás V. Vidal Last update: October,

More information

Research Article Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite Linear Systems

Research Article Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite Linear Systems Abstract and Applied Analysis Article ID 237808 pages http://dxdoiorg/055/204/237808 Research Article Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite

More information

Algorithms that use the Arnoldi Basis

Algorithms that use the Arnoldi Basis AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis Fall 2007 Arnoldi Methods Dianne P. O Leary c 2006, 2007 Algorithms that use the Arnoldi Basis Reference: Chapter 6 of Saad The Arnoldi Basis How to

More information

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems Topics The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems What about non-spd systems? Methods requiring small history Methods requiring large history Summary of solvers 1 / 52 Conjugate

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH

ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH V. FABER, J. LIESEN, AND P. TICHÝ Abstract. Numerous algorithms in numerical linear algebra are based on the reduction of a given matrix

More information

Residual iterative schemes for large-scale nonsymmetric positive definite linear systems

Residual iterative schemes for large-scale nonsymmetric positive definite linear systems Volume 27, N. 2, pp. 151 173, 2008 Copyright 2008 SBMAC ISSN 0101-8205 www.scielo.br/cam Residual iterative schemes for large-scale nonsymmetric positive definite linear systems WILLIAM LA CRUZ 1 and MARCOS

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

Key words. conjugate gradients, normwise backward error, incremental norm estimation.

Key words. conjugate gradients, normwise backward error, incremental norm estimation. Proceedings of ALGORITMY 2016 pp. 323 332 ON ERROR ESTIMATION IN THE CONJUGATE GRADIENT METHOD: NORMWISE BACKWARD ERROR PETR TICHÝ Abstract. Using an idea of Duff and Vömel [BIT, 42 (2002), pp. 300 322

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

A DISSERTATION. Extensions of the Conjugate Residual Method. by Tomohiro Sogabe. Presented to

A DISSERTATION. Extensions of the Conjugate Residual Method. by Tomohiro Sogabe. Presented to A DISSERTATION Extensions of the Conjugate Residual Method ( ) by Tomohiro Sogabe Presented to Department of Applied Physics, The University of Tokyo Contents 1 Introduction 1 2 Krylov subspace methods

More information

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems JAMES H. MONEY and QIANG YE UNIVERSITY OF KENTUCKY eigifp is a MATLAB program for computing a few extreme eigenvalues

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 3: Iterative Methods PD

More information

Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices

Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices Eun-Joo Lee Department of Computer Science, East Stroudsburg University of Pennsylvania, 327 Science and Technology Center,

More information

On the influence of eigenvalues on Bi-CG residual norms

On the influence of eigenvalues on Bi-CG residual norms On the influence of eigenvalues on Bi-CG residual norms Jurjen Duintjer Tebbens Institute of Computer Science Academy of Sciences of the Czech Republic duintjertebbens@cs.cas.cz Gérard Meurant 30, rue

More information

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS YOUSEF SAAD University of Minnesota PWS PUBLISHING COMPANY I(T)P An International Thomson Publishing Company BOSTON ALBANY BONN CINCINNATI DETROIT LONDON MADRID

More information

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009)

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009) Iterative methods for Linear System of Equations Joint Advanced Student School (JASS-2009) Course #2: Numerical Simulation - from Models to Software Introduction In numerical simulation, Partial Differential

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 9 Minimizing Residual CG

More information

Research Article MINRES Seed Projection Methods for Solving Symmetric Linear Systems with Multiple Right-Hand Sides

Research Article MINRES Seed Projection Methods for Solving Symmetric Linear Systems with Multiple Right-Hand Sides Mathematical Problems in Engineering, Article ID 357874, 6 pages http://dx.doi.org/10.1155/2014/357874 Research Article MINRES Seed Projection Methods for Solving Symmetric Linear Systems with Multiple

More information

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Preliminaries Eigenvalue problems 2012 1 / 14

More information

Preconditioning Techniques Analysis for CG Method

Preconditioning Techniques Analysis for CG Method Preconditioning Techniques Analysis for CG Method Huaguang Song Department of Computer Science University of California, Davis hso@ucdavis.edu Abstract Matrix computation issue for solve linear system

More information

Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems Iterative Methods for Sparse Linear Systems Luca Bergamaschi e-mail: berga@dmsa.unipd.it - http://www.dmsa.unipd.it/ berga Department of Mathematical Methods and Models for Scientific Applications University

More information

A stable variant of Simpler GMRES and GCR

A stable variant of Simpler GMRES and GCR A stable variant of Simpler GMRES and GCR Miroslav Rozložník joint work with Pavel Jiránek and Martin H. Gutknecht Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic miro@cs.cas.cz,

More information

ANY FINITE CONVERGENCE CURVE IS POSSIBLE IN THE INITIAL ITERATIONS OF RESTARTED FOM

ANY FINITE CONVERGENCE CURVE IS POSSIBLE IN THE INITIAL ITERATIONS OF RESTARTED FOM Electronic Transactions on Numerical Analysis. Volume 45, pp. 133 145, 2016. Copyright c 2016,. ISSN 1068 9613. ETNA ANY FINITE CONVERGENCE CURVE IS POSSIBLE IN THE INITIAL ITERATIONS OF RESTARTED FOM

More information

Preconditioned inverse iteration and shift-invert Arnoldi method

Preconditioned inverse iteration and shift-invert Arnoldi method Preconditioned inverse iteration and shift-invert Arnoldi method Melina Freitag Department of Mathematical Sciences University of Bath CSC Seminar Max-Planck-Institute for Dynamics of Complex Technical

More information

Simple iteration procedure

Simple iteration procedure Simple iteration procedure Solve Known approximate solution Preconditionning: Jacobi Gauss-Seidel Lower triangle residue use of pre-conditionner correction residue use of pre-conditionner Convergence Spectral

More information

A Block Compression Algorithm for Computing Preconditioners

A Block Compression Algorithm for Computing Preconditioners A Block Compression Algorithm for Computing Preconditioners J Cerdán, J Marín, and J Mas Abstract To implement efficiently algorithms for the solution of large systems of linear equations in modern computer

More information

Reduced Synchronization Overhead on. December 3, Abstract. The standard formulation of the conjugate gradient algorithm involves

Reduced Synchronization Overhead on. December 3, Abstract. The standard formulation of the conjugate gradient algorithm involves Lapack Working Note 56 Conjugate Gradient Algorithms with Reduced Synchronization Overhead on Distributed Memory Multiprocessors E. F. D'Azevedo y, V.L. Eijkhout z, C. H. Romine y December 3, 1999 Abstract

More information

Krylov Subspace Methods that Are Based on the Minimization of the Residual

Krylov Subspace Methods that Are Based on the Minimization of the Residual Chapter 5 Krylov Subspace Methods that Are Based on the Minimization of the Residual Remark 51 Goal he goal of these methods consists in determining x k x 0 +K k r 0,A such that the corresponding Euclidean

More information

GMRES: Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems

GMRES: Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems GMRES: Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University December 4, 2011 T.-M. Huang (NTNU) GMRES

More information

6.4 Krylov Subspaces and Conjugate Gradients

6.4 Krylov Subspaces and Conjugate Gradients 6.4 Krylov Subspaces and Conjugate Gradients Our original equation is Ax = b. The preconditioned equation is P Ax = P b. When we write P, we never intend that an inverse will be explicitly computed. P

More information

The design and use of a sparse direct solver for skew symmetric matrices

The design and use of a sparse direct solver for skew symmetric matrices The design and use of a sparse direct solver for skew symmetric matrices Iain S. Duff May 6, 2008 RAL-TR-2006-027 c Science and Technology Facilities Council Enquires about copyright, reproduction and

More information

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying I.2 Quadratic Eigenvalue Problems 1 Introduction The quadratic eigenvalue problem QEP is to find scalars λ and nonzero vectors u satisfying where Qλx = 0, 1.1 Qλ = λ 2 M + λd + K, M, D and K are given

More information

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc.

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc. Lecture 11: CMSC 878R/AMSC698R Iterative Methods An introduction Outline Direct Solution of Linear Systems Inverse, LU decomposition, Cholesky, SVD, etc. Iterative methods for linear systems Why? Matrix

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 15-05 Induced Dimension Reduction method for solving linear matrix equations R. Astudillo and M. B. van Gijzen ISSN 1389-6520 Reports of the Delft Institute of Applied

More information

Iterative methods for Linear System

Iterative methods for Linear System Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline Basics: Matrices and their properties Eigenvalues, Condition Number Iterative Methods Direct and

More information

Charles University Faculty of Mathematics and Physics DOCTORAL THESIS. Krylov subspace approximations in linear algebraic problems

Charles University Faculty of Mathematics and Physics DOCTORAL THESIS. Krylov subspace approximations in linear algebraic problems Charles University Faculty of Mathematics and Physics DOCTORAL THESIS Iveta Hnětynková Krylov subspace approximations in linear algebraic problems Department of Numerical Mathematics Supervisor: Doc. RNDr.

More information

Jordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS

Jordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS Jordan Journal of Mathematics and Statistics JJMS) 53), 2012, pp.169-184 A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS ADEL H. AL-RABTAH Abstract. The Jacobi and Gauss-Seidel iterative

More information

Institute for Advanced Computer Studies. Department of Computer Science. Iterative methods for solving Ax = b. GMRES/FOM versus QMR/BiCG

Institute for Advanced Computer Studies. Department of Computer Science. Iterative methods for solving Ax = b. GMRES/FOM versus QMR/BiCG University of Maryland Institute for Advanced Computer Studies Department of Computer Science College Park TR{96{2 TR{3587 Iterative methods for solving Ax = b GMRES/FOM versus QMR/BiCG Jane K. Cullum

More information

Research Article Residual Iterative Method for Solving Absolute Value Equations

Research Article Residual Iterative Method for Solving Absolute Value Equations Abstract and Applied Analysis Volume 2012, Article ID 406232, 9 pages doi:10.1155/2012/406232 Research Article Residual Iterative Method for Solving Absolute Value Equations Muhammad Aslam Noor, 1 Javed

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 20 1 / 20 Overview

More information

Augmented GMRES-type methods

Augmented GMRES-type methods Augmented GMRES-type methods James Baglama 1 and Lothar Reichel 2, 1 Department of Mathematics, University of Rhode Island, Kingston, RI 02881. E-mail: jbaglama@math.uri.edu. Home page: http://hypatia.math.uri.edu/

More information

Solving large sparse Ax = b.

Solving large sparse Ax = b. Bob-05 p.1/69 Solving large sparse Ax = b. Stopping criteria, & backward stability of MGS-GMRES. Chris Paige (McGill University); Miroslav Rozložník & Zdeněk Strakoš (Academy of Sciences of the Czech Republic)..pdf

More information

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1.

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1. J. Appl. Math. & Computing Vol. 15(2004), No. 1, pp. 299-312 BILUS: A BLOCK VERSION OF ILUS FACTORIZATION DAVOD KHOJASTEH SALKUYEH AND FAEZEH TOUTOUNIAN Abstract. ILUS factorization has many desirable

More information

GMRES ON (NEARLY) SINGULAR SYSTEMS

GMRES ON (NEARLY) SINGULAR SYSTEMS SIAM J. MATRIX ANAL. APPL. c 1997 Society for Industrial and Applied Mathematics Vol. 18, No. 1, pp. 37 51, January 1997 004 GMRES ON (NEARLY) SINGULAR SYSTEMS PETER N. BROWN AND HOMER F. WALKER Abstract.

More information

WHEN studying distributed simulations of power systems,

WHEN studying distributed simulations of power systems, 1096 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL 21, NO 3, AUGUST 2006 A Jacobian-Free Newton-GMRES(m) Method with Adaptive Preconditioner and Its Application for Power Flow Calculations Ying Chen and Chen

More information

EVALUATION OF ACCELERATION TECHNIQUES FOR THE RESTARTED ARNOLDI METHOD

EVALUATION OF ACCELERATION TECHNIQUES FOR THE RESTARTED ARNOLDI METHOD EVALUATION OF ACCELERATION TECHNIQUES FOR THE RESTARTED ARNOLDI METHOD AKIRA NISHIDA AND YOSHIO OYANAGI Abstract. We present an approach for the acceleration of the restarted Arnoldi iteration for the

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

A Method for Constructing Diagonally Dominant Preconditioners based on Jacobi Rotations

A Method for Constructing Diagonally Dominant Preconditioners based on Jacobi Rotations A Method for Constructing Diagonally Dominant Preconditioners based on Jacobi Rotations Jin Yun Yuan Plamen Y. Yalamov Abstract A method is presented to make a given matrix strictly diagonally dominant

More information

RESIDUAL SMOOTHING AND PEAK/PLATEAU BEHAVIOR IN KRYLOV SUBSPACE METHODS

RESIDUAL SMOOTHING AND PEAK/PLATEAU BEHAVIOR IN KRYLOV SUBSPACE METHODS RESIDUAL SMOOTHING AND PEAK/PLATEAU BEHAVIOR IN KRYLOV SUBSPACE METHODS HOMER F. WALKER Abstract. Recent results on residual smoothing are reviewed, and it is observed that certain of these are equivalent

More information

Recent computational developments in Krylov Subspace Methods for linear systems. Valeria Simoncini and Daniel B. Szyld

Recent computational developments in Krylov Subspace Methods for linear systems. Valeria Simoncini and Daniel B. Szyld Recent computational developments in Krylov Subspace Methods for linear systems Valeria Simoncini and Daniel B. Szyld A later version appeared in : Numerical Linear Algebra w/appl., 2007, v. 14(1), pp.1-59.

More information

Key words. linear equations, polynomial preconditioning, nonsymmetric Lanczos, BiCGStab, IDR

Key words. linear equations, polynomial preconditioning, nonsymmetric Lanczos, BiCGStab, IDR POLYNOMIAL PRECONDITIONED BICGSTAB AND IDR JENNIFER A. LOE AND RONALD B. MORGAN Abstract. Polynomial preconditioning is applied to the nonsymmetric Lanczos methods BiCGStab and IDR for solving large nonsymmetric

More information

Laboratoire d'informatique Fondamentale de Lille

Laboratoire d'informatique Fondamentale de Lille Laboratoire d'informatique Fondamentale de Lille Publication AS-181 Modied Krylov acceleration for parallel environments C. Le Calvez & Y. Saad February 1998 c LIFL USTL UNIVERSITE DES SCIENCES ET TECHNOLOGIES

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Lab 1: Iterative Methods for Solving Linear Systems

Lab 1: Iterative Methods for Solving Linear Systems Lab 1: Iterative Methods for Solving Linear Systems January 22, 2017 Introduction Many real world applications require the solution to very large and sparse linear systems where direct methods such as

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information

Pseudoinverse Preconditioners and Iterative Methods for Large Dense Linear Least-Squares Problems

Pseudoinverse Preconditioners and Iterative Methods for Large Dense Linear Least-Squares Problems Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Lecturas en Ciencias de la Computación ISSN 1316-6239 Pseudoinverse Preconditioners and Iterative Methods for Large Dense Linear

More information

Alternative correction equations in the Jacobi-Davidson method

Alternative correction equations in the Jacobi-Davidson method Chapter 2 Alternative correction equations in the Jacobi-Davidson method Menno Genseberger and Gerard Sleijpen Abstract The correction equation in the Jacobi-Davidson method is effective in a subspace

More information

Iterative Methods for Linear Systems of Equations

Iterative Methods for Linear Systems of Equations Iterative Methods for Linear Systems of Equations Projection methods (3) ITMAN PhD-course DTU 20-10-08 till 24-10-08 Martin van Gijzen 1 Delft University of Technology Overview day 4 Bi-Lanczos method

More information

Lecture 8: Fast Linear Solvers (Part 7)

Lecture 8: Fast Linear Solvers (Part 7) Lecture 8: Fast Linear Solvers (Part 7) 1 Modified Gram-Schmidt Process with Reorthogonalization Test Reorthogonalization If Av k 2 + δ v k+1 2 = Av k 2 to working precision. δ = 10 3 2 Householder Arnoldi

More information

Henk van der Vorst. Abstract. We discuss a novel approach for the computation of a number of eigenvalues and eigenvectors

Henk van der Vorst. Abstract. We discuss a novel approach for the computation of a number of eigenvalues and eigenvectors Subspace Iteration for Eigenproblems Henk van der Vorst Abstract We discuss a novel approach for the computation of a number of eigenvalues and eigenvectors of the standard eigenproblem Ax = x. Our method

More information

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University Lecture 17 Methods for System of Linear Equations: Part 2 Songting Luo Department of Mathematics Iowa State University MATH 481 Numerical Methods for Differential Equations Songting Luo ( Department of

More information

Linear Algebra. Brigitte Bidégaray-Fesquet. MSIAM, September Univ. Grenoble Alpes, Laboratoire Jean Kuntzmann, Grenoble.

Linear Algebra. Brigitte Bidégaray-Fesquet. MSIAM, September Univ. Grenoble Alpes, Laboratoire Jean Kuntzmann, Grenoble. Brigitte Bidégaray-Fesquet Univ. Grenoble Alpes, Laboratoire Jean Kuntzmann, Grenoble MSIAM, 23 24 September 215 Overview 1 Elementary operations Gram Schmidt orthonormalization Matrix norm Conditioning

More information

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna.

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna. Recent advances in approximation using Krylov subspaces V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The framework It is given an operator

More information

ITERATIVE METHODS BASED ON KRYLOV SUBSPACES

ITERATIVE METHODS BASED ON KRYLOV SUBSPACES ITERATIVE METHODS BASED ON KRYLOV SUBSPACES LONG CHEN We shall present iterative methods for solving linear algebraic equation Au = b based on Krylov subspaces We derive conjugate gradient (CG) method

More information

PERTURBED ARNOLDI FOR COMPUTING MULTIPLE EIGENVALUES

PERTURBED ARNOLDI FOR COMPUTING MULTIPLE EIGENVALUES 1 PERTURBED ARNOLDI FOR COMPUTING MULTIPLE EIGENVALUES MARK EMBREE, THOMAS H. GIBSON, KEVIN MENDOZA, AND RONALD B. MORGAN Abstract. fill in abstract Key words. eigenvalues, multiple eigenvalues, Arnoldi,

More information

Inexactness and flexibility in linear Krylov solvers

Inexactness and flexibility in linear Krylov solvers Inexactness and flexibility in linear Krylov solvers Luc Giraud ENSEEIHT (N7) - IRIT, Toulouse Matrix Analysis and Applications CIRM Luminy - October 15-19, 2007 in honor of Gérard Meurant for his 60 th

More information

ON RESTARTING THE ARNOLDI METHOD FOR LARGE NONSYMMETRIC EIGENVALUE PROBLEMS

ON RESTARTING THE ARNOLDI METHOD FOR LARGE NONSYMMETRIC EIGENVALUE PROBLEMS MATHEMATICS OF COMPUTATION Volume 65, Number 215 July 1996, Pages 1213 1230 ON RESTARTING THE ARNOLDI METHOD FOR LARGE NONSYMMETRIC EIGENVALUE PROBLEMS RONALD B. MORGAN Abstract. The Arnoldi method computes

More information

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization General Tools for Solving Large Eigen-Problems

More information

Numerical Methods for Solving Large Scale Eigenvalue Problems

Numerical Methods for Solving Large Scale Eigenvalue Problems Peter Arbenz Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch arge scale eigenvalue problems, Lecture 2, February 28, 2018 1/46 Numerical Methods for Solving Large Scale Eigenvalue Problems

More information

Krylov Space Methods. Nonstationary sounds good. Radu Trîmbiţaş ( Babeş-Bolyai University) Krylov Space Methods 1 / 17

Krylov Space Methods. Nonstationary sounds good. Radu Trîmbiţaş ( Babeş-Bolyai University) Krylov Space Methods 1 / 17 Krylov Space Methods Nonstationary sounds good Radu Trîmbiţaş Babeş-Bolyai University Radu Trîmbiţaş ( Babeş-Bolyai University) Krylov Space Methods 1 / 17 Introduction These methods are used both to solve

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 OUTLINE Sparse matrix storage format Basic factorization

More information

Steady-State Optimization Lecture 1: A Brief Review on Numerical Linear Algebra Methods

Steady-State Optimization Lecture 1: A Brief Review on Numerical Linear Algebra Methods Steady-State Optimization Lecture 1: A Brief Review on Numerical Linear Algebra Methods Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes (SOP) Summer Semester

More information

LARGE SPARSE EIGENVALUE PROBLEMS

LARGE SPARSE EIGENVALUE PROBLEMS LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization 14-1 General Tools for Solving Large Eigen-Problems

More information

The rate of convergence of the GMRES method

The rate of convergence of the GMRES method The rate of convergence of the GMRES method Report 90-77 C. Vuik Technische Universiteit Delft Delft University of Technology Faculteit der Technische Wiskunde en Informatica Faculty of Technical Mathematics

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.4: Krylov Subspace Methods 2 / 51 Krylov Subspace Methods In this chapter we give

More information

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT

More information

Generalized MINRES or Generalized LSQR?

Generalized MINRES or Generalized LSQR? Generalized MINRES or Generalized LSQR? Michael Saunders Systems Optimization Laboratory (SOL) Institute for Computational Mathematics and Engineering (ICME) Stanford University New Frontiers in Numerical

More information

Alternative correction equations in the Jacobi-Davidson method. Mathematical Institute. Menno Genseberger and Gerard L. G.

Alternative correction equations in the Jacobi-Davidson method. Mathematical Institute. Menno Genseberger and Gerard L. G. Universiteit-Utrecht * Mathematical Institute Alternative correction equations in the Jacobi-Davidson method by Menno Genseberger and Gerard L. G. Sleijpen Preprint No. 173 June 1998, revised: March 1999

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

The flexible incomplete LU preconditioner for large nonsymmetric linear systems. Takatoshi Nakamura Takashi Nodera

The flexible incomplete LU preconditioner for large nonsymmetric linear systems. Takatoshi Nakamura Takashi Nodera Research Report KSTS/RR-15/006 The flexible incomplete LU preconditioner for large nonsymmetric linear systems by Takatoshi Nakamura Takashi Nodera Takatoshi Nakamura School of Fundamental Science and

More information

On the Preconditioning of the Block Tridiagonal Linear System of Equations

On the Preconditioning of the Block Tridiagonal Linear System of Equations On the Preconditioning of the Block Tridiagonal Linear System of Equations Davod Khojasteh Salkuyeh Department of Mathematics, University of Mohaghegh Ardabili, PO Box 179, Ardabil, Iran E-mail: khojaste@umaacir

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

Communication-avoiding Krylov subspace methods

Communication-avoiding Krylov subspace methods Motivation Communication-avoiding Krylov subspace methods Mark mhoemmen@cs.berkeley.edu University of California Berkeley EECS MS Numerical Libraries Group visit: 28 April 2008 Overview Motivation Current

More information